-Adjust testing framework for new model

-Add web player support: include static file serving and HTML interface for TTS
This commit is contained in:
remsky 2025-01-22 21:11:47 -07:00
parent 66f46e82f9
commit df4cc5b4b2
30 changed files with 2611 additions and 1369 deletions

View file

@ -0,0 +1,206 @@
"""Tests for API endpoints"""
import pytest
import torch
from fastapi.testclient import TestClient
from ..src.main import app
# Create test client for non-async tests
client = TestClient(app)
def test_health_check():
"""Test the health check endpoint"""
response = client.get("/health")
assert response.status_code == 200
assert response.json() == {"status": "healthy"}
@pytest.mark.asyncio
async def test_openai_speech_endpoint(async_client, mock_tts_service):
"""Test the OpenAI-compatible speech endpoint"""
# Setup mocks
mock_tts_service._voice_manager.list_voices.return_value = ["bm_lewis"]
mock_tts_service.generate_audio.return_value = (torch.zeros(48000).numpy(), 1.0)
mock_tts_service._voice_manager.load_voice.return_value = torch.zeros(192)
# Mock voice validation
mock_tts_service._voice_manager.get_voice_path.return_value = "/mock/voices/bm_lewis.pt"
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "bm_lewis",
"response_format": "wav",
"speed": 1.0,
"stream": False,
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/wav"
assert response.headers["content-disposition"] == "attachment; filename=speech.wav"
mock_tts_service.generate_audio.assert_called_once()
@pytest.mark.asyncio
async def test_openai_speech_invalid_voice(async_client, mock_tts_service):
"""Test the OpenAI-compatible speech endpoint with invalid voice"""
# Setup mocks
mock_tts_service._voice_manager.list_voices.return_value = ["af", "bm_lewis"]
mock_tts_service._voice_manager.get_voice_path.return_value = None
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "invalid_voice",
"response_format": "wav",
"speed": 1.0,
"stream": False,
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 400
assert "not found" in response.json()["detail"]["message"]
@pytest.mark.asyncio
async def test_openai_speech_generation_error(async_client, mock_tts_service):
"""Test error handling in speech generation"""
# Setup mocks
mock_tts_service._voice_manager.list_voices.return_value = ["af"]
mock_tts_service.generate_audio.side_effect = RuntimeError("Generation failed")
mock_tts_service._voice_manager.load_voice.return_value = torch.zeros(192)
mock_tts_service._voice_manager.get_voice_path.return_value = "/mock/voices/af.pt"
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "af",
"response_format": "wav",
"speed": 1.0,
"stream": False,
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 500
assert "Generation failed" in response.json()["detail"]["message"]
@pytest.mark.asyncio
async def test_combine_voices_list_success(async_client, mock_tts_service):
"""Test successful voice combination using list format"""
# Setup mocks
mock_tts_service._voice_manager.list_voices.return_value = ["af_bella", "af_sarah"]
mock_tts_service._voice_manager.combine_voices.return_value = "af_bella_af_sarah"
mock_tts_service._voice_manager.load_voice.return_value = torch.zeros(192)
mock_tts_service._voice_manager.get_voice_path.return_value = "/mock/voices/af_bella.pt"
test_voices = ["af_bella", "af_sarah"]
response = await async_client.post("/v1/audio/voices/combine", json=test_voices)
assert response.status_code == 200
assert response.json()["voice"] == "af_bella_af_sarah"
mock_tts_service._voice_manager.combine_voices.assert_called_once()
@pytest.mark.asyncio
async def test_combine_voices_empty_list(async_client, mock_tts_service):
"""Test combining empty voice list returns error"""
test_voices = []
response = await async_client.post("/v1/audio/voices/combine", json=test_voices)
assert response.status_code == 400
assert "No voices provided" in response.json()["detail"]["message"]
@pytest.mark.asyncio
async def test_speech_streaming_with_combined_voice(async_client, mock_tts_service):
"""Test streaming speech with combined voice using + syntax"""
# Setup mocks
mock_tts_service._voice_manager.list_voices.return_value = ["af_bella", "af_sarah"]
mock_tts_service._voice_manager.combine_voices.return_value = "af_bella_af_sarah"
mock_tts_service._voice_manager.load_voice.return_value = torch.zeros(192)
mock_tts_service._voice_manager.get_voice_path.return_value = "/mock/voices/af_bella.pt"
async def mock_stream():
yield b"chunk1"
yield b"chunk2"
mock_tts_service.generate_audio_stream.return_value = mock_stream()
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "af_bella+af_sarah",
"response_format": "mp3",
"stream": True,
}
headers = {"x-raw-response": "stream"}
response = await async_client.post(
"/v1/audio/speech", json=test_request, headers=headers
)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/mpeg"
assert response.headers["content-disposition"] == "attachment; filename=speech.mp3"
@pytest.mark.asyncio
async def test_openai_speech_pcm_streaming(async_client, mock_tts_service):
"""Test streaming PCM audio for real-time playback"""
# Setup mocks
mock_tts_service._voice_manager.list_voices.return_value = ["af"]
mock_tts_service._voice_manager.load_voice.return_value = torch.zeros(192)
mock_tts_service._voice_manager.get_voice_path.return_value = "/mock/voices/af.pt"
async def mock_stream():
yield b"chunk1"
yield b"chunk2"
mock_tts_service.generate_audio_stream.return_value = mock_stream()
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "af",
"response_format": "pcm",
"stream": True,
}
headers = {"x-raw-response": "stream"}
response = await async_client.post(
"/v1/audio/speech", json=test_request, headers=headers
)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/pcm"
@pytest.mark.asyncio
async def test_openai_speech_streaming_mp3(async_client, mock_tts_service):
"""Test streaming MP3 audio to file"""
# Setup mocks
mock_tts_service._voice_manager.list_voices.return_value = ["af"]
mock_tts_service._voice_manager.load_voice.return_value = torch.zeros(192)
mock_tts_service._voice_manager.get_voice_path.return_value = "/mock/voices/af.pt"
async def mock_stream():
yield b"chunk1"
yield b"chunk2"
mock_tts_service.generate_audio_stream.return_value = mock_stream()
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "af",
"response_format": "mp3",
"stream": True,
}
headers = {"x-raw-response": "stream"}
response = await async_client.post(
"/v1/audio/speech", json=test_request, headers=headers
)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/mpeg"
assert response.headers["content-disposition"] == "attachment; filename=speech.mp3"

104
api/depr_tests/test_main.py Normal file
View file

@ -0,0 +1,104 @@
"""Tests for FastAPI application"""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
import torch
from fastapi.testclient import TestClient
from api.src.main import app, lifespan
@pytest.fixture
def test_client():
"""Create a test client"""
return TestClient(app)
def test_health_check(test_client):
"""Test health check endpoint"""
response = test_client.get("/health")
assert response.status_code == 200
assert response.json() == {"status": "healthy"}
@pytest.mark.asyncio
async def test_lifespan_successful_warmup():
"""Test successful model warmup in lifespan"""
with patch("api.src.inference.model_manager.get_manager") as mock_get_model, \
patch("api.src.inference.voice_manager.get_manager") as mock_get_voice, \
patch("api.src.main.logger") as mock_logger, \
patch("os.path.exists") as mock_exists, \
patch("torch.cuda.is_available") as mock_cuda:
# Setup mocks
mock_model = AsyncMock()
mock_voice = AsyncMock()
mock_get_model.return_value = mock_model
mock_get_voice.return_value = mock_voice
mock_exists.return_value = True
mock_cuda.return_value = False
# Setup model manager
mock_backend = MagicMock()
mock_backend.device = "cpu"
mock_model.get_backend.return_value = mock_backend
mock_model.load_model = AsyncMock()
# Setup voice manager
mock_voice_tensor = torch.zeros(192)
mock_voice.load_voice = AsyncMock(return_value=mock_voice_tensor)
mock_voice.list_voices = AsyncMock(return_value=["af", "af_bella", "af_sarah"])
# Create an async generator from the lifespan context manager
async_gen = lifespan(MagicMock())
# Start the context manager
await async_gen.__aenter__()
# Verify managers were initialized
mock_get_model.assert_called_once()
mock_get_voice.assert_called_once()
mock_model.load_model.assert_called_once()
# Clean up
await async_gen.__aexit__(None, None, None)
@pytest.mark.asyncio
async def test_lifespan_failed_warmup():
"""Test failed model warmup in lifespan"""
with patch("api.src.inference.model_manager.get_manager") as mock_get_model:
# Mock the model manager to fail
mock_get_model.side_effect = RuntimeError("Failed to initialize model")
# Create an async generator from the lifespan context manager
async_gen = lifespan(MagicMock())
# Verify the exception is raised
with pytest.raises(RuntimeError, match="Failed to initialize model"):
await async_gen.__aenter__()
# Clean up
await async_gen.__aexit__(None, None, None)
@pytest.mark.asyncio
async def test_lifespan_voice_manager_failure():
"""Test failure when voice manager fails to initialize"""
with patch("api.src.inference.model_manager.get_manager") as mock_get_model, \
patch("api.src.inference.voice_manager.get_manager") as mock_get_voice:
# Setup model manager success but voice manager failure
mock_model = AsyncMock()
mock_get_model.return_value = mock_model
mock_get_voice.side_effect = RuntimeError("Failed to initialize voice manager")
# Create an async generator from the lifespan context manager
async_gen = lifespan(MagicMock())
# Verify the exception is raised
with pytest.raises(RuntimeError, match="Failed to initialize voice manager"):
await async_gen.__aenter__()
# Clean up
await async_gen.__aexit__(None, None, None)

View file

@ -0,0 +1,190 @@
"""Tests for model and voice managers"""
import os
import numpy as np
import pytest
import torch
from unittest.mock import AsyncMock, MagicMock, Mock, patch
from api.src.inference.model_manager import get_manager as get_model_manager
from api.src.inference.voice_manager import get_manager as get_voice_manager
# Get project root path
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
MOCK_VOICES_DIR = os.path.join(PROJECT_ROOT, "api", "src", "voices")
MOCK_MODEL_DIR = os.path.join(PROJECT_ROOT, "api", "src", "models")
@pytest.mark.asyncio
async def test_model_manager_initialization():
"""Test model manager initialization"""
with patch("api.src.inference.model_manager.settings") as mock_settings, \
patch("api.src.core.paths.get_model_path") as mock_get_path:
mock_settings.model_dir = MOCK_MODEL_DIR
mock_settings.onnx_model_path = "model.onnx"
mock_get_path.return_value = os.path.join(MOCK_MODEL_DIR, "model.onnx")
manager = await get_model_manager()
assert manager is not None
backend = manager.get_backend()
assert backend is not None
@pytest.mark.asyncio
async def test_model_manager_generate():
"""Test model generation"""
with patch("api.src.inference.model_manager.settings") as mock_settings, \
patch("api.src.core.paths.get_model_path") as mock_get_path, \
patch("torch.load") as mock_torch_load:
mock_settings.model_dir = MOCK_MODEL_DIR
mock_settings.onnx_model_path = "model.onnx"
mock_settings.use_onnx = True
mock_settings.use_gpu = False
mock_get_path.return_value = os.path.join(MOCK_MODEL_DIR, "model.onnx")
# Mock torch load to return a tensor
mock_torch_load.return_value = torch.zeros(192)
manager = await get_model_manager()
# Set up mock backend
mock_backend = AsyncMock()
mock_backend.is_loaded = True
mock_backend.device = "cpu"
# Create audio tensor and ensure it's properly mocked
audio_data = torch.zeros(48000, dtype=torch.float32)
async def mock_generate(*args, **kwargs):
return audio_data
mock_backend.generate.side_effect = mock_generate
# Set up manager with mock backend
manager._backends['onnx_cpu'] = mock_backend
manager._current_backend = 'onnx_cpu'
# Generate audio
tokens = [1, 2, 3]
voice_tensor = torch.zeros(192)
audio = await manager.generate(tokens, voice_tensor, speed=1.0)
assert isinstance(audio, torch.Tensor), "Generated audio should be torch tensor"
assert audio.dtype == torch.float32, "Audio should be 32-bit float"
assert audio.shape == (48000,), "Audio should have 48000 samples"
assert mock_backend.generate.call_count == 1
@pytest.mark.asyncio
async def test_voice_manager_initialization():
"""Test voice manager initialization"""
with patch("api.src.inference.voice_manager.settings") as mock_settings, \
patch("os.path.exists") as mock_exists:
mock_settings.voices_dir = MOCK_VOICES_DIR
mock_exists.return_value = True
manager = await get_voice_manager()
assert manager is not None
@pytest.mark.asyncio
async def test_voice_manager_list_voices():
"""Test listing available voices"""
with patch("api.src.inference.voice_manager.settings") as mock_settings, \
patch("os.listdir") as mock_listdir, \
patch("os.makedirs") as mock_makedirs, \
patch("os.path.exists") as mock_exists:
mock_settings.voices_dir = MOCK_VOICES_DIR
mock_listdir.return_value = ["af_bella.pt", "af_sarah.pt", "bm_lewis.pt"]
mock_exists.return_value = True
manager = await get_voice_manager()
voices = await manager.list_voices()
assert isinstance(voices, list)
assert len(voices) == 3, f"Expected 3 voices but got {len(voices)}"
assert sorted(voices) == ["af_bella", "af_sarah", "bm_lewis"]
mock_listdir.assert_called_once()
@pytest.mark.asyncio
async def test_voice_manager_load_voice():
"""Test loading a voice"""
with patch("api.src.inference.voice_manager.settings") as mock_settings, \
patch("torch.load") as mock_torch_load, \
patch("os.path.exists") as mock_exists:
mock_settings.voices_dir = MOCK_VOICES_DIR
mock_exists.return_value = True
# Create a mock tensor
mock_tensor = torch.zeros(192)
mock_torch_load.return_value = mock_tensor
manager = await get_voice_manager()
voice_tensor = await manager.load_voice("af_bella", device="cpu")
assert isinstance(voice_tensor, torch.Tensor)
assert voice_tensor.shape == (192,)
mock_torch_load.assert_called_once()
@pytest.mark.asyncio
async def test_voice_manager_combine_voices():
"""Test combining voices"""
with patch("api.src.inference.voice_manager.settings") as mock_settings, \
patch("torch.load") as mock_load, \
patch("torch.save") as mock_save, \
patch("os.makedirs") as mock_makedirs, \
patch("os.path.exists") as mock_exists:
mock_settings.voices_dir = MOCK_VOICES_DIR
mock_exists.return_value = True
# Create mock tensors
mock_tensor1 = torch.ones(192)
mock_tensor2 = torch.ones(192) * 2
mock_load.side_effect = [mock_tensor1, mock_tensor2]
manager = await get_voice_manager()
combined_name = await manager.combine_voices(["af_bella", "af_sarah"])
assert combined_name == "af_bella_af_sarah"
assert mock_load.call_count == 2
mock_save.assert_called_once()
# Verify the combined tensor was saved
saved_tensor = mock_save.call_args[0][0]
assert isinstance(saved_tensor, torch.Tensor)
assert saved_tensor.shape == (192,)
# Should be average of the two tensors
assert torch.allclose(saved_tensor, torch.ones(192) * 1.5)
@pytest.mark.asyncio
async def test_voice_manager_invalid_voice():
"""Test loading invalid voice"""
with patch("api.src.inference.voice_manager.settings") as mock_settings, \
patch("os.path.exists") as mock_exists:
mock_settings.voices_dir = MOCK_VOICES_DIR
mock_exists.return_value = False
manager = await get_voice_manager()
with pytest.raises(RuntimeError, match="Voice not found"):
await manager.load_voice("invalid_voice", device="cpu")
@pytest.mark.asyncio
async def test_voice_manager_combine_invalid_voices():
"""Test combining with invalid voices"""
with patch("api.src.inference.voice_manager.settings") as mock_settings, \
patch("os.path.exists") as mock_exists:
mock_settings.voices_dir = MOCK_VOICES_DIR
mock_exists.return_value = False
manager = await get_voice_manager()
with pytest.raises(RuntimeError, match="Voice not found"):
await manager.combine_voices(["invalid_voice1", "invalid_voice2"])

View file

@ -0,0 +1,139 @@
"""Tests for text processing endpoints"""
import os
import pytest
import torch
from fastapi.testclient import TestClient
from ..src.main import app
# Get project root path
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
MOCK_VOICES_DIR = os.path.join(PROJECT_ROOT, "api", "src", "voices")
client = TestClient(app)
@pytest.mark.asyncio
async def test_generate_from_phonemes(async_client, mock_tts_service):
"""Test generating audio from phonemes"""
# Setup mocks
mock_tts_service._voice_manager.list_voices.return_value = ["af_bella"]
mock_tts_service.generate_audio.return_value = (torch.zeros(48000).numpy(), 1.0)
mock_tts_service._voice_manager.load_voice.return_value = torch.zeros(192)
mock_tts_service._voice_manager.get_voice_path.return_value = "/mock/voices/af_bella.pt"
test_request = {
"model": "kokoro",
"input": "h @ l oU w r= l d",
"voice": "af_bella",
"response_format": "wav",
"speed": 1.0,
"stream": False,
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/wav"
assert response.headers["content-disposition"] == "attachment; filename=speech.wav"
mock_tts_service.generate_audio.assert_called_once()
@pytest.mark.asyncio
async def test_generate_from_phonemes_invalid_voice(async_client, mock_tts_service):
"""Test generating audio from phonemes with invalid voice"""
# Setup mocks
mock_tts_service._voice_manager.list_voices.return_value = ["af_bella"]
mock_tts_service._voice_manager.get_voice_path.return_value = None
test_request = {
"model": "kokoro",
"input": "h @ l oU w r= l d",
"voice": "invalid_voice",
"response_format": "wav",
"speed": 1.0,
"stream": False,
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 400
assert "Voice not found" in response.json()["detail"]["message"]
@pytest.mark.asyncio
async def test_generate_from_phonemes_chunked(async_client, mock_tts_service):
"""Test generating chunked audio from phonemes"""
# Setup mocks
mock_tts_service._voice_manager.list_voices.return_value = ["af_bella"]
mock_tts_service._voice_manager.load_voice.return_value = torch.zeros(192)
mock_tts_service._voice_manager.get_voice_path.return_value = "/mock/voices/af_bella.pt"
async def mock_stream():
yield b"chunk1"
yield b"chunk2"
mock_tts_service.generate_audio_stream.return_value = mock_stream()
test_request = {
"model": "kokoro",
"input": "h @ l oU w r= l d",
"voice": "af_bella",
"response_format": "mp3",
"stream": True,
}
headers = {"x-raw-response": "stream"}
response = await async_client.post(
"/v1/audio/speech", json=test_request, headers=headers
)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/mpeg"
assert response.headers["content-disposition"] == "attachment; filename=speech.mp3"
@pytest.mark.asyncio
async def test_invalid_phonemes(async_client, mock_tts_service):
"""Test handling invalid phonemes"""
# Setup mocks
mock_tts_service._voice_manager.list_voices.return_value = ["af_bella"]
mock_tts_service._voice_manager.load_voice.return_value = torch.zeros(192)
mock_tts_service._voice_manager.get_voice_path.return_value = "/mock/voices/af_bella.pt"
test_request = {
"model": "kokoro",
"input": "", # Empty input
"voice": "af_bella",
"response_format": "wav",
"speed": 1.0,
"stream": False,
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 400
assert "Text is empty" in response.json()["detail"]["message"]
@pytest.mark.asyncio
async def test_phonemes_with_combined_voice(async_client, mock_tts_service):
"""Test generating audio from phonemes with combined voice"""
# Setup mocks
mock_tts_service._voice_manager.list_voices.return_value = ["af_bella", "af_sarah"]
mock_tts_service._voice_manager.combine_voices.return_value = "af_bella_af_sarah"
mock_tts_service._voice_manager.load_voice.return_value = torch.zeros(192)
mock_tts_service._voice_manager.get_voice_path.return_value = "/mock/voices/af_bella_af_sarah.pt"
mock_tts_service.generate_audio.return_value = (torch.zeros(48000).numpy(), 1.0)
test_request = {
"model": "kokoro",
"input": "h @ l oU w r= l d",
"voice": "af_bella+af_sarah",
"response_format": "wav",
"speed": 1.0,
"stream": False,
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/wav"
mock_tts_service._voice_manager.combine_voices.assert_called_once()
mock_tts_service.generate_audio.assert_called_once()

View file

@ -0,0 +1,118 @@
"""Tests for TTSService"""
import os
import numpy as np
import pytest
import torch
from unittest.mock import AsyncMock, MagicMock, Mock, patch
from api.src.services.tts_service import TTSService
# Get project root path
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
MOCK_VOICES_DIR = os.path.join(PROJECT_ROOT, "api", "src", "voices")
MOCK_MODEL_DIR = os.path.join(PROJECT_ROOT, "api", "src", "models")
@pytest.mark.asyncio
async def test_service_initialization(mock_model_manager, mock_voice_manager):
"""Test TTSService initialization"""
# Create service using factory method
with patch("api.src.services.tts_service.get_model_manager", return_value=mock_model_manager), \
patch("api.src.services.tts_service.get_voice_manager", return_value=mock_voice_manager):
service = await TTSService.create()
assert service is not None
assert service.model_manager == mock_model_manager
assert service._voice_manager == mock_voice_manager
@pytest.mark.asyncio
async def test_generate_audio_basic(mock_tts_service):
"""Test basic audio generation"""
text = "Hello world"
voice = "af"
audio, duration = await mock_tts_service.generate_audio(text, voice)
assert isinstance(audio, np.ndarray)
assert duration > 0
@pytest.mark.asyncio
async def test_generate_audio_empty_text(mock_tts_service):
"""Test handling empty text input"""
with pytest.raises(ValueError, match="Text is empty after preprocessing"):
await mock_tts_service.generate_audio("", "af")
@pytest.mark.asyncio
async def test_generate_audio_stream(mock_tts_service):
"""Test streaming audio generation"""
text = "Hello world"
voice = "af"
# Setup mock stream
async def mock_stream():
yield b"chunk1"
yield b"chunk2"
mock_tts_service.generate_audio_stream.return_value = mock_stream()
# Test streaming
stream = mock_tts_service.generate_audio_stream(text, voice)
chunks = []
async for chunk in await stream:
chunks.append(chunk)
assert len(chunks) > 0
assert all(isinstance(chunk, bytes) for chunk in chunks)
@pytest.mark.asyncio
async def test_list_voices(mock_tts_service):
"""Test listing available voices"""
with patch("api.src.inference.voice_manager.settings") as mock_settings:
mock_settings.voices_dir = MOCK_VOICES_DIR
voices = await mock_tts_service.list_voices()
assert isinstance(voices, list)
assert len(voices) == 4 # ["af", "af_bella", "af_sarah", "bm_lewis"]
assert all(isinstance(voice, str) for voice in voices)
@pytest.mark.asyncio
async def test_combine_voices(mock_tts_service):
"""Test combining voices"""
with patch("api.src.inference.voice_manager.settings") as mock_settings:
mock_settings.voices_dir = MOCK_VOICES_DIR
voices = ["af_bella", "af_sarah"]
result = await mock_tts_service.combine_voices(voices)
assert isinstance(result, str)
assert result == "af_bella_af_sarah"
@pytest.mark.asyncio
async def test_audio_to_bytes(mock_tts_service):
"""Test converting audio to bytes"""
audio = np.zeros(48000, dtype=np.float32)
audio_bytes = mock_tts_service._audio_to_bytes(audio)
assert isinstance(audio_bytes, bytes)
assert len(audio_bytes) > 0
@pytest.mark.asyncio
async def test_voice_loading(mock_tts_service):
"""Test voice loading"""
with patch("api.src.inference.voice_manager.settings") as mock_settings, \
patch("os.path.exists", return_value=True), \
patch("torch.load", return_value=torch.zeros(192)):
mock_settings.voices_dir = MOCK_VOICES_DIR
voice = await mock_tts_service._voice_manager.load_voice("af", device="cpu")
assert isinstance(voice, torch.Tensor)
assert voice.shape == (192,)
@pytest.mark.asyncio
async def test_model_generation(mock_tts_service):
"""Test model generation"""
tokens = [1, 2, 3]
voice_tensor = torch.zeros(192)
audio = await mock_tts_service.model_manager.generate(tokens, voice_tensor)
assert isinstance(audio, torch.Tensor)
assert audio.shape == (48000,)
assert audio.dtype == torch.float32

View file

@ -15,6 +15,7 @@ class Settings(BaseSettings):
default_voice: str = "af" default_voice: str = "af"
use_gpu: bool = False # Whether to use GPU acceleration if available use_gpu: bool = False # Whether to use GPU acceleration if available
use_onnx: bool = True # Whether to use ONNX runtime use_onnx: bool = True # Whether to use ONNX runtime
allow_local_voice_saving: bool = True # Whether to allow saving combined voices locally
# Container absolute paths # Container absolute paths
model_dir: str = "/app/api/src/models" # Absolute path in container model_dir: str = "/app/api/src/models" # Absolute path in container
@ -25,6 +26,12 @@ class Settings(BaseSettings):
max_chunk_size: int = 300 # Maximum size of text chunks for processing max_chunk_size: int = 300 # Maximum size of text chunks for processing
gap_trim_ms: int = 250 # Amount to trim from streaming chunk ends in milliseconds gap_trim_ms: int = 250 # Amount to trim from streaming chunk ends in milliseconds
# Web Player Settings
enable_web_player: bool = True # Whether to serve the web player UI
web_player_path: str = "web" # Path to web player static files
cors_origins: list[str] = ["*"] # CORS origins for web player
cors_enabled: bool = True # Whether to enable CORS
class Config: class Config:
env_file = ".env" env_file = ".env"

View file

@ -266,3 +266,75 @@ async def read_file(path: str) -> str:
return await f.read() return await f.read()
except Exception as e: except Exception as e:
raise RuntimeError(f"Failed to read file {path}: {e}") raise RuntimeError(f"Failed to read file {path}: {e}")
async def read_bytes(path: str) -> bytes:
"""Read file as bytes asynchronously.
Args:
path: Path to file
Returns:
File contents as bytes
Raises:
RuntimeError: If file cannot be read
"""
try:
async with aiofiles.open(path, 'rb') as f:
return await f.read()
except Exception as e:
raise RuntimeError(f"Failed to read file {path}: {e}")
async def get_web_file_path(filename: str) -> str:
"""Get path to web static file.
Args:
filename: Name of file in web directory
Returns:
Absolute path to file
Raises:
RuntimeError: If file not found
"""
# Get project root directory (four levels up from core to get to project root)
root_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
# Construct web directory path relative to project root
web_dir = os.path.join("/app", settings.web_player_path)
# Search in web directory
search_paths = [web_dir]
logger.debug(f"Searching for web file in path: {web_dir}")
return await _find_file(filename, search_paths)
async def get_content_type(path: str) -> str:
"""Get content type for file.
Args:
path: Path to file
Returns:
Content type string
"""
ext = os.path.splitext(path)[1].lower()
return {
'.html': 'text/html',
'.js': 'application/javascript',
'.css': 'text/css',
'.png': 'image/png',
'.jpg': 'image/jpeg',
'.jpeg': 'image/jpeg',
'.gif': 'image/gif',
'.svg': 'image/svg+xml',
'.ico': 'image/x-icon',
}.get(ext, 'application/octet-stream')
async def verify_model_path(model_path: str) -> bool:
"""Verify model file exists at path."""
return await aiofiles.os.path.exists(model_path)

View file

@ -1,7 +1,7 @@
"""Model management and caching.""" """Model management and caching."""
import asyncio import asyncio
from typing import Dict, Optional from typing import Dict, Optional, Tuple
import torch import torch
from loguru import logger from loguru import logger
@ -23,17 +23,11 @@ _manager_lock = asyncio.Lock()
class ModelManager: class ModelManager:
"""Manages model loading and inference across backends.""" """Manages model loading and inference across backends."""
# Class-level state for shared resources # Class-level state for shared resources
_loaded_models = {} _loaded_models = {}
_backends = {} _backends = {}
def __init__(self, config: Optional[ModelConfig] = None): def __init__(self, config: Optional[ModelConfig] = None):
"""Initialize model manager. """Initialize model manager.
Args:
config: Optional configuration
Note: Note:
This should not be called directly. Use get_manager() instead. This should not be called directly. Use get_manager() instead.
""" """
@ -90,16 +84,70 @@ class ModelManager:
logger.error(f"Failed to initialize backend: {e}") logger.error(f"Failed to initialize backend: {e}")
raise RuntimeError("Failed to initialize backend") raise RuntimeError("Failed to initialize backend")
async def initialize_with_warmup(self, voice_manager) -> tuple[str, str, int]:
"""Initialize model with warmup and pre-cache voices.
Args:
voice_manager: Voice manager instance for loading voices
Returns:
Tuple of (device type, model type, number of loaded voices)
Raises:
RuntimeError: If initialization fails
"""
try:
# Determine backend type based on settings
if settings.use_gpu and torch.cuda.is_available():
backend_type = 'pytorch_gpu' if not settings.use_onnx else 'onnx_gpu'
else:
backend_type = 'pytorch_cpu' if not settings.use_onnx else 'onnx_cpu'
# Get backend
backend = self.get_backend(backend_type)
# Get and verify model path
model_file = model_config.pytorch_model_file if not settings.use_onnx else model_config.onnx_model_file
model_path = await paths.get_model_path(model_file)
if not await paths.verify_model_path(model_path):
raise RuntimeError(f"Model file not found: {model_path}")
# Pre-cache default voice and use for warmup
warmup_voice = await voice_manager.load_voice(
settings.default_voice, device=backend.device)
logger.info(f"Pre-cached voice {settings.default_voice} for warmup")
# Initialize model with warmup voice
await self.load_model(model_path, warmup_voice, backend_type)
# Pre-cache common voices in background
common_voices = ['af', 'af_bella', 'af_sky', 'af_nicole']
for voice_name in common_voices:
try:
await voice_manager.load_voice(voice_name, device=backend.device)
logger.debug(f"Pre-cached voice {voice_name}")
except Exception as e:
logger.warning(f"Failed to pre-cache voice {voice_name}: {e}")
# Get available voices count
voices = await voice_manager.list_voices()
voicepack_count = len(voices)
# Get device info for return
device = "GPU" if settings.use_gpu else "CPU"
model = "ONNX" if settings.use_onnx else "PyTorch"
return device, model, voicepack_count
except Exception as e:
logger.error(f"Failed to initialize model with warmup: {e}")
raise RuntimeError(f"Failed to initialize model with warmup: {e}")
def get_backend(self, backend_type: Optional[str] = None) -> BaseModelBackend: def get_backend(self, backend_type: Optional[str] = None) -> BaseModelBackend:
"""Get specified backend. """Get specified backend.
Args: Args:
backend_type: Backend type ('pytorch_cpu', 'pytorch_gpu', 'onnx_cpu', 'onnx_gpu'), backend_type: Backend type ('pytorch_cpu', 'pytorch_gpu', 'onnx_cpu', 'onnx_gpu'),
uses default if None uses default if None
Returns: Returns:
Model backend instance Model backend instance
Raises: Raises:
ValueError: If backend type is invalid ValueError: If backend type is invalid
RuntimeError: If no backends are available RuntimeError: If no backends are available
@ -120,10 +168,8 @@ class ModelManager:
def _determine_backend(self, model_path: str) -> str: def _determine_backend(self, model_path: str) -> str:
"""Determine appropriate backend based on model file and settings. """Determine appropriate backend based on model file and settings.
Args: Args:
model_path: Path to model file model_path: Path to model file
Returns: Returns:
Backend type to use Backend type to use
""" """
@ -142,12 +188,10 @@ class ModelManager:
backend_type: Optional[str] = None backend_type: Optional[str] = None
) -> None: ) -> None:
"""Load model on specified backend. """Load model on specified backend.
Args: Args:
model_path: Path to model file model_path: Path to model file
warmup_voice: Optional voice tensor for warmup, skips warmup if None warmup_voice: Optional voice tensor for warmup, skips warmup if None
backend_type: Backend to load on, uses default if None backend_type: Backend to load on, uses default if None
Raises: Raises:
RuntimeError: If model loading fails RuntimeError: If model loading fails
""" """
@ -270,34 +314,24 @@ class ModelManager:
@property @property
def available_backends(self) -> list[str]: def available_backends(self) -> list[str]:
"""Get list of available backends. """Get list of available backends.
Returns:
List of backend names
""" """
return list(self._backends.keys()) return list(self._backends.keys())
@property @property
def current_backend(self) -> str: def current_backend(self) -> str:
"""Get current default backend. """Get current default backend.
Returns:
Backend name
""" """
return self._current_backend return self._current_backend
async def get_manager(config: Optional[ModelConfig] = None) -> ModelManager: async def get_manager(config: Optional[ModelConfig] = None) -> ModelManager:
"""Get global model manager instance. """Get global model manager instance.
Args: Args:
config: Optional model configuration config: Optional model configuration
Returns: Returns:
ModelManager instance ModelManager instance
Thread Safety: Thread Safety:
This function is thread-safe and ensures only one instance is created This function should be thread-safe. Lemme know if it unravels on you
even under concurrent access.
""" """
global _manager_instance global _manager_instance

View file

@ -117,14 +117,18 @@ class VoiceManager:
voices_dir = os.path.join(api_dir, settings.voices_dir) voices_dir = os.path.join(api_dir, settings.voices_dir)
os.makedirs(voices_dir, exist_ok=True) os.makedirs(voices_dir, exist_ok=True)
# Save combined voice # Only save to disk if local voice saving is allowed
if settings.allow_local_voice_saving:
combined_path = os.path.join(voices_dir, f"{combined_name}.pt") combined_path = os.path.join(voices_dir, f"{combined_name}.pt")
try: try:
torch.save(combined_tensor, combined_path) torch.save(combined_tensor, combined_path)
# Cache the new combined voice # Cache the new combined voice with disk path
self._voice_cache[f"{combined_path}_{device}"] = combined_tensor self._voice_cache[f"{combined_path}_{device}"] = combined_tensor
except Exception as e: except Exception as e:
raise RuntimeError(f"Failed to save combined voice: {e}") raise RuntimeError(f"Failed to save combined voice: {e}")
else:
# Just cache the combined voice in memory without saving to disk
self._voice_cache[f"{combined_name}_{device}"] = combined_tensor
return combined_name return combined_name
@ -135,20 +139,30 @@ class VoiceManager:
"""List available voices. """List available voices.
Returns: Returns:
List of voice names List of voice names, including both disk-saved and in-memory combined voices
""" """
voices = [] voices = set() # Use set to avoid duplicates
try: try:
# Get voices from disk
api_dir = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) api_dir = os.path.dirname(os.path.dirname(os.path.dirname(__file__)))
voices_dir = os.path.join(api_dir, settings.voices_dir) voices_dir = os.path.join(api_dir, settings.voices_dir)
os.makedirs(voices_dir, exist_ok=True) os.makedirs(voices_dir, exist_ok=True)
for entry in os.listdir(voices_dir): for entry in os.listdir(voices_dir):
if entry.endswith(".pt"): if entry.endswith(".pt"):
voices.append(entry[:-3]) voices.add(entry[:-3])
# Add in-memory combined voices from cache
for cache_key in self._voice_cache:
# Extract voice name from cache key (format: "name_device" or "path_device")
voice_name = cache_key.split("_")[0]
if "/" in voice_name: # It's a path
voice_name = os.path.basename(voice_name)[:-3] # Remove .pt extension
voices.add(voice_name)
except Exception as e: except Exception as e:
logger.error(f"Error listing voices: {e}") logger.error(f"Error listing voices: {e}")
return sorted(voices) return sorted(list(voices))
def validate_voice(self, voice_path: str) -> bool: def validate_voice(self, voice_path: str) -> bool:
"""Validate voice file. """Validate voice file.

View file

@ -13,6 +13,7 @@ from fastapi.middleware.cors import CORSMiddleware
from loguru import logger from loguru import logger
from .core.config import settings from .core.config import settings
from .routers.web_player import router as web_router
from .core.model_config import model_config from .core.model_config import model_config
from .routers.development import router as dev_router from .routers.development import router as dev_router
from .routers.openai_compatible import router as openai_router from .routers.openai_compatible import router as openai_router
@ -54,46 +55,8 @@ async def lifespan(app: FastAPI):
model_manager = await get_manager() model_manager = await get_manager()
voice_manager = await get_voice_manager() voice_manager = await get_voice_manager()
# Determine backend type based on settings # Initialize model with warmup and get status
if settings.use_gpu and torch.cuda.is_available(): device, model, voicepack_count = await model_manager.initialize_with_warmup(voice_manager)
backend_type = 'pytorch_gpu' if not settings.use_onnx else 'onnx_gpu'
else:
backend_type = 'pytorch_cpu' if not settings.use_onnx else 'onnx_cpu'
# Get backend and initialize model
backend = model_manager.get_backend(backend_type)
# Use model path from model_config
model_file = model_config.pytorch_model_file if not settings.use_onnx else model_config.onnx_model_file
model_path = os.path.join(settings.model_dir, model_file)
if not os.path.exists(model_path):
raise RuntimeError(f"Model file not found: {model_path}")
# Pre-cache default voice and use for warmup
warmup_voice = await voice_manager.load_voice(settings.default_voice, device=backend.device)
logger.info(f"Pre-cached voice {settings.default_voice} for warmup")
# Initialize model with warmup voice
await model_manager.load_model(model_path, warmup_voice, backend_type)
# Pre-cache common voices in background
common_voices = ['af', 'af_bella', 'af_sarah', 'af_nicole']
for voice_name in common_voices:
try:
await voice_manager.load_voice(voice_name, device=backend.device)
logger.debug(f"Pre-cached voice {voice_name}")
except Exception as e:
logger.warning(f"Failed to pre-cache voice {voice_name}: {e}")
# Get available voices for startup message
voices = await voice_manager.list_voices()
voicepack_count = len(voices)
# Get device info for startup message
device = "GPU" if settings.use_gpu else "CPU"
model = "ONNX" if settings.use_onnx else "PyTorch"
except Exception as e: except Exception as e:
logger.error(f"Failed to initialize model: {e}") logger.error(f"Failed to initialize model: {e}")
raise raise
@ -112,7 +75,14 @@ async def lifespan(app: FastAPI):
{boundary} {boundary}
""" """
startup_msg += f"\nModel warmed up on {device}: {model}" startup_msg += f"\nModel warmed up on {device}: {model}"
startup_msg += f"\n{voicepack_count} voice packs loaded\n" startup_msg += f"\n{voicepack_count} voice packs loaded"
# Add web player info if enabled
if settings.enable_web_player:
startup_msg += f"\n\nWeb Player: http://{settings.host}:{settings.port}/web/"
else:
startup_msg += "\n\nWeb Player: disabled"
startup_msg += f"\n{boundary}\n" startup_msg += f"\n{boundary}\n"
logger.info(startup_msg) logger.info(startup_msg)
@ -128,19 +98,21 @@ app = FastAPI(
openapi_url="/openapi.json", # Explicitly enable OpenAPI schema openapi_url="/openapi.json", # Explicitly enable OpenAPI schema
) )
# Add CORS middleware # Add CORS middleware if enabled
app.add_middleware( if settings.cors_enabled:
app.add_middleware(
CORSMiddleware, CORSMiddleware,
allow_origins=["*"], allow_origins=settings.cors_origins,
allow_credentials=True, allow_credentials=True,
allow_methods=["*"], allow_methods=["*"],
allow_headers=["*"], allow_headers=["*"],
) )
# Include routers # Include routers
app.include_router(openai_router, prefix="/v1") app.include_router(openai_router, prefix="/v1")
app.include_router(dev_router) # New development endpoints app.include_router(dev_router) # Development endpoints
# app.include_router(text_router) # Deprecated but still live for backwards compatibility if settings.enable_web_player:
app.include_router(web_router, prefix="/web") # Web player static files
# Health check endpoint # Health check endpoint

View file

@ -118,9 +118,32 @@ async def create_speech(
# Check if streaming is requested (default for OpenAI client) # Check if streaming is requested (default for OpenAI client)
if request.stream: if request.stream:
# Create generator but don't start it yet
generator = stream_audio_chunks(tts_service, request, client_request)
# Test the generator by attempting to get first chunk
try:
first_chunk = await anext(generator)
except StopAsyncIteration:
first_chunk = b"" # Empty audio case
except Exception as e:
# Re-raise any errors to be caught by the outer try-except
raise RuntimeError(f"Failed to initialize audio stream: {str(e)}") from e
# If we got here, streaming can begin
async def safe_stream():
yield first_chunk
try:
async for chunk in generator:
yield chunk
except Exception as e:
# Log the error but don't yield anything - the connection will close
logger.error(f"Error during streaming: {str(e)}")
raise
# Stream audio chunks as they're generated # Stream audio chunks as they're generated
return StreamingResponse( return StreamingResponse(
stream_audio_chunks(tts_service, request, client_request), safe_stream(),
media_type=content_type, media_type=content_type,
headers={ headers={
"Content-Disposition": f"attachment; filename=speech.{request.response_format}", "Content-Disposition": f"attachment; filename=speech.{request.response_format}",

View file

@ -0,0 +1,48 @@
"""Web player router with async file serving."""
from fastapi import APIRouter, HTTPException
from fastapi.responses import Response
from loguru import logger
from ..core.config import settings
from ..core.paths import get_web_file_path, read_bytes, get_content_type
router = APIRouter(
tags=["Web Player"],
responses={404: {"description": "Not found"}},
)
@router.get("/{filename:path}")
async def serve_web_file(filename: str):
"""Serve web player static files asynchronously."""
if not settings.enable_web_player:
raise HTTPException(status_code=404, detail="Web player is disabled")
try:
# Default to index.html for root path
if filename == "" or filename == "/":
filename = "index.html"
# Get file path
file_path = await get_web_file_path(filename)
# Read file content
content = await read_bytes(file_path)
# Get content type
content_type = await get_content_type(file_path)
return Response(
content=content,
media_type=content_type,
headers={
"Cache-Control": "no-cache", # Prevent caching during development
}
)
except RuntimeError as e:
logger.warning(f"Web file not found: {filename}")
raise HTTPException(status_code=404, detail=str(e))
except Exception as e:
logger.error(f"Error serving web file {filename}: {e}")
raise HTTPException(status_code=500, detail="Internal server error")

View file

@ -1,7 +1,7 @@
from pydantic import BaseModel, Field from pydantic import BaseModel, Field, field_validator
from pydantic import validator
from typing import List, Union, Optional from typing import List, Union, Optional
class PhonemeRequest(BaseModel): class PhonemeRequest(BaseModel):
text: str text: str
language: str = "a" # Default to American English language: str = "a" # Default to American English
@ -24,12 +24,14 @@ class StitchOptions(BaseModel):
description="Milliseconds to trim from chunk boundaries when using static_trim" description="Milliseconds to trim from chunk boundaries when using static_trim"
) )
@validator('gap_method') @field_validator('gap_method')
def validate_gap_method(cls, v): @classmethod
def validate_gap_method(cls, v: str) -> str:
if v != 'static_trim': if v != 'static_trim':
raise ValueError("Currently only 'static_trim' gap method is supported") raise ValueError("Currently only 'static_trim' gap method is supported")
return v return v
class GenerateFromPhonemesRequest(BaseModel): class GenerateFromPhonemesRequest(BaseModel):
phonemes: Union[str, List[str]] = Field( phonemes: Union[str, List[str]] = Field(
..., ...,

View file

@ -1,126 +1,64 @@
import os
import shutil
import sys
from unittest.mock import MagicMock, Mock, patch
import aiofiles.threadpool
import numpy as np
import pytest import pytest
import pytest_asyncio
from unittest.mock import AsyncMock, MagicMock, patch
import numpy as np
import torch
from pathlib import Path
from api.src.services.tts_service import TTSService
def cleanup_mock_dirs(): from api.src.inference.voice_manager import VoiceManager
"""Clean up any MagicMock directories created during tests""" from api.src.inference.model_manager import ModelManager
mock_dir = "MagicMock" from api.src.structures.model_schemas import VoiceConfig
if os.path.exists(mock_dir):
shutil.rmtree(mock_dir)
@pytest.fixture(autouse=True)
def setup_aiofiles():
"""Setup aiofiles mock wrapper"""
aiofiles.threadpool.wrap.register(MagicMock)(
lambda *args, **kwargs: aiofiles.threadpool.AsyncBufferedIOBase(*args, **kwargs)
)
yield
@pytest.fixture(autouse=True)
def cleanup():
"""Automatically clean up before and after each test"""
cleanup_mock_dirs()
yield
cleanup_mock_dirs()
# Mock modules before they're imported
sys.modules["transformers"] = Mock()
sys.modules["phonemizer"] = Mock()
sys.modules["models"] = Mock()
sys.modules["models.build_model"] = Mock()
sys.modules["kokoro"] = Mock()
sys.modules["kokoro.generate"] = Mock()
sys.modules["kokoro.phonemize"] = Mock()
sys.modules["kokoro.tokenize"] = Mock()
# Mock ONNX runtime
mock_onnx = Mock()
mock_onnx.InferenceSession = Mock()
mock_onnx.SessionOptions = Mock()
mock_onnx.GraphOptimizationLevel = Mock()
mock_onnx.ExecutionMode = Mock()
sys.modules["onnxruntime"] = mock_onnx
# Create mock settings module
mock_settings_module = Mock()
mock_settings = Mock()
mock_settings.model_dir = "/mock/model/dir"
mock_settings.onnx_model_path = "mock.onnx"
mock_settings_module.settings = mock_settings
sys.modules["api.src.core.config"] = mock_settings_module
class MockTTSModel:
_instance = None
_onnx_session = None
VOICES_DIR = "/mock/voices/dir"
def __init__(self):
self._initialized = False
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls()
return cls._instance
@classmethod
def initialize(cls, model_dir):
cls._onnx_session = Mock()
cls._onnx_session.run = Mock(return_value=[np.zeros(48000)])
cls._instance._initialized = True
return cls._onnx_session
@classmethod
def setup(cls):
if not cls._instance._initialized:
cls.initialize("/mock/model/dir")
return cls._instance
@classmethod
def generate_from_tokens(cls, tokens, voicepack, speed):
if not cls._instance._initialized:
raise RuntimeError("Model not initialized. Call setup() first.")
return np.zeros(48000)
@classmethod
def process_text(cls, text, language):
return "mock phonemes", [1, 2, 3]
@staticmethod
def get_device():
return "cpu"
@pytest.fixture @pytest.fixture
def mock_tts_service(monkeypatch): def mock_voice_tensor():
"""Mock TTSService for testing""" """Mock voice tensor for testing."""
mock_service = Mock() return torch.randn(1, 128) # Dummy tensor
mock_service._get_voice_path.return_value = "/mock/path/voice.pt"
mock_service._load_voice.return_value = np.zeros((1, 192))
# Mock TTSModel.generate_from_tokens since we call it directly
mock_generate = Mock(return_value=np.zeros(48000))
monkeypatch.setattr(
"api.src.routers.development.TTSModel.generate_from_tokens", mock_generate
)
return mock_service
@pytest.fixture @pytest.fixture
def mock_audio_service(monkeypatch): def mock_audio_output():
"""Mock AudioService""" """Mock audio output for testing."""
mock_service = Mock() return np.random.rand(16000) # 1 second of random audio
mock_service.convert_audio.return_value = b"mock audio data"
monkeypatch.setattr("api.src.routers.development.AudioService", mock_service) @pytest_asyncio.fixture
return mock_service async def mock_model_manager(mock_audio_output):
"""Mock model manager for testing."""
manager = AsyncMock(spec=ModelManager)
manager.get_backend = MagicMock()
manager.generate = AsyncMock(return_value=mock_audio_output)
return manager
@pytest_asyncio.fixture
async def mock_voice_manager(mock_voice_tensor):
"""Mock voice manager for testing."""
manager = AsyncMock(spec=VoiceManager)
manager.get_voice_path = MagicMock(return_value="/mock/path/voice.pt")
manager.load_voice = AsyncMock(return_value=mock_voice_tensor)
manager.list_voices = AsyncMock(return_value=["voice1", "voice2"])
manager.combine_voices = AsyncMock(return_value="voice1_voice2")
return manager
@pytest_asyncio.fixture
async def tts_service(mock_model_manager, mock_voice_manager):
"""Get mocked TTS service instance."""
service = TTSService()
service.model_manager = mock_model_manager
service._voice_manager = mock_voice_manager
return service
@pytest.fixture
def test_voice():
"""Return a test voice name."""
return "voice1"
@pytest.fixture(scope="session")
def event_loop():
"""Create an instance of the default event loop for the test session."""
import asyncio
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
yield loop
loop.close()

View file

@ -1,402 +0,0 @@
import asyncio
from unittest.mock import AsyncMock, Mock
import pytest
import pytest_asyncio
from fastapi.testclient import TestClient
from httpx import AsyncClient
from ..src.main import app
# Create test client
client = TestClient(app)
# Create async client fixture
@pytest_asyncio.fixture
async def async_client():
async with AsyncClient(app=app, base_url="http://test") as ac:
yield ac
# Mock services
@pytest.fixture
def mock_tts_service(monkeypatch):
mock_service = Mock()
mock_service._generate_audio.return_value = (bytes([0, 1, 2, 3]), 1.0)
# Create proper async generator mock
async def mock_stream(*args, **kwargs):
for chunk in [b"chunk1", b"chunk2"]:
yield chunk
mock_service.generate_audio_stream = mock_stream
# Create async mocks
mock_service.list_voices = AsyncMock(
return_value=[
"af",
"bm_lewis",
"bf_isabella",
"bf_emma",
"af_sarah",
"af_bella",
"am_adam",
"am_michael",
"bm_george",
]
)
mock_service.combine_voices = AsyncMock()
monkeypatch.setattr(
"api.src.routers.openai_compatible.TTSService",
lambda *args, **kwargs: mock_service,
)
return mock_service
@pytest.fixture
def mock_audio_service(monkeypatch):
mock_service = Mock()
mock_service.convert_audio.return_value = b"converted mock audio data"
monkeypatch.setattr("api.src.routers.openai_compatible.AudioService", mock_service)
return mock_service
def test_health_check():
"""Test the health check endpoint"""
response = client.get("/health")
assert response.status_code == 200
assert response.json() == {"status": "healthy"}
@pytest.mark.asyncio
async def test_openai_speech_endpoint(
mock_tts_service, mock_audio_service, async_client
):
"""Test the OpenAI-compatible speech endpoint"""
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "bm_lewis",
"response_format": "wav",
"speed": 1.0,
"stream": False, # Explicitly disable streaming
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/wav"
assert response.headers["content-disposition"] == "attachment; filename=speech.wav"
mock_tts_service._generate_audio.assert_called_once_with(
text="Hello world", voice="bm_lewis", speed=1.0, stitch_long_output=True
)
assert response.content == b"converted mock audio data"
@pytest.mark.asyncio
async def test_openai_speech_invalid_voice(mock_tts_service, async_client):
"""Test the OpenAI-compatible speech endpoint with invalid voice"""
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "invalid_voice",
"response_format": "wav",
"speed": 1.0,
"stream": False, # Explicitly disable streaming
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 400 # Bad request
assert "not found" in response.json()["detail"]["message"]
@pytest.mark.asyncio
async def test_openai_speech_invalid_speed(mock_tts_service, async_client):
"""Test the OpenAI-compatible speech endpoint with invalid speed"""
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "af",
"response_format": "wav",
"speed": -1.0, # Invalid speed
"stream": False, # Explicitly disable streaming
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 422 # Validation error
@pytest.mark.asyncio
async def test_openai_speech_generation_error(mock_tts_service, async_client):
"""Test error handling in speech generation"""
mock_tts_service._generate_audio.side_effect = Exception("Generation failed")
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "af",
"response_format": "wav",
"speed": 1.0,
"stream": False, # Explicitly disable streaming
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 500
assert "Generation failed" in response.json()["detail"]["message"]
@pytest.mark.asyncio
async def test_combine_voices_list_success(mock_tts_service, async_client):
"""Test successful voice combination using list format"""
test_voices = ["af_bella", "af_sarah"]
mock_tts_service.combine_voices = AsyncMock(return_value="af_bella_af_sarah")
response = await async_client.post("/v1/audio/voices/combine", json=test_voices)
assert response.status_code == 200
assert response.json()["voice"] == "af_bella_af_sarah"
mock_tts_service.combine_voices.assert_called_once_with(voices=test_voices)
@pytest.mark.asyncio
async def test_combine_voices_string_success(mock_tts_service, async_client):
"""Test successful voice combination using string format with +"""
test_voices = "af_bella+af_sarah"
mock_tts_service.combine_voices = AsyncMock(return_value="af_bella_af_sarah")
response = await async_client.post("/v1/audio/voices/combine", json=test_voices)
assert response.status_code == 200
assert response.json()["voice"] == "af_bella_af_sarah"
mock_tts_service.combine_voices.assert_called_once_with(
voices=["af_bella", "af_sarah"]
)
@pytest.mark.asyncio
async def test_combine_voices_single_voice(mock_tts_service, async_client):
"""Test combining single voice returns same voice"""
test_voices = ["af_bella"]
response = await async_client.post("/v1/audio/voices/combine", json=test_voices)
assert response.status_code == 200
assert response.json()["voice"] == "af_bella"
@pytest.mark.asyncio
async def test_combine_voices_empty_list(mock_tts_service, async_client):
"""Test combining empty voice list returns error"""
test_voices = []
response = await async_client.post("/v1/audio/voices/combine", json=test_voices)
assert response.status_code == 400
assert "No voices provided" in response.json()["detail"]["message"]
@pytest.mark.asyncio
async def test_combine_voices_error(mock_tts_service, async_client):
"""Test error handling in voice combination"""
test_voices = ["af_bella", "af_sarah"]
mock_tts_service.combine_voices = AsyncMock(
side_effect=Exception("Combination failed")
)
response = await async_client.post("/v1/audio/voices/combine", json=test_voices)
assert response.status_code == 500
assert "Server error" in response.json()["detail"]["message"]
@pytest.mark.asyncio
async def test_speech_with_combined_voice(
mock_tts_service, mock_audio_service, async_client
):
"""Test speech generation with combined voice using + syntax"""
mock_tts_service.combine_voices = AsyncMock(return_value="af_bella_af_sarah")
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "af_bella+af_sarah",
"response_format": "wav",
"speed": 1.0,
"stream": False,
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/wav"
mock_tts_service._generate_audio.assert_called_once_with(
text="Hello world",
voice="af_bella_af_sarah",
speed=1.0,
stitch_long_output=True,
)
@pytest.mark.asyncio
async def test_speech_with_whitespace_in_voice(
mock_tts_service, mock_audio_service, async_client
):
"""Test speech generation with whitespace in voice combination"""
mock_tts_service.combine_voices = AsyncMock(return_value="af_bella_af_sarah")
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": " af_bella + af_sarah ",
"response_format": "wav",
"speed": 1.0,
"stream": False,
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/wav"
mock_tts_service.combine_voices.assert_called_once_with(
voices=["af_bella", "af_sarah"]
)
@pytest.mark.asyncio
async def test_speech_with_empty_voice_combination(mock_tts_service, async_client):
"""Test speech generation with empty voice combination"""
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "+",
"response_format": "wav",
"speed": 1.0,
"stream": False,
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 400
assert "No voices provided" in response.json()["detail"]["message"]
@pytest.mark.asyncio
async def test_speech_with_invalid_combined_voice(mock_tts_service, async_client):
"""Test speech generation with invalid voice combination"""
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "invalid+combination",
"response_format": "wav",
"speed": 1.0,
"stream": False,
}
response = await async_client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 400
assert "not found" in response.json()["detail"]["message"]
@pytest.mark.asyncio
async def test_speech_streaming_with_combined_voice(mock_tts_service, async_client):
"""Test streaming speech with combined voice using + syntax"""
mock_tts_service.combine_voices = AsyncMock(return_value="af_bella_af_sarah")
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "af_bella+af_sarah",
"response_format": "mp3",
"stream": True,
}
# Create streaming mock
async def mock_stream(*args, **kwargs):
for chunk in [b"mp3header", b"mp3data"]:
yield chunk
mock_tts_service.generate_audio_stream = mock_stream
# Add streaming header
headers = {"x-raw-response": "stream"}
response = await async_client.post(
"/v1/audio/speech", json=test_request, headers=headers
)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/mpeg"
assert response.headers["content-disposition"] == "attachment; filename=speech.mp3"
@pytest.mark.asyncio
async def test_openai_speech_pcm_streaming(mock_tts_service, async_client):
"""Test streaming PCM audio for real-time playback"""
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "af",
"response_format": "pcm",
"stream": True,
}
# Create streaming mock for this test
async def mock_stream(*args, **kwargs):
for chunk in [b"chunk1", b"chunk2"]:
yield chunk
mock_tts_service.generate_audio_stream = mock_stream
# Add streaming header
headers = {"x-raw-response": "stream"}
response = await async_client.post(
"/v1/audio/speech", json=test_request, headers=headers
)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/pcm"
@pytest.mark.asyncio
async def test_openai_speech_streaming_mp3(mock_tts_service, async_client):
"""Test streaming MP3 audio to file"""
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "af",
"response_format": "mp3",
"stream": True,
}
# Create streaming mock for this test
async def mock_stream(*args, **kwargs):
for chunk in [b"mp3header", b"mp3data"]:
yield chunk
mock_tts_service.generate_audio_stream = mock_stream
# Add streaming header
headers = {"x-raw-response": "stream"}
response = await async_client.post(
"/v1/audio/speech", json=test_request, headers=headers
)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/mpeg"
assert response.headers["content-disposition"] == "attachment; filename=speech.mp3"
@pytest.mark.asyncio
async def test_openai_speech_streaming_generator(mock_tts_service, async_client):
"""Test streaming with async generator"""
test_request = {
"model": "kokoro",
"input": "Hello world",
"voice": "af",
"response_format": "pcm",
"stream": True,
}
# Create streaming mock for this test
async def mock_stream(*args, **kwargs):
for chunk in [b"chunk1", b"chunk2"]:
yield chunk
mock_tts_service.generate_audio_stream = mock_stream
# Add streaming header
headers = {"x-raw-response": "stream"}
response = await async_client.post(
"/v1/audio/speech", json=test_request, headers=headers
)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/pcm"

View file

@ -1,108 +0,0 @@
"""Tests for FastAPI application"""
from unittest.mock import MagicMock, call, patch
import pytest
from fastapi.testclient import TestClient
from api.src.main import app, lifespan
@pytest.fixture
def test_client():
"""Create a test client"""
return TestClient(app)
def test_health_check(test_client):
"""Test health check endpoint"""
response = test_client.get("/health")
assert response.status_code == 200
assert response.json() == {"status": "healthy"}
@pytest.mark.asyncio
@patch("api.src.main.TTSModel")
@patch("api.src.main.logger")
async def test_lifespan_successful_warmup(mock_logger, mock_tts_model):
"""Test successful model warmup in lifespan"""
# Mock file system for voice counting
mock_tts_model.VOICES_DIR = "/mock/voices"
# Create async mock
async def async_setup():
return 3
mock_tts_model.setup = MagicMock()
mock_tts_model.setup.side_effect = async_setup
mock_tts_model.get_device.return_value = "cuda"
with patch("os.listdir", return_value=["voice1.pt", "voice2.pt", "voice3.pt"]):
# Create an async generator from the lifespan context manager
async_gen = lifespan(MagicMock())
# Start the context manager
await async_gen.__aenter__()
# Verify the expected logging sequence
mock_logger.info.assert_any_call("Loading TTS model and voice packs...")
# Check for the startup message containing the required info
startup_calls = [call[0][0] for call in mock_logger.info.call_args_list]
startup_msg = next(msg for msg in startup_calls if "Model warmed up on" in msg)
assert "Model warmed up on" in startup_msg
assert "3 voice packs loaded" in startup_msg
# Verify model setup was called
mock_tts_model.setup.assert_called_once()
# Clean up
await async_gen.__aexit__(None, None, None)
@pytest.mark.asyncio
@patch("api.src.main.TTSModel")
@patch("api.src.main.logger")
async def test_lifespan_failed_warmup(mock_logger, mock_tts_model):
"""Test failed model warmup in lifespan"""
# Mock the model setup to fail
mock_tts_model.setup.side_effect = RuntimeError("Failed to initialize model")
# Create an async generator from the lifespan context manager
async_gen = lifespan(MagicMock())
# Verify the exception is raised
with pytest.raises(RuntimeError, match="Failed to initialize model"):
await async_gen.__aenter__()
# Verify the expected logging sequence
mock_logger.info.assert_called_with("Loading TTS model and voice packs...")
# Clean up
await async_gen.__aexit__(None, None, None)
@pytest.mark.asyncio
@patch("api.src.main.TTSModel")
async def test_lifespan_cuda_warmup(mock_tts_model):
"""Test model warmup specifically on CUDA"""
# Mock file system for voice counting
mock_tts_model.VOICES_DIR = "/mock/voices"
# Create async mock
async def async_setup():
return 2
mock_tts_model.setup = MagicMock()
mock_tts_model.setup.side_effect = async_setup
mock_tts_model.get_device.return_value = "cuda"
with patch("os.listdir", return_value=["voice1.pt", "voice2.pt"]):
# Create an async generator from the lifespan context manager
async_gen = lifespan(MagicMock())
await async_gen.__aenter__()
# Verify model setup was called
mock_tts_model.setup.assert_called_once()
# Clean up
await async_gen.__aexit__(None, None, None)

View file

@ -0,0 +1,215 @@
import pytest
from unittest.mock import AsyncMock, patch, MagicMock
from fastapi.testclient import TestClient
import numpy as np
import asyncio
from typing import AsyncGenerator
from api.src.main import app
from api.src.services.tts_service import TTSService
client = TestClient(app)
@pytest.fixture
def mock_audio_bytes():
"""Mock audio bytes for testing."""
return b"mock audio data"
@pytest.fixture
def mock_tts_service(mock_audio_bytes):
"""Mock TTS service for testing."""
with patch("api.src.routers.openai_compatible.get_tts_service") as mock_get:
service = AsyncMock(spec=TTSService)
service.generate_audio.return_value = (np.zeros(1000), 0.1)
# Create a proper async generator for streaming
async def mock_stream(*args, **kwargs) -> AsyncGenerator[bytes, None]:
yield mock_audio_bytes
service.generate_audio_stream = mock_stream
service.list_voices.return_value = ["voice1", "voice2"]
service.combine_voices.return_value = "voice1_voice2"
# Return the same instance for all calls
mock_get.return_value = service
mock_get.side_effect = None
yield service
def test_openai_speech_endpoint(mock_tts_service, test_voice):
"""Test the OpenAI-compatible speech endpoint with basic MP3 generation"""
response = client.post(
"/v1/audio/speech",
json={
"model": "kokoro",
"input": "Hello world",
"voice": test_voice,
"response_format": "mp3",
"stream": False
}
)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/mpeg"
assert len(response.content) > 0
def test_openai_speech_streaming(mock_tts_service, test_voice, mock_audio_bytes):
"""Test the OpenAI-compatible speech endpoint with streaming"""
response = client.post(
"/v1/audio/speech",
json={
"model": "kokoro",
"input": "Hello world",
"voice": test_voice,
"response_format": "mp3",
"stream": True
}
)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/mpeg"
assert "Transfer-Encoding" in response.headers
assert response.headers["Transfer-Encoding"] == "chunked"
# For streaming responses, we need to read the content in chunks
content = b""
for chunk in response.iter_bytes():
content += chunk
assert content == mock_audio_bytes
def test_openai_speech_pcm_streaming(mock_tts_service, test_voice, mock_audio_bytes):
"""Test PCM streaming format"""
response = client.post(
"/v1/audio/speech",
json={
"model": "kokoro",
"input": "Hello world",
"voice": test_voice,
"response_format": "pcm",
"stream": True
}
)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/pcm"
# For streaming responses, we need to read the content in chunks
content = b""
for chunk in response.iter_bytes():
content += chunk
assert content == mock_audio_bytes
def test_openai_speech_invalid_voice(mock_tts_service):
"""Test error handling for invalid voice"""
mock_tts_service.generate_audio.side_effect = ValueError("Voice 'invalid_voice' not found")
response = client.post(
"/v1/audio/speech",
json={
"model": "kokoro",
"input": "Hello world",
"voice": "invalid_voice",
"response_format": "mp3",
"stream": False
}
)
assert response.status_code == 400
error_response = response.json()
assert error_response["detail"]["error"] == "validation_error"
assert "Voice 'invalid_voice' not found" in error_response["detail"]["message"]
assert error_response["detail"]["type"] == "invalid_request_error"
def test_openai_speech_empty_text(mock_tts_service, test_voice):
"""Test error handling for empty text"""
mock_tts_service.generate_audio.side_effect = ValueError("Text is empty after preprocessing")
response = client.post(
"/v1/audio/speech",
json={
"model": "kokoro",
"input": "",
"voice": test_voice,
"response_format": "mp3",
"stream": False
}
)
assert response.status_code == 400
error_response = response.json()
assert error_response["detail"]["error"] == "validation_error"
assert "Text is empty after preprocessing" in error_response["detail"]["message"]
assert error_response["detail"]["type"] == "invalid_request_error"
def test_openai_speech_invalid_format(mock_tts_service, test_voice):
"""Test error handling for invalid format"""
response = client.post(
"/v1/audio/speech",
json={
"model": "kokoro",
"input": "Hello world",
"voice": test_voice,
"response_format": "invalid_format",
"stream": False
}
)
assert response.status_code == 422 # Validation error from Pydantic
def test_list_voices(mock_tts_service):
"""Test listing available voices"""
response = client.get("/v1/audio/voices")
assert response.status_code == 200
data = response.json()
assert "voices" in data
assert len(data["voices"]) == 2
assert "voice1" in data["voices"]
assert "voice2" in data["voices"]
def test_combine_voices(mock_tts_service):
"""Test combining voices endpoint"""
response = client.post(
"/v1/audio/voices/combine",
json="voice1+voice2"
)
assert response.status_code == 200
data = response.json()
assert "voice" in data
assert data["voice"] == "voice1_voice2"
def test_server_error(mock_tts_service, test_voice):
"""Test handling of server errors"""
mock_tts_service.generate_audio.side_effect = RuntimeError("Internal server error")
response = client.post(
"/v1/audio/speech",
json={
"model": "kokoro",
"input": "Hello world",
"voice": test_voice,
"response_format": "mp3",
"stream": False
}
)
assert response.status_code == 500
error_response = response.json()
assert error_response["detail"]["error"] == "processing_error"
assert error_response["detail"]["type"] == "server_error"
def test_streaming_error(mock_tts_service, test_voice):
"""Test handling streaming errors"""
# Create a proper async generator that raises an error
async def mock_error_stream(*args, **kwargs) -> AsyncGenerator[bytes, None]:
if False: # This makes it a proper generator
yield b""
raise RuntimeError("Streaming failed")
mock_tts_service.generate_audio_stream = mock_error_stream
response = client.post(
"/v1/audio/speech",
json={
"model": "kokoro",
"input": "Hello world",
"voice": test_voice,
"response_format": "mp3",
"stream": True
}
)
assert response.status_code == 500
error_response = response.json()
assert error_response["detail"]["error"] == "processing_error"
assert error_response["detail"]["type"] == "server_error"

View file

@ -1,122 +0,0 @@
"""Tests for text processing endpoints"""
from unittest.mock import Mock, patch
import numpy as np
import pytest
import pytest_asyncio
from httpx import AsyncClient
from ..src.main import app
from .conftest import MockTTSModel
@pytest_asyncio.fixture
async def async_client():
async with AsyncClient(app=app, base_url="http://test") as ac:
yield ac
@pytest.mark.asyncio
async def test_phonemize_endpoint(async_client):
"""Test phoneme generation endpoint"""
with patch("api.src.routers.development.phonemize") as mock_phonemize, patch(
"api.src.routers.development.tokenize"
) as mock_tokenize:
# Setup mocks
mock_phonemize.return_value = "həlˈ"
mock_tokenize.return_value = [1, 2, 3]
# Test request
response = await async_client.post(
"/text/phonemize", json={"text": "hello", "language": "a"}
)
# Verify response
assert response.status_code == 200
result = response.json()
assert result["phonemes"] == "həlˈ"
assert result["tokens"] == [0, 1, 2, 3, 0] # Should add start/end tokens
@pytest.mark.asyncio
async def test_phonemize_empty_text(async_client):
"""Test phoneme generation with empty text"""
response = await async_client.post(
"/text/phonemize", json={"text": "", "language": "a"}
)
assert response.status_code == 500
assert "error" in response.json()["detail"]
@pytest.mark.asyncio
async def test_generate_from_phonemes(
async_client, mock_tts_service, mock_audio_service
):
"""Test audio generation from phonemes"""
with patch(
"api.src.routers.development.TTSService", return_value=mock_tts_service
):
response = await async_client.post(
"/text/generate_from_phonemes",
json={"phonemes": "həlˈ", "voice": "af_bella", "speed": 1.0},
)
assert response.status_code == 200
assert response.headers["content-type"] == "audio/wav"
assert (
response.headers["content-disposition"] == "attachment; filename=speech.wav"
)
assert response.content == b"mock audio data"
@pytest.mark.asyncio
async def test_generate_from_phonemes_invalid_voice(async_client, mock_tts_service):
"""Test audio generation with invalid voice"""
mock_tts_service._get_voice_path.return_value = None
with patch(
"api.src.routers.development.TTSService", return_value=mock_tts_service
):
response = await async_client.post(
"/text/generate_from_phonemes",
json={"phonemes": "həlˈ", "voice": "invalid_voice", "speed": 1.0},
)
assert response.status_code == 400
assert "Voice not found" in response.json()["detail"]["message"]
@pytest.mark.asyncio
async def test_generate_from_phonemes_invalid_speed(async_client, monkeypatch):
"""Test audio generation with invalid speed"""
# Mock TTSModel initialization
mock_model = Mock()
mock_model.generate_from_tokens = Mock(return_value=np.zeros(48000))
monkeypatch.setattr("api.src.services.tts_model.TTSModel._instance", mock_model)
monkeypatch.setattr(
"api.src.services.tts_model.TTSModel.get_instance",
Mock(return_value=mock_model),
)
response = await async_client.post(
"/text/generate_from_phonemes",
json={"phonemes": "həlˈ", "voice": "af_bella", "speed": -1.0},
)
assert response.status_code == 422 # Validation error
@pytest.mark.asyncio
async def test_generate_from_phonemes_empty_phonemes(async_client, mock_tts_service):
"""Test audio generation with empty phonemes"""
with patch(
"api.src.routers.development.TTSService", return_value=mock_tts_service
):
response = await async_client.post(
"/text/generate_from_phonemes",
json={"phonemes": "", "voice": "af_bella", "speed": 1.0},
)
assert response.status_code == 400
assert "Invalid request" in response.json()["detail"]["error"]

View file

@ -1,201 +0,0 @@
"""Tests for TTS model implementations"""
import os
from unittest.mock import AsyncMock, MagicMock, patch
import numpy as np
import pytest
import torch
from api.src.services.tts_base import TTSBaseModel
from api.src.services.tts_cpu import TTSCPUModel
from api.src.services.tts_gpu import TTSGPUModel, length_to_mask
# Base Model Tests
def test_get_device_error():
"""Test get_device() raises error when not initialized"""
TTSBaseModel._device = None
with pytest.raises(RuntimeError, match="Model not initialized"):
TTSBaseModel.get_device()
@pytest.mark.asyncio
@patch("torch.cuda.is_available")
@patch("os.path.exists")
@patch("os.path.join")
@patch("os.listdir")
@patch("torch.load")
@patch("torch.save")
@patch("api.src.services.tts_base.settings")
@patch("api.src.services.warmup.WarmupService")
async def test_setup_cuda_available(
mock_warmup_class, mock_settings, mock_save, mock_load, mock_listdir, mock_join, mock_exists, mock_cuda_available
):
"""Test setup with CUDA available"""
TTSBaseModel._device = None
# Mock CUDA as unavailable since we're using CPU PyTorch
mock_cuda_available.return_value = False
mock_exists.return_value = True
mock_load.return_value = torch.zeros(1)
mock_listdir.return_value = ["voice1.pt", "voice2.pt"]
mock_join.return_value = "/mocked/path"
# Configure mock settings
mock_settings.model_dir = "/mock/model/dir"
mock_settings.onnx_model_path = "model.onnx"
mock_settings.voices_dir = "voices"
# Configure mock warmup service
mock_warmup = MagicMock()
mock_warmup.load_voices.return_value = [torch.zeros(1)]
mock_warmup.warmup_voices = AsyncMock()
mock_warmup_class.return_value = mock_warmup
# Create mock model
mock_model = MagicMock()
mock_model.bert = MagicMock()
mock_model.process_text = MagicMock(return_value=("dummy", [1, 2, 3]))
mock_model.generate_from_tokens = MagicMock(return_value=np.zeros(1000))
# Mock initialize to return our mock model
TTSBaseModel.initialize = MagicMock(return_value=mock_model)
TTSBaseModel._instance = mock_model
voice_count = await TTSBaseModel.setup()
assert TTSBaseModel._device == "cpu"
assert voice_count == 2
@pytest.mark.asyncio
@patch("torch.cuda.is_available")
@patch("os.path.exists")
@patch("os.path.join")
@patch("os.listdir")
@patch("torch.load")
@patch("torch.save")
@patch("api.src.services.tts_base.settings")
@patch("api.src.services.warmup.WarmupService")
async def test_setup_cuda_unavailable(
mock_warmup_class, mock_settings, mock_save, mock_load, mock_listdir, mock_join, mock_exists, mock_cuda_available
):
"""Test setup with CUDA unavailable"""
TTSBaseModel._device = None
mock_cuda_available.return_value = False
mock_exists.return_value = True
mock_load.return_value = torch.zeros(1)
mock_listdir.return_value = ["voice1.pt", "voice2.pt"]
mock_join.return_value = "/mocked/path"
# Configure mock settings
mock_settings.model_dir = "/mock/model/dir"
mock_settings.onnx_model_path = "model.onnx"
mock_settings.voices_dir = "voices"
# Configure mock warmup service
mock_warmup = MagicMock()
mock_warmup.load_voices.return_value = [torch.zeros(1)]
mock_warmup.warmup_voices = AsyncMock()
mock_warmup_class.return_value = mock_warmup
# Create mock model
mock_model = MagicMock()
mock_model.bert = MagicMock()
mock_model.process_text = MagicMock(return_value=("dummy", [1, 2, 3]))
mock_model.generate_from_tokens = MagicMock(return_value=np.zeros(1000))
# Mock initialize to return our mock model
TTSBaseModel.initialize = MagicMock(return_value=mock_model)
TTSBaseModel._instance = mock_model
voice_count = await TTSBaseModel.setup()
assert TTSBaseModel._device == "cpu"
assert voice_count == 2
# CPU Model Tests
def test_cpu_initialize_missing_model():
"""Test CPU initialize with missing model"""
TTSCPUModel._onnx_session = None # Reset the session
with patch("os.path.exists", return_value=False), patch(
"onnxruntime.InferenceSession", return_value=None
):
result = TTSCPUModel.initialize("dummy_dir")
assert result is None
def test_cpu_generate_uninitialized():
"""Test CPU generate methods with uninitialized model"""
TTSCPUModel._onnx_session = None
with pytest.raises(RuntimeError, match="ONNX model not initialized"):
TTSCPUModel.generate_from_text("test", torch.zeros(1), "en", 1.0)
with pytest.raises(RuntimeError, match="ONNX model not initialized"):
TTSCPUModel.generate_from_tokens([1, 2, 3], torch.zeros(1), 1.0)
def test_cpu_process_text():
"""Test CPU process_text functionality"""
with patch("api.src.services.tts_cpu.phonemize") as mock_phonemize, patch(
"api.src.services.tts_cpu.tokenize"
) as mock_tokenize:
mock_phonemize.return_value = "test phonemes"
mock_tokenize.return_value = [1, 2, 3]
phonemes, tokens = TTSCPUModel.process_text("test", "en")
assert phonemes == "test phonemes"
assert tokens == [0, 1, 2, 3, 0] # Should add start/end tokens
# GPU Model Tests
@patch("torch.cuda.is_available")
def test_gpu_initialize_cuda_unavailable(mock_cuda_available):
"""Test GPU initialize with CUDA unavailable"""
mock_cuda_available.return_value = False
TTSGPUModel._instance = None
result = TTSGPUModel.initialize("dummy_dir", "dummy_path")
assert result is None
@patch("api.src.services.tts_gpu.length_to_mask")
def test_gpu_length_to_mask(mock_length_to_mask):
"""Test length_to_mask function"""
# Setup mock return value
expected_mask = torch.tensor(
[[False, False, False, True, True], [False, False, False, False, False]]
)
mock_length_to_mask.return_value = expected_mask
# Call function with test input
lengths = torch.tensor([3, 5])
mask = mock_length_to_mask(lengths)
# Verify mock was called with correct input
mock_length_to_mask.assert_called_once()
assert torch.equal(mask, expected_mask)
def test_gpu_generate_uninitialized():
"""Test GPU generate methods with uninitialized model"""
TTSGPUModel._instance = None
with pytest.raises(RuntimeError, match="GPU model not initialized"):
TTSGPUModel.generate_from_text("test", torch.zeros(1), "en", 1.0)
with pytest.raises(RuntimeError, match="GPU model not initialized"):
TTSGPUModel.generate_from_tokens([1, 2, 3], torch.zeros(1), 1.0)
def test_gpu_process_text():
"""Test GPU process_text functionality"""
with patch("api.src.services.tts_gpu.phonemize") as mock_phonemize, patch(
"api.src.services.tts_gpu.tokenize"
) as mock_tokenize:
mock_phonemize.return_value = "test phonemes"
mock_tokenize.return_value = [1, 2, 3]
phonemes, tokens = TTSGPUModel.process_text("test", "en")
assert phonemes == "test phonemes"
assert tokens == [1, 2, 3] # GPU implementation doesn't add start/end tokens

View file

@ -1,260 +0,0 @@
"""Tests for TTSService"""
import os
from unittest.mock import MagicMock, call, patch
import numpy as np
import pytest
import torch
from onnxruntime import InferenceSession
from api.src.core.config import settings
from api.src.services.tts_cpu import TTSCPUModel
from api.src.services.tts_gpu import TTSGPUModel
from api.src.services.tts_model import TTSModel
from api.src.services.tts_service import TTSService
@pytest.fixture
def tts_service(monkeypatch):
"""Create a TTSService instance for testing"""
# Mock TTSModel initialization
mock_model = MagicMock()
mock_model.generate_from_tokens = MagicMock(return_value=np.zeros(48000))
mock_model.process_text = MagicMock(return_value=("mock phonemes", [1, 2, 3]))
# Set up model instance
monkeypatch.setattr("api.src.services.tts_model.TTSModel._instance", mock_model)
monkeypatch.setattr(
"api.src.services.tts_model.TTSModel.get_instance",
MagicMock(return_value=mock_model),
)
monkeypatch.setattr(
"api.src.services.tts_model.TTSModel.get_device", MagicMock(return_value="cpu")
)
return TTSService()
@pytest.fixture
def sample_audio():
"""Generate a simple sine wave for testing"""
sample_rate = 24000
duration = 0.1 # 100ms
t = np.linspace(0, duration, int(sample_rate * duration))
frequency = 440 # A4 note
return np.sin(2 * np.pi * frequency * t).astype(np.float32)
def test_audio_to_bytes(tts_service, sample_audio):
"""Test converting audio tensor to bytes"""
audio_bytes = tts_service._audio_to_bytes(sample_audio)
assert isinstance(audio_bytes, bytes)
assert len(audio_bytes) > 0
@pytest.mark.asyncio
async def test_list_voices(tts_service):
"""Test listing available voices"""
# Override list_voices for testing
# # TODO:
# Whatever aiofiles does here pathing aiofiles vs aiofiles.os
# I am thoroughly confused by it.
# Cheating the test as it seems to work in the real world (for now)
async def mock_list_voices():
return ["voice1", "voice2"]
tts_service.list_voices = mock_list_voices
voices = await tts_service.list_voices()
assert len(voices) == 2
assert "voice1" in voices
assert "voice2" in voices
@pytest.mark.asyncio
async def test_list_voices_error(tts_service):
"""Test error handling in list_voices"""
# Override list_voices for testing
# TODO: See above.
async def mock_list_voices():
return []
tts_service.list_voices = mock_list_voices
voices = await tts_service.list_voices()
assert voices == []
def mock_model_setup(cuda_available=False):
"""Helper function to mock model setup"""
# Reset model state
TTSModel._instance = None
TTSModel._device = None
TTSModel._voicepacks = {}
# Create mock model instance with proper generate method
mock_model = MagicMock()
mock_model.generate.return_value = np.zeros(24000, dtype=np.float32)
TTSModel._instance = mock_model
# Set device based on CUDA availability
TTSModel._device = "cuda" if cuda_available else "cpu"
return 3 # Return voice count (including af.pt)
def test_model_initialization_cuda():
"""Test model initialization with CUDA"""
# Simulate CUDA availability
voice_count = mock_model_setup(cuda_available=True)
assert TTSModel.get_device() == "cuda"
assert voice_count == 3 # voice1.pt, voice2.pt, af.pt
def test_model_initialization_cpu():
"""Test model initialization with CPU"""
# Simulate no CUDA availability
voice_count = mock_model_setup(cuda_available=False)
assert TTSModel.get_device() == "cpu"
assert voice_count == 3 # voice1.pt, voice2.pt, af.pt
def test_generate_audio_empty_text(tts_service):
"""Test generating audio with empty text"""
with pytest.raises(ValueError, match="Text is empty after preprocessing"):
tts_service._generate_audio("", "af", 1.0)
@pytest.fixture(autouse=True)
def mock_settings():
"""Mock settings for all tests"""
with patch("api.src.services.text_processing.chunker.settings") as mock_settings:
mock_settings.max_chunk_size = 300
yield mock_settings
@patch("api.src.services.tts_model.TTSModel.get_instance")
@patch("api.src.services.tts_model.TTSModel.get_device")
@patch("os.path.exists")
@patch("kokoro.normalize_text")
@patch("kokoro.phonemize")
@patch("kokoro.tokenize")
@patch("kokoro.generate")
@patch("torch.load")
def test_generate_audio_phonemize_error(
mock_torch_load,
mock_generate,
mock_tokenize,
mock_phonemize,
mock_normalize,
mock_exists,
mock_get_device,
mock_instance,
tts_service,
):
"""Test handling phonemization error"""
mock_normalize.return_value = "Test text"
mock_phonemize.side_effect = Exception("Phonemization failed")
mock_instance.return_value = (
mock_generate,
"cpu",
) # Use the same mock for consistency
mock_get_device.return_value = "cpu"
mock_exists.return_value = True
mock_torch_load.return_value = torch.zeros((10, 24000))
mock_generate.return_value = (None, None)
with pytest.raises(ValueError, match="No chunks were processed successfully"):
tts_service._generate_audio("Test text", "af", 1.0)
@patch("api.src.services.tts_model.TTSModel.get_instance")
@patch("api.src.services.tts_model.TTSModel.get_device")
@patch("os.path.exists")
@patch("kokoro.normalize_text")
@patch("kokoro.phonemize")
@patch("kokoro.tokenize")
@patch("kokoro.generate")
@patch("torch.load")
def test_generate_audio_error(
mock_torch_load,
mock_generate,
mock_tokenize,
mock_phonemize,
mock_normalize,
mock_exists,
mock_get_device,
mock_instance,
tts_service,
):
"""Test handling generation error"""
mock_normalize.return_value = "Test text"
mock_phonemize.return_value = "Test text"
mock_tokenize.return_value = [1, 2] # Return integers instead of strings
mock_generate.side_effect = Exception("Generation failed")
mock_instance.return_value = (
mock_generate,
"cpu",
) # Use the same mock for consistency
mock_get_device.return_value = "cpu"
mock_exists.return_value = True
mock_torch_load.return_value = torch.zeros((10, 24000))
with pytest.raises(ValueError, match="No chunks were processed successfully"):
tts_service._generate_audio("Test text", "af", 1.0)
def test_save_audio(tts_service, sample_audio, tmp_path):
"""Test saving audio to file"""
output_path = os.path.join(tmp_path, "test_output.wav")
tts_service._save_audio(sample_audio, output_path)
assert os.path.exists(output_path)
assert os.path.getsize(output_path) > 0
@pytest.mark.asyncio
async def test_combine_voices(tts_service):
"""Test combining multiple voices"""
# Setup mocks for torch operations
with patch("torch.load", return_value=torch.tensor([1.0, 2.0])), patch(
"torch.stack", return_value=torch.tensor([[1.0, 2.0], [3.0, 4.0]])
), patch("torch.mean", return_value=torch.tensor([2.0, 3.0])), patch(
"torch.save"
), patch("os.path.exists", return_value=True):
# Test combining two voices
result = await tts_service.combine_voices(["voice1", "voice2"])
assert result == "voice1_voice2"
@pytest.mark.asyncio
async def test_combine_voices_invalid_input(tts_service):
"""Test combining voices with invalid input"""
# Test with empty list
with pytest.raises(ValueError, match="At least 2 voices are required"):
await tts_service.combine_voices([])
# Test with single voice
with pytest.raises(ValueError, match="At least 2 voices are required"):
await tts_service.combine_voices(["voice1"])
@patch("api.src.services.tts_service.TTSService._get_voice_path")
@patch("api.src.services.tts_model.TTSModel.get_instance")
def test_voicepack_loading_error(mock_get_instance, mock_get_voice_path):
"""Test voicepack loading error handling"""
mock_get_voice_path.return_value = None
mock_instance = MagicMock()
mock_instance.generate.return_value = np.zeros(24000, dtype=np.float32)
mock_get_instance.return_value = (mock_instance, "cpu")
TTSModel._voicepacks = {} # Reset voicepacks
service = TTSService()
with pytest.raises(ValueError, match="Voice not found: nonexistent_voice"):
service._generate_audio("test", "nonexistent_voice", 1.0)

View file

@ -0,0 +1,140 @@
import pytest
import numpy as np
from unittest.mock import AsyncMock, patch
@pytest.mark.asyncio
async def test_generate_audio(tts_service, mock_audio_output, test_voice):
"""Test basic audio generation"""
audio, processing_time = await tts_service.generate_audio(
text="Hello world",
voice=test_voice,
speed=1.0
)
assert isinstance(audio, np.ndarray)
assert np.array_equal(audio, mock_audio_output)
assert processing_time > 0
tts_service.model_manager.generate.assert_called_once()
@pytest.mark.asyncio
async def test_generate_audio_with_combined_voice(tts_service, mock_audio_output):
"""Test audio generation with a combined voice"""
test_voices = ["voice1", "voice2"]
combined_id = await tts_service._voice_manager.combine_voices(test_voices)
audio, processing_time = await tts_service.generate_audio(
text="Hello world",
voice=combined_id,
speed=1.0
)
assert isinstance(audio, np.ndarray)
assert np.array_equal(audio, mock_audio_output)
assert processing_time > 0
@pytest.mark.asyncio
async def test_generate_audio_stream(tts_service, mock_audio_output, test_voice):
"""Test streaming audio generation"""
tts_service.model_manager.generate.return_value = mock_audio_output
chunks = []
async for chunk in tts_service.generate_audio_stream(
text="Hello world",
voice=test_voice,
speed=1.0,
output_format="pcm"
):
assert isinstance(chunk, bytes)
chunks.append(chunk)
assert len(chunks) > 0
tts_service.model_manager.generate.assert_called()
@pytest.mark.asyncio
async def test_empty_text(tts_service, test_voice):
"""Test handling empty text"""
with pytest.raises(ValueError) as exc_info:
await tts_service.generate_audio(
text="",
voice=test_voice,
speed=1.0
)
assert "Text is empty after preprocessing" in str(exc_info.value)
@pytest.mark.asyncio
async def test_invalid_voice(tts_service):
"""Test handling invalid voice"""
tts_service._voice_manager.load_voice.side_effect = ValueError("Voice not found")
with pytest.raises(ValueError) as exc_info:
await tts_service.generate_audio(
text="Hello world",
voice="invalid_voice",
speed=1.0
)
assert "Voice not found" in str(exc_info.value)
@pytest.mark.asyncio
async def test_model_generation_error(tts_service, test_voice):
"""Test handling model generation error"""
# Make generate return None to simulate failed generation
tts_service.model_manager.generate.return_value = None
with pytest.raises(ValueError) as exc_info:
await tts_service.generate_audio(
text="Hello world",
voice=test_voice,
speed=1.0
)
assert "No audio chunks were generated successfully" in str(exc_info.value)
@pytest.mark.asyncio
async def test_streaming_generation_error(tts_service, test_voice):
"""Test handling streaming generation error"""
# Make generate return None to simulate failed generation
tts_service.model_manager.generate.return_value = None
chunks = []
async for chunk in tts_service.generate_audio_stream(
text="Hello world",
voice=test_voice,
speed=1.0,
output_format="pcm"
):
chunks.append(chunk)
# Should get no chunks if generation fails
assert len(chunks) == 0
@pytest.mark.asyncio
async def test_list_voices(tts_service):
"""Test listing available voices"""
voices = await tts_service.list_voices()
assert len(voices) == 2
assert "voice1" in voices
assert "voice2" in voices
tts_service._voice_manager.list_voices.assert_called_once()
@pytest.mark.asyncio
async def test_combine_voices(tts_service):
"""Test combining voices"""
test_voices = ["voice1", "voice2"]
combined_id = await tts_service.combine_voices(test_voices)
assert combined_id == "voice1_voice2"
tts_service._voice_manager.combine_voices.assert_called_once_with(test_voices)
@pytest.mark.asyncio
async def test_chunked_text_processing(tts_service, test_voice, mock_audio_output):
"""Test processing chunked text"""
long_text = "First sentence. Second sentence. Third sentence."
audio, processing_time = await tts_service.generate_audio(
text=long_text,
voice=test_voice,
speed=1.0,
stitch_long_output=True
)
assert tts_service.model_manager.generate.call_count > 1
assert isinstance(audio, np.ndarray)
assert processing_time > 0

View file

@ -0,0 +1,82 @@
import pytest
from unittest.mock import AsyncMock, patch
import torch
from pathlib import Path
@pytest.mark.asyncio
async def test_list_available_voices(mock_voice_manager):
"""Test listing available voices"""
voices = await mock_voice_manager.list_voices()
assert len(voices) == 2
assert "voice1" in voices
assert "voice2" in voices
@pytest.mark.asyncio
async def test_get_voice_path(mock_voice_manager):
"""Test getting path for a specific voice"""
voice_path = mock_voice_manager.get_voice_path("voice1")
assert voice_path == "/mock/path/voice.pt"
# Test invalid voice
mock_voice_manager.get_voice_path.return_value = None
assert mock_voice_manager.get_voice_path("invalid_voice") is None
@pytest.mark.asyncio
async def test_load_voice(mock_voice_manager, mock_voice_tensor):
"""Test loading a voice tensor"""
voice_tensor = await mock_voice_manager.load_voice("voice1")
assert torch.equal(voice_tensor, mock_voice_tensor)
mock_voice_manager.load_voice.assert_called_once_with("voice1")
@pytest.mark.asyncio
async def test_load_voice_not_found(mock_voice_manager):
"""Test loading non-existent voice"""
mock_voice_manager.get_voice_path.return_value = None
mock_voice_manager.load_voice.side_effect = ValueError("Voice not found: invalid_voice")
with pytest.raises(ValueError, match="Voice not found: invalid_voice"):
await mock_voice_manager.load_voice("invalid_voice")
@pytest.mark.asyncio
async def test_combine_voices(mock_voice_manager):
"""Test combining two voices"""
voices = ["voice1", "voice2"]
weights = [0.5, 0.5]
combined_id = await mock_voice_manager.combine_voices(voices, weights)
assert combined_id == "voice1_voice2"
mock_voice_manager.combine_voices.assert_called_once_with(voices, weights)
@pytest.mark.asyncio
async def test_combine_voices_invalid_weights(mock_voice_manager):
"""Test combining voices with invalid weights"""
voices = ["voice1", "voice2"]
weights = [0.3, 0.3] # Doesn't sum to 1
mock_voice_manager.combine_voices.side_effect = ValueError("Weights must sum to 1")
with pytest.raises(ValueError, match="Weights must sum to 1"):
await mock_voice_manager.combine_voices(voices, weights)
@pytest.mark.asyncio
async def test_combine_voices_single_voice(mock_voice_manager):
"""Test combining with single voice"""
voices = ["voice1"]
weights = [1.0]
mock_voice_manager.combine_voices.side_effect = ValueError("At least 2 voices are required")
with pytest.raises(ValueError, match="At least 2 voices are required"):
await mock_voice_manager.combine_voices(voices, weights)
@pytest.mark.asyncio
async def test_cache_management(mock_voice_manager, mock_voice_tensor):
"""Test voice cache management"""
# Mock cache info
mock_voice_manager.cache_info = {"size": 1, "max_size": 10}
# Load voice to test caching
await mock_voice_manager.load_voice("voice1")
# Check cache info
cache_info = mock_voice_manager.cache_info
assert cache_info["size"] == 1
assert cache_info["max_size"] == 10

View file

@ -33,6 +33,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
# Copy project files # Copy project files
COPY --chown=appuser:appuser api ./api COPY --chown=appuser:appuser api ./api
COPY --chown=appuser:appuser web ./web
# Install project # Install project
RUN --mount=type=cache,target=/root/.cache/uv \ RUN --mount=type=cache,target=/root/.cache/uv \

View file

@ -37,6 +37,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
# Copy project files # Copy project files
COPY --chown=appuser:appuser api ./api COPY --chown=appuser:appuser api ./api
COPY --chown=appuser:appuser web ./web
# Install project with GPU extras # Install project with GPU extras
RUN --mount=type=cache,target=/root/.cache/uv \ RUN --mount=type=cache,target=/root/.cache/uv \

View file

@ -33,6 +33,7 @@ dependencies = [
"ebooklib>=0.18", "ebooklib>=0.18",
"html2text>=2024.2.26", "html2text>=2024.2.26",
"pydub>=0.25.1", "pydub>=0.25.1",
"matplotlib>=3.10.0",
] ]
[project.optional-dependencies] [project.optional-dependencies]

View file

@ -1,9 +1,46 @@
import gradio as gr
import pytest import pytest
from unittest.mock import AsyncMock, Mock
from api.src.services.tts_service import TTSService
@pytest.fixture @pytest.fixture
def mock_gr_context(): async def mock_model_manager():
"""Provides a context for testing Gradio components""" """Mock model manager for UI tests"""
with gr.Blocks(): manager = AsyncMock()
yield manager.get_backend = Mock(return_value=Mock(device="cpu"))
return manager
@pytest.fixture
async def mock_voice_manager():
"""Mock voice manager for UI tests"""
manager = AsyncMock()
manager.list_voices = AsyncMock(return_value=["af", "bm_lewis", "af_sarah"])
return manager
@pytest.fixture
async def mock_tts_service(mock_model_manager, mock_voice_manager):
"""Mock TTSService for UI tests"""
service = AsyncMock()
service.model_manager = mock_model_manager
service._voice_manager = mock_voice_manager
return service
@pytest.fixture(autouse=True)
async def setup_mocks(monkeypatch, mock_model_manager, mock_voice_manager, mock_tts_service):
"""Setup global mocks for UI tests"""
async def mock_get_model():
return mock_model_manager
async def mock_get_voice():
return mock_voice_manager
async def mock_create_service():
return mock_tts_service
monkeypatch.setattr("api.src.inference.model_manager.get_manager", mock_get_model)
monkeypatch.setattr("api.src.inference.voice_manager.get_manager", mock_get_voice)
monkeypatch.setattr("api.src.services.tts_service.TTSService.create", mock_create_service)

675
uv.lock generated
View file

@ -301,6 +301,70 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/e3/51/9b208e85196941db2f0654ad0357ca6388ab3ed67efdbfc799f35d1f83aa/colorlog-6.9.0-py3-none-any.whl", hash = "sha256:5906e71acd67cb07a71e779c47c4bcb45fb8c2993eebe9e5adcd6a6f1b283eff", size = 11424 }, { url = "https://files.pythonhosted.org/packages/e3/51/9b208e85196941db2f0654ad0357ca6388ab3ed67efdbfc799f35d1f83aa/colorlog-6.9.0-py3-none-any.whl", hash = "sha256:5906e71acd67cb07a71e779c47c4bcb45fb8c2993eebe9e5adcd6a6f1b283eff", size = 11424 },
] ]
[[package]]
name = "contourpy"
version = "1.3.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "numpy" },
]
sdist = { url = "https://files.pythonhosted.org/packages/25/c2/fc7193cc5383637ff390a712e88e4ded0452c9fbcf84abe3de5ea3df1866/contourpy-1.3.1.tar.gz", hash = "sha256:dfd97abd83335045a913e3bcc4a09c0ceadbe66580cf573fe961f4a825efa699", size = 13465753 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/b2/a3/80937fe3efe0edacf67c9a20b955139a1a622730042c1ea991956f2704ad/contourpy-1.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a045f341a77b77e1c5de31e74e966537bba9f3c4099b35bf4c2e3939dd54cdab", size = 268466 },
{ url = "https://files.pythonhosted.org/packages/82/1d/e3eaebb4aa2d7311528c048350ca8e99cdacfafd99da87bc0a5f8d81f2c2/contourpy-1.3.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:500360b77259914f7805af7462e41f9cb7ca92ad38e9f94d6c8641b089338124", size = 253314 },
{ url = "https://files.pythonhosted.org/packages/de/f3/d796b22d1a2b587acc8100ba8c07fb7b5e17fde265a7bb05ab967f4c935a/contourpy-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2f926efda994cdf3c8d3fdb40b9962f86edbc4457e739277b961eced3d0b4c1", size = 312003 },
{ url = "https://files.pythonhosted.org/packages/bf/f5/0e67902bc4394daee8daa39c81d4f00b50e063ee1a46cb3938cc65585d36/contourpy-1.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:adce39d67c0edf383647a3a007de0a45fd1b08dedaa5318404f1a73059c2512b", size = 351896 },
{ url = "https://files.pythonhosted.org/packages/1f/d6/e766395723f6256d45d6e67c13bb638dd1fa9dc10ef912dc7dd3dcfc19de/contourpy-1.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:abbb49fb7dac584e5abc6636b7b2a7227111c4f771005853e7d25176daaf8453", size = 320814 },
{ url = "https://files.pythonhosted.org/packages/a9/57/86c500d63b3e26e5b73a28b8291a67c5608d4aa87ebd17bd15bb33c178bc/contourpy-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0cffcbede75c059f535725c1680dfb17b6ba8753f0c74b14e6a9c68c29d7ea3", size = 324969 },
{ url = "https://files.pythonhosted.org/packages/b8/62/bb146d1289d6b3450bccc4642e7f4413b92ebffd9bf2e91b0404323704a7/contourpy-1.3.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ab29962927945d89d9b293eabd0d59aea28d887d4f3be6c22deaefbb938a7277", size = 1265162 },
{ url = "https://files.pythonhosted.org/packages/18/04/9f7d132ce49a212c8e767042cc80ae390f728060d2eea47058f55b9eff1c/contourpy-1.3.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:974d8145f8ca354498005b5b981165b74a195abfae9a8129df3e56771961d595", size = 1324328 },
{ url = "https://files.pythonhosted.org/packages/46/23/196813901be3f97c83ababdab1382e13e0edc0bb4e7b49a7bff15fcf754e/contourpy-1.3.1-cp310-cp310-win32.whl", hash = "sha256:ac4578ac281983f63b400f7fe6c101bedc10651650eef012be1ccffcbacf3697", size = 173861 },
{ url = "https://files.pythonhosted.org/packages/e0/82/c372be3fc000a3b2005061ca623a0d1ecd2eaafb10d9e883a2fc8566e951/contourpy-1.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:174e758c66bbc1c8576992cec9599ce8b6672b741b5d336b5c74e35ac382b18e", size = 218566 },
{ url = "https://files.pythonhosted.org/packages/12/bb/11250d2906ee2e8b466b5f93e6b19d525f3e0254ac8b445b56e618527718/contourpy-1.3.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8b974d8db2c5610fb4e76307e265de0edb655ae8169e8b21f41807ccbeec4b", size = 269555 },
{ url = "https://files.pythonhosted.org/packages/67/71/1e6e95aee21a500415f5d2dbf037bf4567529b6a4e986594d7026ec5ae90/contourpy-1.3.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:20914c8c973f41456337652a6eeca26d2148aa96dd7ac323b74516988bea89fc", size = 254549 },
{ url = "https://files.pythonhosted.org/packages/31/2c/b88986e8d79ac45efe9d8801ae341525f38e087449b6c2f2e6050468a42c/contourpy-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19d40d37c1c3a4961b4619dd9d77b12124a453cc3d02bb31a07d58ef684d3d86", size = 313000 },
{ url = "https://files.pythonhosted.org/packages/c4/18/65280989b151fcf33a8352f992eff71e61b968bef7432fbfde3a364f0730/contourpy-1.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:113231fe3825ebf6f15eaa8bc1f5b0ddc19d42b733345eae0934cb291beb88b6", size = 352925 },
{ url = "https://files.pythonhosted.org/packages/f5/c7/5fd0146c93220dbfe1a2e0f98969293b86ca9bc041d6c90c0e065f4619ad/contourpy-1.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4dbbc03a40f916a8420e420d63e96a1258d3d1b58cbdfd8d1f07b49fcbd38e85", size = 323693 },
{ url = "https://files.pythonhosted.org/packages/85/fc/7fa5d17daf77306840a4e84668a48ddff09e6bc09ba4e37e85ffc8e4faa3/contourpy-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a04ecd68acbd77fa2d39723ceca4c3197cb2969633836ced1bea14e219d077c", size = 326184 },
{ url = "https://files.pythonhosted.org/packages/ef/e7/104065c8270c7397c9571620d3ab880558957216f2b5ebb7e040f85eeb22/contourpy-1.3.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c414fc1ed8ee1dbd5da626cf3710c6013d3d27456651d156711fa24f24bd1291", size = 1268031 },
{ url = "https://files.pythonhosted.org/packages/e2/4a/c788d0bdbf32c8113c2354493ed291f924d4793c4a2e85b69e737a21a658/contourpy-1.3.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:31c1b55c1f34f80557d3830d3dd93ba722ce7e33a0b472cba0ec3b6535684d8f", size = 1325995 },
{ url = "https://files.pythonhosted.org/packages/a6/e6/a2f351a90d955f8b0564caf1ebe4b1451a3f01f83e5e3a414055a5b8bccb/contourpy-1.3.1-cp311-cp311-win32.whl", hash = "sha256:f611e628ef06670df83fce17805c344710ca5cde01edfdc72751311da8585375", size = 174396 },
{ url = "https://files.pythonhosted.org/packages/a8/7e/cd93cab453720a5d6cb75588cc17dcdc08fc3484b9de98b885924ff61900/contourpy-1.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:b2bdca22a27e35f16794cf585832e542123296b4687f9fd96822db6bae17bfc9", size = 219787 },
{ url = "https://files.pythonhosted.org/packages/37/6b/175f60227d3e7f5f1549fcb374592be311293132207e451c3d7c654c25fb/contourpy-1.3.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:0ffa84be8e0bd33410b17189f7164c3589c229ce5db85798076a3fa136d0e509", size = 271494 },
{ url = "https://files.pythonhosted.org/packages/6b/6a/7833cfae2c1e63d1d8875a50fd23371394f540ce809d7383550681a1fa64/contourpy-1.3.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:805617228ba7e2cbbfb6c503858e626ab528ac2a32a04a2fe88ffaf6b02c32bc", size = 255444 },
{ url = "https://files.pythonhosted.org/packages/7f/b3/7859efce66eaca5c14ba7619791b084ed02d868d76b928ff56890d2d059d/contourpy-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ade08d343436a94e633db932e7e8407fe7de8083967962b46bdfc1b0ced39454", size = 307628 },
{ url = "https://files.pythonhosted.org/packages/48/b2/011415f5e3f0a50b1e285a0bf78eb5d92a4df000553570f0851b6e309076/contourpy-1.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:47734d7073fb4590b4a40122b35917cd77be5722d80683b249dac1de266aac80", size = 347271 },
{ url = "https://files.pythonhosted.org/packages/84/7d/ef19b1db0f45b151ac78c65127235239a8cf21a59d1ce8507ce03e89a30b/contourpy-1.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2ba94a401342fc0f8b948e57d977557fbf4d515f03c67682dd5c6191cb2d16ec", size = 318906 },
{ url = "https://files.pythonhosted.org/packages/ba/99/6794142b90b853a9155316c8f470d2e4821fe6f086b03e372aca848227dd/contourpy-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efa874e87e4a647fd2e4f514d5e91c7d493697127beb95e77d2f7561f6905bd9", size = 323622 },
{ url = "https://files.pythonhosted.org/packages/3c/0f/37d2c84a900cd8eb54e105f4fa9aebd275e14e266736778bb5dccbf3bbbb/contourpy-1.3.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1bf98051f1045b15c87868dbaea84f92408337d4f81d0e449ee41920ea121d3b", size = 1266699 },
{ url = "https://files.pythonhosted.org/packages/3a/8a/deb5e11dc7d9cc8f0f9c8b29d4f062203f3af230ba83c30a6b161a6effc9/contourpy-1.3.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:61332c87493b00091423e747ea78200659dc09bdf7fd69edd5e98cef5d3e9a8d", size = 1326395 },
{ url = "https://files.pythonhosted.org/packages/1a/35/7e267ae7c13aaf12322ccc493531f1e7f2eb8fba2927b9d7a05ff615df7a/contourpy-1.3.1-cp312-cp312-win32.whl", hash = "sha256:e914a8cb05ce5c809dd0fe350cfbb4e881bde5e2a38dc04e3afe1b3e58bd158e", size = 175354 },
{ url = "https://files.pythonhosted.org/packages/a1/35/c2de8823211d07e8a79ab018ef03960716c5dff6f4d5bff5af87fd682992/contourpy-1.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:08d9d449a61cf53033612cb368f3a1b26cd7835d9b8cd326647efe43bca7568d", size = 220971 },
{ url = "https://files.pythonhosted.org/packages/9a/e7/de62050dce687c5e96f946a93546910bc67e483fe05324439e329ff36105/contourpy-1.3.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a761d9ccfc5e2ecd1bf05534eda382aa14c3e4f9205ba5b1684ecfe400716ef2", size = 271548 },
{ url = "https://files.pythonhosted.org/packages/78/4d/c2a09ae014ae984c6bdd29c11e74d3121b25eaa117eca0bb76340efd7e1c/contourpy-1.3.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:523a8ee12edfa36f6d2a49407f705a6ef4c5098de4f498619787e272de93f2d5", size = 255576 },
{ url = "https://files.pythonhosted.org/packages/ab/8a/915380ee96a5638bda80cd061ccb8e666bfdccea38d5741cb69e6dbd61fc/contourpy-1.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece6df05e2c41bd46776fbc712e0996f7c94e0d0543af1656956d150c4ca7c81", size = 306635 },
{ url = "https://files.pythonhosted.org/packages/29/5c/c83ce09375428298acd4e6582aeb68b1e0d1447f877fa993d9bf6cd3b0a0/contourpy-1.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:573abb30e0e05bf31ed067d2f82500ecfdaec15627a59d63ea2d95714790f5c2", size = 345925 },
{ url = "https://files.pythonhosted.org/packages/29/63/5b52f4a15e80c66c8078a641a3bfacd6e07106835682454647aca1afc852/contourpy-1.3.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9fa36448e6a3a1a9a2ba23c02012c43ed88905ec80163f2ffe2421c7192a5d7", size = 318000 },
{ url = "https://files.pythonhosted.org/packages/9a/e2/30ca086c692691129849198659bf0556d72a757fe2769eb9620a27169296/contourpy-1.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ea9924d28fc5586bf0b42d15f590b10c224117e74409dd7a0be3b62b74a501c", size = 322689 },
{ url = "https://files.pythonhosted.org/packages/6b/77/f37812ef700f1f185d348394debf33f22d531e714cf6a35d13d68a7003c7/contourpy-1.3.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5b75aa69cb4d6f137b36f7eb2ace9280cfb60c55dc5f61c731fdf6f037f958a3", size = 1268413 },
{ url = "https://files.pythonhosted.org/packages/3f/6d/ce84e79cdd128542ebeb268f84abb4b093af78e7f8ec504676673d2675bc/contourpy-1.3.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:041b640d4ec01922083645a94bb3b2e777e6b626788f4095cf21abbe266413c1", size = 1326530 },
{ url = "https://files.pythonhosted.org/packages/72/22/8282f4eae20c73c89bee7a82a19c4e27af9b57bb602ecaa00713d5bdb54d/contourpy-1.3.1-cp313-cp313-win32.whl", hash = "sha256:36987a15e8ace5f58d4d5da9dca82d498c2bbb28dff6e5d04fbfcc35a9cb3a82", size = 175315 },
{ url = "https://files.pythonhosted.org/packages/e3/d5/28bca491f65312b438fbf076589dcde7f6f966b196d900777f5811b9c4e2/contourpy-1.3.1-cp313-cp313-win_amd64.whl", hash = "sha256:a7895f46d47671fa7ceec40f31fae721da51ad34bdca0bee83e38870b1f47ffd", size = 220987 },
{ url = "https://files.pythonhosted.org/packages/2f/24/a4b285d6adaaf9746e4700932f579f1a7b6f9681109f694cfa233ae75c4e/contourpy-1.3.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ddeb796389dadcd884c7eb07bd14ef12408aaae358f0e2ae24114d797eede30", size = 285001 },
{ url = "https://files.pythonhosted.org/packages/48/1d/fb49a401b5ca4f06ccf467cd6c4f1fd65767e63c21322b29b04ec40b40b9/contourpy-1.3.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:19c1555a6801c2f084c7ddc1c6e11f02eb6a6016ca1318dd5452ba3f613a1751", size = 268553 },
{ url = "https://files.pythonhosted.org/packages/79/1e/4aef9470d13fd029087388fae750dccb49a50c012a6c8d1d634295caa644/contourpy-1.3.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:841ad858cff65c2c04bf93875e384ccb82b654574a6d7f30453a04f04af71342", size = 310386 },
{ url = "https://files.pythonhosted.org/packages/b0/34/910dc706ed70153b60392b5305c708c9810d425bde12499c9184a1100888/contourpy-1.3.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4318af1c925fb9a4fb190559ef3eec206845f63e80fb603d47f2d6d67683901c", size = 349806 },
{ url = "https://files.pythonhosted.org/packages/31/3c/faee6a40d66d7f2a87f7102236bf4780c57990dd7f98e5ff29881b1b1344/contourpy-1.3.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:14c102b0eab282427b662cb590f2e9340a9d91a1c297f48729431f2dcd16e14f", size = 321108 },
{ url = "https://files.pythonhosted.org/packages/17/69/390dc9b20dd4bb20585651d7316cc3054b7d4a7b4f8b710b2b698e08968d/contourpy-1.3.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05e806338bfeaa006acbdeba0ad681a10be63b26e1b17317bfac3c5d98f36cda", size = 327291 },
{ url = "https://files.pythonhosted.org/packages/ef/74/7030b67c4e941fe1e5424a3d988080e83568030ce0355f7c9fc556455b01/contourpy-1.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4d76d5993a34ef3df5181ba3c92fabb93f1eaa5729504fb03423fcd9f3177242", size = 1263752 },
{ url = "https://files.pythonhosted.org/packages/f0/ed/92d86f183a8615f13f6b9cbfc5d4298a509d6ce433432e21da838b4b63f4/contourpy-1.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:89785bb2a1980c1bd87f0cb1517a71cde374776a5f150936b82580ae6ead44a1", size = 1318403 },
{ url = "https://files.pythonhosted.org/packages/b3/0e/c8e4950c77dcfc897c71d61e56690a0a9df39543d2164040301b5df8e67b/contourpy-1.3.1-cp313-cp313t-win32.whl", hash = "sha256:8eb96e79b9f3dcadbad2a3891672f81cdcab7f95b27f28f1c67d75f045b6b4f1", size = 185117 },
{ url = "https://files.pythonhosted.org/packages/c1/31/1ae946f11dfbd229222e6d6ad8e7bd1891d3d48bde5fbf7a0beb9491f8e3/contourpy-1.3.1-cp313-cp313t-win_amd64.whl", hash = "sha256:287ccc248c9e0d0566934e7d606201abd74761b5703d804ff3df8935f523d546", size = 236668 },
{ url = "https://files.pythonhosted.org/packages/3e/4f/e56862e64b52b55b5ddcff4090085521fc228ceb09a88390a2b103dccd1b/contourpy-1.3.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b457d6430833cee8e4b8e9b6f07aa1c161e5e0d52e118dc102c8f9bd7dd060d6", size = 265605 },
{ url = "https://files.pythonhosted.org/packages/b0/2e/52bfeeaa4541889f23d8eadc6386b442ee2470bd3cff9baa67deb2dd5c57/contourpy-1.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb76c1a154b83991a3cbbf0dfeb26ec2833ad56f95540b442c73950af2013750", size = 315040 },
{ url = "https://files.pythonhosted.org/packages/52/94/86bfae441707205634d80392e873295652fc313dfd93c233c52c4dc07874/contourpy-1.3.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:44a29502ca9c7b5ba389e620d44f2fbe792b1fb5734e8b931ad307071ec58c53", size = 218221 },
]
[[package]] [[package]]
name = "coverage" name = "coverage"
version = "7.6.10" version = "7.6.10"
@ -387,6 +451,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/13/84/069db1325f5a6dd034524c0099da3978de8fdb6242ce63223ead188da940/csvw-3.5.1-py2.py3-none-any.whl", hash = "sha256:8dd3864aae51bfd943713a62ec2c6688d3f406a9627b5f16de2479b1281febe5", size = 59881 }, { url = "https://files.pythonhosted.org/packages/13/84/069db1325f5a6dd034524c0099da3978de8fdb6242ce63223ead188da940/csvw-3.5.1-py2.py3-none-any.whl", hash = "sha256:8dd3864aae51bfd943713a62ec2c6688d3f406a9627b5f16de2479b1281febe5", size = 59881 },
] ]
[[package]]
name = "cycler"
version = "0.12.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c", size = 7615 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321 },
]
[[package]] [[package]]
name = "distro" name = "distro"
version = "1.9.0" version = "1.9.0"
@ -465,6 +538,47 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/fb/b4/31c461eef98b96b8ab736d97274548eaf2b2e349bf09e4de3902f7d53084/flatbuffers-24.12.23-py2.py3-none-any.whl", hash = "sha256:c418e0d48890f4142b92fd3e343e73a48f194e1f80075ddcc5793779b3585444", size = 30962 }, { url = "https://files.pythonhosted.org/packages/fb/b4/31c461eef98b96b8ab736d97274548eaf2b2e349bf09e4de3902f7d53084/flatbuffers-24.12.23-py2.py3-none-any.whl", hash = "sha256:c418e0d48890f4142b92fd3e343e73a48f194e1f80075ddcc5793779b3585444", size = 30962 },
] ]
[[package]]
name = "fonttools"
version = "4.55.4"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/13/8d/8912cdde6a2b4c19ced69ea5790cd17d1c095a3c0104c1c936a1de804a64/fonttools-4.55.4.tar.gz", hash = "sha256:9598af0af85073659facbe9612fcc56b071ef2f26e3819ebf9bd8c5d35f958c5", size = 3498560 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/06/84/da14576ce30bbed3c882bfc4de84d2e4348c65b1382688812357cb21416a/fonttools-4.55.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3b332ea7b7f5f3d99f9bc5a28a23c3824ae72711abf7c4e1d62fa21699fdebe7", size = 2774346 },
{ url = "https://files.pythonhosted.org/packages/50/1d/3da7148a5552871c5dbe368de755602a0df0672e339edc133ed3e9704f2a/fonttools-4.55.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5d8f925909256e62152e7c3e192655dbca3ab8c3cdef7d7b436732727e80feb6", size = 2302782 },
{ url = "https://files.pythonhosted.org/packages/1b/9d/6b5be027fbfc8eab302d89608fc158b37531f3116506062e0d7183546465/fonttools-4.55.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a58af9b98e39bcd773aa352b4512be79b472830b799cb1d3cafb2b4796b71cd", size = 4584269 },
{ url = "https://files.pythonhosted.org/packages/53/6f/c5ccd4c8f90fd7f6964a1b8981e58f5cc6361acedb0a473a8dae4e1ac3c6/fonttools-4.55.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:736d750d2ab4523067d8058e5294b40b01f2eee521e0fd401bec0d5e21e80b12", size = 4626917 },
{ url = "https://files.pythonhosted.org/packages/c7/ea/53c4c75212b30d257e0865d6905eb6747ec7450b414caff742ff031eb758/fonttools-4.55.4-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1a9a2e7e8a9d3bfa9589db3e6c4e4c127fec252493924b2f87a67a25f9430057", size = 4581220 },
{ url = "https://files.pythonhosted.org/packages/04/4f/05d9bf9595d75ece4d65e52bd994431cff575e11f00a9444ac8b2781091e/fonttools-4.55.4-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:87824368e994af34a95cb4279a8c711e51974b3c28d052d39d768531cc9e8e59", size = 4750636 },
{ url = "https://files.pythonhosted.org/packages/43/21/d91c8d4583e0f6ee8e08868d5ab3de44f78af8da37d47e265f5b433bd0e2/fonttools-4.55.4-cp310-cp310-win32.whl", hash = "sha256:6c36dcbfe64bce38c4d4f1d436cdc6445e969eee96eb98d98be603b5abf8c3f2", size = 2177793 },
{ url = "https://files.pythonhosted.org/packages/b8/33/c26363a57f5e766f38c84fb4e34d26d32a26398804f72e12a00c007166a1/fonttools-4.55.4-cp310-cp310-win_amd64.whl", hash = "sha256:3c53a467e5cf629acdbefc98b0f554859539fb6447bbeae4117b9ab51464ccc5", size = 2222313 },
{ url = "https://files.pythonhosted.org/packages/5c/22/cf0707f681486bf91f998c3a6a6492d806d1cf09445ce01b26a724917439/fonttools-4.55.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:1605b28165c785bf26c2cbd205dc0822463e3f9f56f187049eb214dc5f4a59cb", size = 2775483 },
{ url = "https://files.pythonhosted.org/packages/09/79/11a07753a7b9ef46eaaa5e85b72558095713060aeca1393057a081fb21e3/fonttools-4.55.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d851d8b2fdb676507365d1430c3285d62c4039d0d7760d8cf2f2e5ea3aa19d73", size = 2303701 },
{ url = "https://files.pythonhosted.org/packages/93/67/173994471ddb0ff8cd45b0a2ff9fa03416152ca90bd14d1cbe1ff75fb66c/fonttools-4.55.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3fb3cf1cddf08cec0338f238f950cb76fabab23a324a579e3e1f9b2ef2578329", size = 4891469 },
{ url = "https://files.pythonhosted.org/packages/16/b9/22e8be0fceaed86187ba35a1035b309e47575c68ee6ace3b66f146300f43/fonttools-4.55.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddd3208b06186ca00fbd329c0d0fed5ba209c99017cc46e2c4ea42233c2fbd00", size = 4920672 },
{ url = "https://files.pythonhosted.org/packages/cc/15/ed0f0a9d303419e7c885b3a71bfe70bb71c8f964e5b1d515056e38551c69/fonttools-4.55.4-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:9bd98819cb585a894dda9dcb337afeb2601abf17da17de7bfbfc1bc2e4a062c7", size = 4899903 },
{ url = "https://files.pythonhosted.org/packages/b5/02/bd0da57dac3f44f37898b058659cf3beedbfd89b7d0f4b10761c9602dc1b/fonttools-4.55.4-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4877376c10541e8dccf14876c8476d5082338fa5d21103894894382cc245144b", size = 5067979 },
{ url = "https://files.pythonhosted.org/packages/a0/b9/c232b07c0ecaba9e522695780ca8d711b099bf87889a19a6b35a4ebfde90/fonttools-4.55.4-cp311-cp311-win32.whl", hash = "sha256:3a5e466894ec6d8a009b0eb8e02a6eb26959a318d5b7a906280c26bdadce6423", size = 2176681 },
{ url = "https://files.pythonhosted.org/packages/e3/50/2aa1cf2492e6aded4320122aed690268e97076aba1f418c0b4c68fb11a50/fonttools-4.55.4-cp311-cp311-win_amd64.whl", hash = "sha256:f595129e6f9c6402965d6295fe8c18c1945d27af0f90bdb52ff426226e647afc", size = 2223239 },
{ url = "https://files.pythonhosted.org/packages/7a/ee/c7f06da45f60c076677291470599eb9f8aae6605cbfbebbcb8ee12428e26/fonttools-4.55.4-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:b3db72ad2d26a0e9ec694cbfb4485a8da9c095d29f66561cf935dbd19f3efcea", size = 2769913 },
{ url = "https://files.pythonhosted.org/packages/d9/a9/19aa6a9685d0bb285678850bfa22365a8376c590a7aaacc9f03d3a43beaa/fonttools-4.55.4-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:87717808fd5953588c3ffaf512e8cab0e43c09c1da04e42ba87fa4c07d8170c7", size = 2301168 },
{ url = "https://files.pythonhosted.org/packages/00/63/88740f4333008336844aadbc9f7ef85d50e2eed779a5c33e13907a2439eb/fonttools-4.55.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f49dac626ad5bc1a0147b88e6157e3211fd440d00007f0da6c9e5f91dd5cb88e", size = 4806195 },
{ url = "https://files.pythonhosted.org/packages/7b/fa/1d103fe6e9bf174afd1c04772ca4f88e8f577f44d37b7cc8644fe5ff2620/fonttools-4.55.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2d0ac8656ada8b604ae5da15d9aa075232f2181b95b51a3a2a55195222df7e7", size = 4877282 },
{ url = "https://files.pythonhosted.org/packages/b8/53/1cdd447f30598950e4bf8a2de8cd1f6573e6cb34b726cf23713a3cd8fb1e/fonttools-4.55.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:013c8b45873fa77a4ff6d25e43fecf1046cb7e8c6b32f1843117f98f3f8eac60", size = 4784688 },
{ url = "https://files.pythonhosted.org/packages/71/21/edfdcd85c1cce918d410909759a8db667f95bf3faed88141b1abfa2cefe1/fonttools-4.55.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:94caad375d254a0332926512f06791f5e66c24a913ebecd6178b14f61d27c62f", size = 5012253 },
{ url = "https://files.pythonhosted.org/packages/7d/e7/7c16717b75e40f735e01d899ee152a0573e90be0e6b8fc2d47c16ba8239c/fonttools-4.55.4-cp312-cp312-win32.whl", hash = "sha256:cb3eb4bf3a0c4e431e1ccab7a33ef4f1bb32657133fff4a61dc4fcbd54b94d29", size = 2165283 },
{ url = "https://files.pythonhosted.org/packages/50/ff/85d1c1d396a3ceaabcf7cb543da56d2223d9b76429bafd6c87f4a4e880df/fonttools-4.55.4-cp312-cp312-win_amd64.whl", hash = "sha256:6914269f6ff6b20c6b5a9b19d0b752880bd8ee218d9a7d6afe9960bbf1922d98", size = 2212080 },
{ url = "https://files.pythonhosted.org/packages/09/9b/e7505e7f08c291ab28e6b5c7ae9fe92aab10f5c4b3666fc67eb59f6e454b/fonttools-4.55.4-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:699dd32da7258a89939567a3d71b3f8decf84da54488a2526693f0d981a76479", size = 2757277 },
{ url = "https://files.pythonhosted.org/packages/7c/15/a26ae0e5be690038cf1d62277f1007282d4d355dc30dbf0a95224fe69b0e/fonttools-4.55.4-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0f374b18ac04fbf78f20940418aee7882be3cdcb328ded80e16c3356499f64cf", size = 2294678 },
{ url = "https://files.pythonhosted.org/packages/71/6a/20863c8ddf4dc7fd290b5ffddfc83d5918447523001b67a2dc81a0899b0d/fonttools-4.55.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b18792529ca3c24259090b6faa60bd0bdfcc4a06312e8f06d6fccab007f07193", size = 4784624 },
{ url = "https://files.pythonhosted.org/packages/94/2f/c74fa21fddd6a4c22c80f2f86820a0c960a5c0f8f46407bc9c1e1c9b9f50/fonttools-4.55.4-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e91d25261ebc9ff2143b95e6272f46b9f28e260b8f40feda07c80b66ff7e61d", size = 4856618 },
{ url = "https://files.pythonhosted.org/packages/00/37/1e9f1cb3b2454adac0b5fe85e940ea8d4eb174a9338e47020ec7d3cf1057/fonttools-4.55.4-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2695781a897395d03504fd24b60c944726b5e7b7af9ea3d922f7319d70c6fc37", size = 4765002 },
{ url = "https://files.pythonhosted.org/packages/ff/fa/36b815132a71b9df13e9c52cd198194b48eb31f9a6d041f3ec6476d8b74f/fonttools-4.55.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:21de3ef5b8e5361fd01d6aef2c09dda4ede139d6b3a1f5cf621d6bea48840dfd", size = 4985906 },
{ url = "https://files.pythonhosted.org/packages/73/9a/51eb1cdc08d0883c40a3ea6d9a8ecd862bac587371bc92e0f35315688994/fonttools-4.55.4-cp313-cp313-win32.whl", hash = "sha256:0ef33fda14e39aabb892a18ed16805b0b5b4e8a801fd1815a694be9dc7f30024", size = 2163286 },
{ url = "https://files.pythonhosted.org/packages/2b/a0/6fdeb063dfb401e3efc342ef8ff6cd9e290d9895c3777dbc3850842eb1ad/fonttools-4.55.4-cp313-cp313-win_amd64.whl", hash = "sha256:e953b1614e32b6da828ae7659c8f330a593b6c4b7a4a31f8f63c01b12f0d3680", size = 2209022 },
{ url = "https://files.pythonhosted.org/packages/f3/5d/29b126e12df844432e188d19e74f47c2578fa5a72a122b4f41819e1e0923/fonttools-4.55.4-py3-none-any.whl", hash = "sha256:d07ad8f31038c6394a0945752458313367a0ef8125d284ee59f99e68393a3c2d", size = 1111964 },
]
[[package]] [[package]]
name = "fsspec" name = "fsspec"
version = "2024.12.0" version = "2024.12.0"
@ -647,7 +761,7 @@ name = "humanfriendly"
version = "10.0" version = "10.0"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "pyreadline3", marker = "sys_platform == 'win32' or (extra == 'extra-14-kokoro-fastapi-cpu' and extra == 'extra-14-kokoro-fastapi-gpu')" }, { name = "pyreadline3", marker = "sys_platform == 'win32'" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/cc/3f/2c29224acb2e2df4d2046e4c73ee2662023c58ff5b113c4c1adac0886c43/humanfriendly-10.0.tar.gz", hash = "sha256:6b0b831ce8f15f7300721aa49829fc4e83921a9a301cc7f606be6686a2288ddc", size = 360702 } sdist = { url = "https://files.pythonhosted.org/packages/cc/3f/2c29224acb2e2df4d2046e4c73ee2662023c58ff5b113c4c1adac0886c43/humanfriendly-10.0.tar.gz", hash = "sha256:6b0b831ce8f15f7300721aa49829fc4e83921a9a301cc7f606be6686a2288ddc", size = 360702 }
wheels = [ wheels = [
@ -788,6 +902,93 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/d1/0f/8910b19ac0670a0f80ce1008e5e751c4a57e14d2c4c13a482aa6079fa9d6/jsonschema_specifications-2024.10.1-py3-none-any.whl", hash = "sha256:a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf", size = 18459 }, { url = "https://files.pythonhosted.org/packages/d1/0f/8910b19ac0670a0f80ce1008e5e751c4a57e14d2c4c13a482aa6079fa9d6/jsonschema_specifications-2024.10.1-py3-none-any.whl", hash = "sha256:a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf", size = 18459 },
] ]
[[package]]
name = "kiwisolver"
version = "1.4.8"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/82/59/7c91426a8ac292e1cdd53a63b6d9439abd573c875c3f92c146767dd33faf/kiwisolver-1.4.8.tar.gz", hash = "sha256:23d5f023bdc8c7e54eb65f03ca5d5bb25b601eac4d7f1a042888a1f45237987e", size = 97538 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/47/5f/4d8e9e852d98ecd26cdf8eaf7ed8bc33174033bba5e07001b289f07308fd/kiwisolver-1.4.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:88c6f252f6816a73b1f8c904f7bbe02fd67c09a69f7cb8a0eecdbf5ce78e63db", size = 124623 },
{ url = "https://files.pythonhosted.org/packages/1d/70/7f5af2a18a76fe92ea14675f8bd88ce53ee79e37900fa5f1a1d8e0b42998/kiwisolver-1.4.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c72941acb7b67138f35b879bbe85be0f6c6a70cab78fe3ef6db9c024d9223e5b", size = 66720 },
{ url = "https://files.pythonhosted.org/packages/c6/13/e15f804a142353aefd089fadc8f1d985561a15358c97aca27b0979cb0785/kiwisolver-1.4.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ce2cf1e5688edcb727fdf7cd1bbd0b6416758996826a8be1d958f91880d0809d", size = 65413 },
{ url = "https://files.pythonhosted.org/packages/ce/6d/67d36c4d2054e83fb875c6b59d0809d5c530de8148846b1370475eeeece9/kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c8bf637892dc6e6aad2bc6d4d69d08764166e5e3f69d469e55427b6ac001b19d", size = 1650826 },
{ url = "https://files.pythonhosted.org/packages/de/c6/7b9bb8044e150d4d1558423a1568e4f227193662a02231064e3824f37e0a/kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:034d2c891f76bd3edbdb3ea11140d8510dca675443da7304205a2eaa45d8334c", size = 1628231 },
{ url = "https://files.pythonhosted.org/packages/b6/38/ad10d437563063eaaedbe2c3540a71101fc7fb07a7e71f855e93ea4de605/kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d47b28d1dfe0793d5e96bce90835e17edf9a499b53969b03c6c47ea5985844c3", size = 1408938 },
{ url = "https://files.pythonhosted.org/packages/52/ce/c0106b3bd7f9e665c5f5bc1e07cc95b5dabd4e08e3dad42dbe2faad467e7/kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb158fe28ca0c29f2260cca8c43005329ad58452c36f0edf298204de32a9a3ed", size = 1422799 },
{ url = "https://files.pythonhosted.org/packages/d0/87/efb704b1d75dc9758087ba374c0f23d3254505edaedd09cf9d247f7878b9/kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5536185fce131780ebd809f8e623bf4030ce1b161353166c49a3c74c287897f", size = 1354362 },
{ url = "https://files.pythonhosted.org/packages/eb/b3/fd760dc214ec9a8f208b99e42e8f0130ff4b384eca8b29dd0efc62052176/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:369b75d40abedc1da2c1f4de13f3482cb99e3237b38726710f4a793432b1c5ff", size = 2222695 },
{ url = "https://files.pythonhosted.org/packages/a2/09/a27fb36cca3fc01700687cc45dae7a6a5f8eeb5f657b9f710f788748e10d/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:641f2ddf9358c80faa22e22eb4c9f54bd3f0e442e038728f500e3b978d00aa7d", size = 2370802 },
{ url = "https://files.pythonhosted.org/packages/3d/c3/ba0a0346db35fe4dc1f2f2cf8b99362fbb922d7562e5f911f7ce7a7b60fa/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d561d2d8883e0819445cfe58d7ddd673e4015c3c57261d7bdcd3710d0d14005c", size = 2334646 },
{ url = "https://files.pythonhosted.org/packages/41/52/942cf69e562f5ed253ac67d5c92a693745f0bed3c81f49fc0cbebe4d6b00/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:1732e065704b47c9afca7ffa272f845300a4eb959276bf6970dc07265e73b605", size = 2467260 },
{ url = "https://files.pythonhosted.org/packages/32/26/2d9668f30d8a494b0411d4d7d4ea1345ba12deb6a75274d58dd6ea01e951/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bcb1ebc3547619c3b58a39e2448af089ea2ef44b37988caf432447374941574e", size = 2288633 },
{ url = "https://files.pythonhosted.org/packages/98/99/0dd05071654aa44fe5d5e350729961e7bb535372935a45ac89a8924316e6/kiwisolver-1.4.8-cp310-cp310-win_amd64.whl", hash = "sha256:89c107041f7b27844179ea9c85d6da275aa55ecf28413e87624d033cf1f6b751", size = 71885 },
{ url = "https://files.pythonhosted.org/packages/6c/fc/822e532262a97442989335394d441cd1d0448c2e46d26d3e04efca84df22/kiwisolver-1.4.8-cp310-cp310-win_arm64.whl", hash = "sha256:b5773efa2be9eb9fcf5415ea3ab70fc785d598729fd6057bea38d539ead28271", size = 65175 },
{ url = "https://files.pythonhosted.org/packages/da/ed/c913ee28936c371418cb167b128066ffb20bbf37771eecc2c97edf8a6e4c/kiwisolver-1.4.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a4d3601908c560bdf880f07d94f31d734afd1bb71e96585cace0e38ef44c6d84", size = 124635 },
{ url = "https://files.pythonhosted.org/packages/4c/45/4a7f896f7467aaf5f56ef093d1f329346f3b594e77c6a3c327b2d415f521/kiwisolver-1.4.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:856b269c4d28a5c0d5e6c1955ec36ebfd1651ac00e1ce0afa3e28da95293b561", size = 66717 },
{ url = "https://files.pythonhosted.org/packages/5f/b4/c12b3ac0852a3a68f94598d4c8d569f55361beef6159dce4e7b624160da2/kiwisolver-1.4.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c2b9a96e0f326205af81a15718a9073328df1173a2619a68553decb7097fd5d7", size = 65413 },
{ url = "https://files.pythonhosted.org/packages/a9/98/1df4089b1ed23d83d410adfdc5947245c753bddfbe06541c4aae330e9e70/kiwisolver-1.4.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5020c83e8553f770cb3b5fc13faac40f17e0b205bd237aebd21d53d733adb03", size = 1343994 },
{ url = "https://files.pythonhosted.org/packages/8d/bf/b4b169b050c8421a7c53ea1ea74e4ef9c335ee9013216c558a047f162d20/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dace81d28c787956bfbfbbfd72fdcef014f37d9b48830829e488fdb32b49d954", size = 1434804 },
{ url = "https://files.pythonhosted.org/packages/66/5a/e13bd341fbcf73325ea60fdc8af752addf75c5079867af2e04cc41f34434/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11e1022b524bd48ae56c9b4f9296bce77e15a2e42a502cceba602f804b32bb79", size = 1450690 },
{ url = "https://files.pythonhosted.org/packages/9b/4f/5955dcb376ba4a830384cc6fab7d7547bd6759fe75a09564910e9e3bb8ea/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b9b4d2892fefc886f30301cdd80debd8bb01ecdf165a449eb6e78f79f0fabd6", size = 1376839 },
{ url = "https://files.pythonhosted.org/packages/3a/97/5edbed69a9d0caa2e4aa616ae7df8127e10f6586940aa683a496c2c280b9/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a96c0e790ee875d65e340ab383700e2b4891677b7fcd30a699146f9384a2bb0", size = 1435109 },
{ url = "https://files.pythonhosted.org/packages/13/fc/e756382cb64e556af6c1809a1bbb22c141bbc2445049f2da06b420fe52bf/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:23454ff084b07ac54ca8be535f4174170c1094a4cff78fbae4f73a4bcc0d4dab", size = 2245269 },
{ url = "https://files.pythonhosted.org/packages/76/15/e59e45829d7f41c776d138245cabae6515cb4eb44b418f6d4109c478b481/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:87b287251ad6488e95b4f0b4a79a6d04d3ea35fde6340eb38fbd1ca9cd35bbbc", size = 2393468 },
{ url = "https://files.pythonhosted.org/packages/e9/39/483558c2a913ab8384d6e4b66a932406f87c95a6080112433da5ed668559/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:b21dbe165081142b1232a240fc6383fd32cdd877ca6cc89eab93e5f5883e1c25", size = 2355394 },
{ url = "https://files.pythonhosted.org/packages/01/aa/efad1fbca6570a161d29224f14b082960c7e08268a133fe5dc0f6906820e/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:768cade2c2df13db52475bd28d3a3fac8c9eff04b0e9e2fda0f3760f20b3f7fc", size = 2490901 },
{ url = "https://files.pythonhosted.org/packages/c9/4f/15988966ba46bcd5ab9d0c8296914436720dd67fca689ae1a75b4ec1c72f/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d47cfb2650f0e103d4bf68b0b5804c68da97272c84bb12850d877a95c056bd67", size = 2312306 },
{ url = "https://files.pythonhosted.org/packages/2d/27/bdf1c769c83f74d98cbc34483a972f221440703054894a37d174fba8aa68/kiwisolver-1.4.8-cp311-cp311-win_amd64.whl", hash = "sha256:ed33ca2002a779a2e20eeb06aea7721b6e47f2d4b8a8ece979d8ba9e2a167e34", size = 71966 },
{ url = "https://files.pythonhosted.org/packages/4a/c9/9642ea855604aeb2968a8e145fc662edf61db7632ad2e4fb92424be6b6c0/kiwisolver-1.4.8-cp311-cp311-win_arm64.whl", hash = "sha256:16523b40aab60426ffdebe33ac374457cf62863e330a90a0383639ce14bf44b2", size = 65311 },
{ url = "https://files.pythonhosted.org/packages/fc/aa/cea685c4ab647f349c3bc92d2daf7ae34c8e8cf405a6dcd3a497f58a2ac3/kiwisolver-1.4.8-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:d6af5e8815fd02997cb6ad9bbed0ee1e60014438ee1a5c2444c96f87b8843502", size = 124152 },
{ url = "https://files.pythonhosted.org/packages/c5/0b/8db6d2e2452d60d5ebc4ce4b204feeb16176a851fd42462f66ade6808084/kiwisolver-1.4.8-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:bade438f86e21d91e0cf5dd7c0ed00cda0f77c8c1616bd83f9fc157fa6760d31", size = 66555 },
{ url = "https://files.pythonhosted.org/packages/60/26/d6a0db6785dd35d3ba5bf2b2df0aedc5af089962c6eb2cbf67a15b81369e/kiwisolver-1.4.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b83dc6769ddbc57613280118fb4ce3cd08899cc3369f7d0e0fab518a7cf37fdb", size = 65067 },
{ url = "https://files.pythonhosted.org/packages/c9/ed/1d97f7e3561e09757a196231edccc1bcf59d55ddccefa2afc9c615abd8e0/kiwisolver-1.4.8-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:111793b232842991be367ed828076b03d96202c19221b5ebab421ce8bcad016f", size = 1378443 },
{ url = "https://files.pythonhosted.org/packages/29/61/39d30b99954e6b46f760e6289c12fede2ab96a254c443639052d1b573fbc/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:257af1622860e51b1a9d0ce387bf5c2c4f36a90594cb9514f55b074bcc787cfc", size = 1472728 },
{ url = "https://files.pythonhosted.org/packages/0c/3e/804163b932f7603ef256e4a715e5843a9600802bb23a68b4e08c8c0ff61d/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:69b5637c3f316cab1ec1c9a12b8c5f4750a4c4b71af9157645bf32830e39c03a", size = 1478388 },
{ url = "https://files.pythonhosted.org/packages/8a/9e/60eaa75169a154700be74f875a4d9961b11ba048bef315fbe89cb6999056/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:782bb86f245ec18009890e7cb8d13a5ef54dcf2ebe18ed65f795e635a96a1c6a", size = 1413849 },
{ url = "https://files.pythonhosted.org/packages/bc/b3/9458adb9472e61a998c8c4d95cfdfec91c73c53a375b30b1428310f923e4/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc978a80a0db3a66d25767b03688f1147a69e6237175c0f4ffffaaedf744055a", size = 1475533 },
{ url = "https://files.pythonhosted.org/packages/e4/7a/0a42d9571e35798de80aef4bb43a9b672aa7f8e58643d7bd1950398ffb0a/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:36dbbfd34838500a31f52c9786990d00150860e46cd5041386f217101350f0d3", size = 2268898 },
{ url = "https://files.pythonhosted.org/packages/d9/07/1255dc8d80271400126ed8db35a1795b1a2c098ac3a72645075d06fe5c5d/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:eaa973f1e05131de5ff3569bbba7f5fd07ea0595d3870ed4a526d486fe57fa1b", size = 2425605 },
{ url = "https://files.pythonhosted.org/packages/84/df/5a3b4cf13780ef6f6942df67b138b03b7e79e9f1f08f57c49957d5867f6e/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:a66f60f8d0c87ab7f59b6fb80e642ebb29fec354a4dfad687ca4092ae69d04f4", size = 2375801 },
{ url = "https://files.pythonhosted.org/packages/8f/10/2348d068e8b0f635c8c86892788dac7a6b5c0cb12356620ab575775aad89/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858416b7fb777a53f0c59ca08190ce24e9abbd3cffa18886a5781b8e3e26f65d", size = 2520077 },
{ url = "https://files.pythonhosted.org/packages/32/d8/014b89fee5d4dce157d814303b0fce4d31385a2af4c41fed194b173b81ac/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:085940635c62697391baafaaeabdf3dd7a6c3643577dde337f4d66eba021b2b8", size = 2338410 },
{ url = "https://files.pythonhosted.org/packages/bd/72/dfff0cc97f2a0776e1c9eb5bef1ddfd45f46246c6533b0191887a427bca5/kiwisolver-1.4.8-cp312-cp312-win_amd64.whl", hash = "sha256:01c3d31902c7db5fb6182832713d3b4122ad9317c2c5877d0539227d96bb2e50", size = 71853 },
{ url = "https://files.pythonhosted.org/packages/dc/85/220d13d914485c0948a00f0b9eb419efaf6da81b7d72e88ce2391f7aed8d/kiwisolver-1.4.8-cp312-cp312-win_arm64.whl", hash = "sha256:a3c44cb68861de93f0c4a8175fbaa691f0aa22550c331fefef02b618a9dcb476", size = 65424 },
{ url = "https://files.pythonhosted.org/packages/79/b3/e62464a652f4f8cd9006e13d07abad844a47df1e6537f73ddfbf1bc997ec/kiwisolver-1.4.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1c8ceb754339793c24aee1c9fb2485b5b1f5bb1c2c214ff13368431e51fc9a09", size = 124156 },
{ url = "https://files.pythonhosted.org/packages/8d/2d/f13d06998b546a2ad4f48607a146e045bbe48030774de29f90bdc573df15/kiwisolver-1.4.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:54a62808ac74b5e55a04a408cda6156f986cefbcf0ada13572696b507cc92fa1", size = 66555 },
{ url = "https://files.pythonhosted.org/packages/59/e3/b8bd14b0a54998a9fd1e8da591c60998dc003618cb19a3f94cb233ec1511/kiwisolver-1.4.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:68269e60ee4929893aad82666821aaacbd455284124817af45c11e50a4b42e3c", size = 65071 },
{ url = "https://files.pythonhosted.org/packages/f0/1c/6c86f6d85ffe4d0ce04228d976f00674f1df5dc893bf2dd4f1928748f187/kiwisolver-1.4.8-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34d142fba9c464bc3bbfeff15c96eab0e7310343d6aefb62a79d51421fcc5f1b", size = 1378053 },
{ url = "https://files.pythonhosted.org/packages/4e/b9/1c6e9f6dcb103ac5cf87cb695845f5fa71379021500153566d8a8a9fc291/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc373e0eef45b59197de815b1b28ef89ae3955e7722cc9710fb91cd77b7f47", size = 1472278 },
{ url = "https://files.pythonhosted.org/packages/ee/81/aca1eb176de671f8bda479b11acdc42c132b61a2ac861c883907dde6debb/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:77e6f57a20b9bd4e1e2cedda4d0b986ebd0216236f0106e55c28aea3d3d69b16", size = 1478139 },
{ url = "https://files.pythonhosted.org/packages/49/f4/e081522473671c97b2687d380e9e4c26f748a86363ce5af48b4a28e48d06/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08e77738ed7538f036cd1170cbed942ef749137b1311fa2bbe2a7fda2f6bf3cc", size = 1413517 },
{ url = "https://files.pythonhosted.org/packages/8f/e9/6a7d025d8da8c4931522922cd706105aa32b3291d1add8c5427cdcd66e63/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5ce1e481a74b44dd5e92ff03ea0cb371ae7a0268318e202be06c8f04f4f1246", size = 1474952 },
{ url = "https://files.pythonhosted.org/packages/82/13/13fa685ae167bee5d94b415991c4fc7bb0a1b6ebea6e753a87044b209678/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:fc2ace710ba7c1dfd1a3b42530b62b9ceed115f19a1656adefce7b1782a37794", size = 2269132 },
{ url = "https://files.pythonhosted.org/packages/ef/92/bb7c9395489b99a6cb41d502d3686bac692586db2045adc19e45ee64ed23/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:3452046c37c7692bd52b0e752b87954ef86ee2224e624ef7ce6cb21e8c41cc1b", size = 2425997 },
{ url = "https://files.pythonhosted.org/packages/ed/12/87f0e9271e2b63d35d0d8524954145837dd1a6c15b62a2d8c1ebe0f182b4/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:7e9a60b50fe8b2ec6f448fe8d81b07e40141bfced7f896309df271a0b92f80f3", size = 2376060 },
{ url = "https://files.pythonhosted.org/packages/02/6e/c8af39288edbce8bf0fa35dee427b082758a4b71e9c91ef18fa667782138/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:918139571133f366e8362fa4a297aeba86c7816b7ecf0bc79168080e2bd79957", size = 2520471 },
{ url = "https://files.pythonhosted.org/packages/13/78/df381bc7b26e535c91469f77f16adcd073beb3e2dd25042efd064af82323/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e063ef9f89885a1d68dd8b2e18f5ead48653176d10a0e324e3b0030e3a69adeb", size = 2338793 },
{ url = "https://files.pythonhosted.org/packages/d0/dc/c1abe38c37c071d0fc71c9a474fd0b9ede05d42f5a458d584619cfd2371a/kiwisolver-1.4.8-cp313-cp313-win_amd64.whl", hash = "sha256:a17b7c4f5b2c51bb68ed379defd608a03954a1845dfed7cc0117f1cc8a9b7fd2", size = 71855 },
{ url = "https://files.pythonhosted.org/packages/a0/b6/21529d595b126ac298fdd90b705d87d4c5693de60023e0efcb4f387ed99e/kiwisolver-1.4.8-cp313-cp313-win_arm64.whl", hash = "sha256:3cd3bc628b25f74aedc6d374d5babf0166a92ff1317f46267f12d2ed54bc1d30", size = 65430 },
{ url = "https://files.pythonhosted.org/packages/34/bd/b89380b7298e3af9b39f49334e3e2a4af0e04819789f04b43d560516c0c8/kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:370fd2df41660ed4e26b8c9d6bbcad668fbe2560462cba151a721d49e5b6628c", size = 126294 },
{ url = "https://files.pythonhosted.org/packages/83/41/5857dc72e5e4148eaac5aa76e0703e594e4465f8ab7ec0fc60e3a9bb8fea/kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:84a2f830d42707de1d191b9490ac186bf7997a9495d4e9072210a1296345f7dc", size = 67736 },
{ url = "https://files.pythonhosted.org/packages/e1/d1/be059b8db56ac270489fb0b3297fd1e53d195ba76e9bbb30e5401fa6b759/kiwisolver-1.4.8-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:7a3ad337add5148cf51ce0b55642dc551c0b9d6248458a757f98796ca7348712", size = 66194 },
{ url = "https://files.pythonhosted.org/packages/e1/83/4b73975f149819eb7dcf9299ed467eba068ecb16439a98990dcb12e63fdd/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7506488470f41169b86d8c9aeff587293f530a23a23a49d6bc64dab66bedc71e", size = 1465942 },
{ url = "https://files.pythonhosted.org/packages/c7/2c/30a5cdde5102958e602c07466bce058b9d7cb48734aa7a4327261ac8e002/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f0121b07b356a22fb0414cec4666bbe36fd6d0d759db3d37228f496ed67c880", size = 1595341 },
{ url = "https://files.pythonhosted.org/packages/ff/9b/1e71db1c000385aa069704f5990574b8244cce854ecd83119c19e83c9586/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d6d6bd87df62c27d4185de7c511c6248040afae67028a8a22012b010bc7ad062", size = 1598455 },
{ url = "https://files.pythonhosted.org/packages/85/92/c8fec52ddf06231b31cbb779af77e99b8253cd96bd135250b9498144c78b/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:291331973c64bb9cce50bbe871fb2e675c4331dab4f31abe89f175ad7679a4d7", size = 1522138 },
{ url = "https://files.pythonhosted.org/packages/0b/51/9eb7e2cd07a15d8bdd976f6190c0164f92ce1904e5c0c79198c4972926b7/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:893f5525bb92d3d735878ec00f781b2de998333659507d29ea4466208df37bed", size = 1582857 },
{ url = "https://files.pythonhosted.org/packages/0f/95/c5a00387a5405e68ba32cc64af65ce881a39b98d73cc394b24143bebc5b8/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:b47a465040146981dc9db8647981b8cb96366fbc8d452b031e4f8fdffec3f26d", size = 2293129 },
{ url = "https://files.pythonhosted.org/packages/44/83/eeb7af7d706b8347548313fa3a3a15931f404533cc54fe01f39e830dd231/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:99cea8b9dd34ff80c521aef46a1dddb0dcc0283cf18bde6d756f1e6f31772165", size = 2421538 },
{ url = "https://files.pythonhosted.org/packages/05/f9/27e94c1b3eb29e6933b6986ffc5fa1177d2cd1f0c8efc5f02c91c9ac61de/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:151dffc4865e5fe6dafce5480fab84f950d14566c480c08a53c663a0020504b6", size = 2390661 },
{ url = "https://files.pythonhosted.org/packages/d9/d4/3c9735faa36ac591a4afcc2980d2691000506050b7a7e80bcfe44048daa7/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:577facaa411c10421314598b50413aa1ebcf5126f704f1e5d72d7e4e9f020d90", size = 2546710 },
{ url = "https://files.pythonhosted.org/packages/4c/fa/be89a49c640930180657482a74970cdcf6f7072c8d2471e1babe17a222dc/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:be4816dc51c8a471749d664161b434912eee82f2ea66bd7628bd14583a833e85", size = 2349213 },
{ url = "https://files.pythonhosted.org/packages/1f/f9/ae81c47a43e33b93b0a9819cac6723257f5da2a5a60daf46aa5c7226ea85/kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e7a019419b7b510f0f7c9dceff8c5eae2392037eae483a7f9162625233802b0a", size = 60403 },
{ url = "https://files.pythonhosted.org/packages/58/ca/f92b5cb6f4ce0c1ebfcfe3e2e42b96917e16f7090e45b21102941924f18f/kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:286b18e86682fd2217a48fc6be6b0f20c1d0ed10958d8dc53453ad58d7be0bf8", size = 58657 },
{ url = "https://files.pythonhosted.org/packages/80/28/ae0240f732f0484d3a4dc885d055653c47144bdf59b670aae0ec3c65a7c8/kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4191ee8dfd0be1c3666ccbac178c5a05d5f8d689bbe3fc92f3c4abec817f8fe0", size = 84948 },
{ url = "https://files.pythonhosted.org/packages/5d/eb/78d50346c51db22c7203c1611f9b513075f35c4e0e4877c5dde378d66043/kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7cd2785b9391f2873ad46088ed7599a6a71e762e1ea33e87514b1a441ed1da1c", size = 81186 },
{ url = "https://files.pythonhosted.org/packages/43/f8/7259f18c77adca88d5f64f9a522792e178b2691f3748817a8750c2d216ef/kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c07b29089b7ba090b6f1a669f1411f27221c3662b3a1b7010e67b59bb5a6f10b", size = 80279 },
{ url = "https://files.pythonhosted.org/packages/3a/1d/50ad811d1c5dae091e4cf046beba925bcae0a610e79ae4c538f996f63ed5/kiwisolver-1.4.8-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:65ea09a5a3faadd59c2ce96dc7bf0f364986a315949dc6374f04396b0d60e09b", size = 71762 },
]
[[package]] [[package]]
name = "kokoro-fastapi" name = "kokoro-fastapi"
version = "0.1.0" version = "0.1.0"
@ -799,9 +1000,9 @@ dependencies = [
{ name = "fastapi" }, { name = "fastapi" },
{ name = "html2text" }, { name = "html2text" },
{ name = "loguru" }, { name = "loguru" },
{ name = "matplotlib" },
{ name = "munch" }, { name = "munch" },
{ name = "numpy" }, { name = "numpy" },
{ name = "onnxruntime" },
{ name = "openai" }, { name = "openai" },
{ name = "phonemizer" }, { name = "phonemizer" },
{ name = "pydantic" }, { name = "pydantic" },
@ -821,10 +1022,11 @@ dependencies = [
[package.optional-dependencies] [package.optional-dependencies]
cpu = [ cpu = [
{ name = "torch", version = "2.5.1", source = { registry = "https://download.pytorch.org/whl/cpu" }, marker = "(platform_machine == 'aarch64' and sys_platform == 'linux') or sys_platform == 'darwin'" }, { name = "onnxruntime" },
{ name = "torch", version = "2.5.1+cpu", source = { registry = "https://download.pytorch.org/whl/cpu" }, marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" }, { name = "torch", version = "2.5.1", source = { registry = "https://download.pytorch.org/whl/cpu" } },
] ]
gpu = [ gpu = [
{ name = "onnxruntime-gpu" },
{ name = "torch", version = "2.5.1+cu121", source = { registry = "https://download.pytorch.org/whl/cu121" } }, { name = "torch", version = "2.5.1+cu121", source = { registry = "https://download.pytorch.org/whl/cu121" } },
] ]
test = [ test = [
@ -846,9 +1048,11 @@ requires-dist = [
{ name = "html2text", specifier = ">=2024.2.26" }, { name = "html2text", specifier = ">=2024.2.26" },
{ name = "httpx", marker = "extra == 'test'", specifier = "==0.26.0" }, { name = "httpx", marker = "extra == 'test'", specifier = "==0.26.0" },
{ name = "loguru", specifier = "==0.7.3" }, { name = "loguru", specifier = "==0.7.3" },
{ name = "matplotlib", specifier = ">=3.10.0" },
{ name = "munch", specifier = "==4.0.0" }, { name = "munch", specifier = "==4.0.0" },
{ name = "numpy", specifier = ">=1.26.0" }, { name = "numpy", specifier = ">=1.26.0" },
{ name = "onnxruntime", specifier = "==1.20.1" }, { name = "onnxruntime", marker = "extra == 'cpu'", specifier = "==1.20.1" },
{ name = "onnxruntime-gpu", marker = "extra == 'gpu'", specifier = "==1.20.1" },
{ name = "openai", specifier = ">=1.59.6" }, { name = "openai", specifier = ">=1.59.6" },
{ name = "openai", marker = "extra == 'test'", specifier = ">=1.59.6" }, { name = "openai", marker = "extra == 'test'", specifier = ">=1.59.6" },
{ name = "phonemizer", specifier = "==3.3.0" }, { name = "phonemizer", specifier = "==3.3.0" },
@ -1035,6 +1239,58 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/3f/14/c3554d512d5f9100a95e737502f4a2323a1959f6d0d01e0d0997b35f7b10/MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb", size = 17127 }, { url = "https://files.pythonhosted.org/packages/3f/14/c3554d512d5f9100a95e737502f4a2323a1959f6d0d01e0d0997b35f7b10/MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb", size = 17127 },
] ]
[[package]]
name = "matplotlib"
version = "3.10.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "contourpy" },
{ name = "cycler" },
{ name = "fonttools" },
{ name = "kiwisolver" },
{ name = "numpy" },
{ name = "packaging" },
{ name = "pillow" },
{ name = "pyparsing" },
{ name = "python-dateutil" },
]
sdist = { url = "https://files.pythonhosted.org/packages/68/dd/fa2e1a45fce2d09f4aea3cee169760e672c8262325aa5796c49d543dc7e6/matplotlib-3.10.0.tar.gz", hash = "sha256:b886d02a581b96704c9d1ffe55709e49b4d2d52709ccebc4be42db856e511278", size = 36686418 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/09/ec/3cdff7b5239adaaacefcc4f77c316dfbbdf853c4ed2beec467e0fec31b9f/matplotlib-3.10.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2c5829a5a1dd5a71f0e31e6e8bb449bc0ee9dbfb05ad28fc0c6b55101b3a4be6", size = 8160551 },
{ url = "https://files.pythonhosted.org/packages/41/f2/b518f2c7f29895c9b167bf79f8529c63383ae94eaf49a247a4528e9a148d/matplotlib-3.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2a43cbefe22d653ab34bb55d42384ed30f611bcbdea1f8d7f431011a2e1c62e", size = 8034853 },
{ url = "https://files.pythonhosted.org/packages/ed/8d/45754b4affdb8f0d1a44e4e2bcd932cdf35b256b60d5eda9f455bb293ed0/matplotlib-3.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:607b16c8a73943df110f99ee2e940b8a1cbf9714b65307c040d422558397dac5", size = 8446724 },
{ url = "https://files.pythonhosted.org/packages/09/5a/a113495110ae3e3395c72d82d7bc4802902e46dc797f6b041e572f195c56/matplotlib-3.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01d2b19f13aeec2e759414d3bfe19ddfb16b13a1250add08d46d5ff6f9be83c6", size = 8583905 },
{ url = "https://files.pythonhosted.org/packages/12/b1/8b1655b4c9ed4600c817c419f7eaaf70082630efd7556a5b2e77a8a3cdaf/matplotlib-3.10.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5e6c6461e1fc63df30bf6f80f0b93f5b6784299f721bc28530477acd51bfc3d1", size = 9395223 },
{ url = "https://files.pythonhosted.org/packages/5a/85/b9a54d64585a6b8737a78a61897450403c30f39e0bd3214270bb0b96f002/matplotlib-3.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:994c07b9d9fe8d25951e3202a68c17900679274dadfc1248738dcfa1bd40d7f3", size = 8025355 },
{ url = "https://files.pythonhosted.org/packages/0c/f1/e37f6c84d252867d7ddc418fff70fc661cfd363179263b08e52e8b748e30/matplotlib-3.10.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:fd44fc75522f58612ec4a33958a7e5552562b7705b42ef1b4f8c0818e304a363", size = 8171677 },
{ url = "https://files.pythonhosted.org/packages/c7/8b/92e9da1f28310a1f6572b5c55097b0c0ceb5e27486d85fb73b54f5a9b939/matplotlib-3.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c58a9622d5dbeb668f407f35f4e6bfac34bb9ecdcc81680c04d0258169747997", size = 8044945 },
{ url = "https://files.pythonhosted.org/packages/c5/cb/49e83f0fd066937a5bd3bc5c5d63093703f3637b2824df8d856e0558beef/matplotlib-3.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:845d96568ec873be63f25fa80e9e7fae4be854a66a7e2f0c8ccc99e94a8bd4ef", size = 8458269 },
{ url = "https://files.pythonhosted.org/packages/b2/7d/2d873209536b9ee17340754118a2a17988bc18981b5b56e6715ee07373ac/matplotlib-3.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5439f4c5a3e2e8eab18e2f8c3ef929772fd5641876db71f08127eed95ab64683", size = 8599369 },
{ url = "https://files.pythonhosted.org/packages/b8/03/57d6cbbe85c61fe4cbb7c94b54dce443d68c21961830833a1f34d056e5ea/matplotlib-3.10.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4673ff67a36152c48ddeaf1135e74ce0d4bce1bbf836ae40ed39c29edf7e2765", size = 9405992 },
{ url = "https://files.pythonhosted.org/packages/14/cf/e382598f98be11bf51dd0bc60eca44a517f6793e3dc8b9d53634a144620c/matplotlib-3.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:7e8632baebb058555ac0cde75db885c61f1212e47723d63921879806b40bec6a", size = 8034580 },
{ url = "https://files.pythonhosted.org/packages/44/c7/6b2d8cb7cc251d53c976799cacd3200add56351c175ba89ab9cbd7c1e68a/matplotlib-3.10.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4659665bc7c9b58f8c00317c3c2a299f7f258eeae5a5d56b4c64226fca2f7c59", size = 8172465 },
{ url = "https://files.pythonhosted.org/packages/42/2a/6d66d0fba41e13e9ca6512a0a51170f43e7e7ed3a8dfa036324100775612/matplotlib-3.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d44cb942af1693cced2604c33a9abcef6205601c445f6d0dc531d813af8a2f5a", size = 8043300 },
{ url = "https://files.pythonhosted.org/packages/90/60/2a60342b27b90a16bada939a85e29589902b41073f59668b904b15ea666c/matplotlib-3.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a994f29e968ca002b50982b27168addfd65f0105610b6be7fa515ca4b5307c95", size = 8448936 },
{ url = "https://files.pythonhosted.org/packages/a7/b2/d872fc3d753516870d520595ddd8ce4dd44fa797a240999f125f58521ad7/matplotlib-3.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b0558bae37f154fffda54d779a592bc97ca8b4701f1c710055b609a3bac44c8", size = 8594151 },
{ url = "https://files.pythonhosted.org/packages/f4/bd/b2f60cf7f57d014ab33e4f74602a2b5bdc657976db8196bbc022185f6f9c/matplotlib-3.10.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:503feb23bd8c8acc75541548a1d709c059b7184cde26314896e10a9f14df5f12", size = 9400347 },
{ url = "https://files.pythonhosted.org/packages/9f/6e/264673e64001b99d747aff5a288eca82826c024437a3694e19aed1decf46/matplotlib-3.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:c40ba2eb08b3f5de88152c2333c58cee7edcead0a2a0d60fcafa116b17117adc", size = 8039144 },
{ url = "https://files.pythonhosted.org/packages/72/11/1b2a094d95dcb6e6edd4a0b238177c439006c6b7a9fe8d31801237bf512f/matplotlib-3.10.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:96f2886f5c1e466f21cc41b70c5a0cd47bfa0015eb2d5793c88ebce658600e25", size = 8173073 },
{ url = "https://files.pythonhosted.org/packages/0d/c4/87b6ad2723070511a411ea719f9c70fde64605423b184face4e94986de9d/matplotlib-3.10.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:12eaf48463b472c3c0f8dbacdbf906e573013df81a0ab82f0616ea4b11281908", size = 8043892 },
{ url = "https://files.pythonhosted.org/packages/57/69/cb0812a136550b21361335e9ffb7d459bf6d13e03cb7b015555d5143d2d6/matplotlib-3.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2fbbabc82fde51391c4da5006f965e36d86d95f6ee83fb594b279564a4c5d0d2", size = 8450532 },
{ url = "https://files.pythonhosted.org/packages/ea/3a/bab9deb4fb199c05e9100f94d7f1c702f78d3241e6a71b784d2b88d7bebd/matplotlib-3.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad2e15300530c1a94c63cfa546e3b7864bd18ea2901317bae8bbf06a5ade6dcf", size = 8593905 },
{ url = "https://files.pythonhosted.org/packages/8b/66/742fd242f989adc1847ddf5f445815f73ad7c46aa3440690cc889cfa423c/matplotlib-3.10.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3547d153d70233a8496859097ef0312212e2689cdf8d7ed764441c77604095ae", size = 9399609 },
{ url = "https://files.pythonhosted.org/packages/fa/d6/54cee7142cef7d910a324a7aedf335c0c147b03658b54d49ec48166f10a6/matplotlib-3.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:c55b20591ced744aa04e8c3e4b7543ea4d650b6c3c4b208c08a05b4010e8b442", size = 8039076 },
{ url = "https://files.pythonhosted.org/packages/43/14/815d072dc36e88753433bfd0385113405efb947e6895ff7b4d2e8614a33b/matplotlib-3.10.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ade1003376731a971e398cc4ef38bb83ee8caf0aee46ac6daa4b0506db1fd06", size = 8211000 },
{ url = "https://files.pythonhosted.org/packages/9a/76/34e75f364194ec352678adcb540964be6f35ec7d3d8c75ebcb17e6839359/matplotlib-3.10.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:95b710fea129c76d30be72c3b38f330269363fbc6e570a5dd43580487380b5ff", size = 8087707 },
{ url = "https://files.pythonhosted.org/packages/c3/2b/b6bc0dff6a72d333bc7df94a66e6ce662d224e43daa8ad8ae4eaa9a77f55/matplotlib-3.10.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cdbaf909887373c3e094b0318d7ff230b2ad9dcb64da7ade654182872ab2593", size = 8477384 },
{ url = "https://files.pythonhosted.org/packages/c2/2d/b5949fb2b76e9b47ab05e25a5f5f887c70de20d8b0cbc704a4e2ee71c786/matplotlib-3.10.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d907fddb39f923d011875452ff1eca29a9e7f21722b873e90db32e5d8ddff12e", size = 8610334 },
{ url = "https://files.pythonhosted.org/packages/d6/9a/6e3c799d5134d9af44b01c787e1360bee38cf51850506ea2e743a787700b/matplotlib-3.10.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:3b427392354d10975c1d0f4ee18aa5844640b512d5311ef32efd4dd7db106ede", size = 9406777 },
{ url = "https://files.pythonhosted.org/packages/0e/dd/e6ae97151e5ed648ab2ea48885bc33d39202b640eec7a2910e2c843f7ac0/matplotlib-3.10.0-cp313-cp313t-win_amd64.whl", hash = "sha256:5fd41b0ec7ee45cd960a8e71aea7c946a28a0b8a4dcee47d2856b2af051f334c", size = 8109742 },
{ url = "https://files.pythonhosted.org/packages/32/5f/29def7ce4e815ab939b56280976ee35afffb3bbdb43f332caee74cb8c951/matplotlib-3.10.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:81713dd0d103b379de4516b861d964b1d789a144103277769238c732229d7f03", size = 8155500 },
{ url = "https://files.pythonhosted.org/packages/de/6d/d570383c9f7ca799d0a54161446f9ce7b17d6c50f2994b653514bcaa108f/matplotlib-3.10.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:359f87baedb1f836ce307f0e850d12bb5f1936f70d035561f90d41d305fdacea", size = 8032398 },
{ url = "https://files.pythonhosted.org/packages/c9/b4/680aa700d99b48e8c4393fa08e9ab8c49c0555ee6f4c9c0a5e8ea8dfde5d/matplotlib-3.10.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ae80dc3a4add4665cf2faa90138384a7ffe2a4e37c58d83e115b54287c4f06ef", size = 8587361 },
]
[[package]] [[package]]
name = "mdurl" name = "mdurl"
version = "0.1.2" version = "0.1.2"
@ -1107,44 +1363,165 @@ wheels = [
name = "nvidia-cublas-cu12" name = "nvidia-cublas-cu12"
version = "12.1.3.1" version = "12.1.3.1"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/37/6d/121efd7382d5b0284239f4ab1fc1590d86d34ed4a4a2fdb13b30ca8e5740/nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728", size = 410594774 }, { url = "https://files.pythonhosted.org/packages/37/6d/121efd7382d5b0284239f4ab1fc1590d86d34ed4a4a2fdb13b30ca8e5740/nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728", size = 410594774 },
{ url = "https://files.pythonhosted.org/packages/c5/ef/32a375b74bea706c93deea5613552f7c9104f961b21df423f5887eca713b/nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906", size = 439918445 }, { url = "https://files.pythonhosted.org/packages/c5/ef/32a375b74bea706c93deea5613552f7c9104f961b21df423f5887eca713b/nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906", size = 439918445 },
] ]
[[package]]
name = "nvidia-cublas-cu12"
version = "12.4.5.8"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/7f/7f/7fbae15a3982dc9595e49ce0f19332423b260045d0a6afe93cdbe2f1f624/nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0f8aa1706812e00b9f19dfe0cdb3999b092ccb8ca168c0db5b8ea712456fd9b3", size = 363333771 },
{ url = "https://files.pythonhosted.org/packages/ae/71/1c91302526c45ab494c23f61c7a84aa568b8c1f9d196efa5993957faf906/nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl", hash = "sha256:2fc8da60df463fdefa81e323eef2e36489e1c94335b5358bcb38360adf75ac9b", size = 363438805 },
{ url = "https://files.pythonhosted.org/packages/e2/2a/4f27ca96232e8b5269074a72e03b4e0d43aa68c9b965058b1684d07c6ff8/nvidia_cublas_cu12-12.4.5.8-py3-none-win_amd64.whl", hash = "sha256:5a796786da89203a0657eda402bcdcec6180254a8ac22d72213abc42069522dc", size = 396895858 },
]
[[package]] [[package]]
name = "nvidia-cuda-cupti-cu12" name = "nvidia-cuda-cupti-cu12"
version = "12.1.105" version = "12.1.105"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/7e/00/6b218edd739ecfc60524e585ba8e6b00554dd908de2c9c66c1af3e44e18d/nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e", size = 14109015 }, { url = "https://files.pythonhosted.org/packages/7e/00/6b218edd739ecfc60524e585ba8e6b00554dd908de2c9c66c1af3e44e18d/nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e", size = 14109015 },
{ url = "https://files.pythonhosted.org/packages/d0/56/0021e32ea2848c24242f6b56790bd0ccc8bf99f973ca790569c6ca028107/nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4", size = 10154340 }, { url = "https://files.pythonhosted.org/packages/d0/56/0021e32ea2848c24242f6b56790bd0ccc8bf99f973ca790569c6ca028107/nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4", size = 10154340 },
] ]
[[package]]
name = "nvidia-cuda-cupti-cu12"
version = "12.4.127"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/93/b5/9fb3d00386d3361b03874246190dfec7b206fd74e6e287b26a8fcb359d95/nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:79279b35cf6f91da114182a5ce1864997fd52294a87a16179ce275773799458a", size = 12354556 },
{ url = "https://files.pythonhosted.org/packages/67/42/f4f60238e8194a3106d06a058d494b18e006c10bb2b915655bd9f6ea4cb1/nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9dec60f5ac126f7bb551c055072b69d85392b13311fcc1bcda2202d172df30fb", size = 13813957 },
{ url = "https://files.pythonhosted.org/packages/f3/79/8cf313ec17c58ccebc965568e5bcb265cdab0a1df99c4e674bb7a3b99bfe/nvidia_cuda_cupti_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:5688d203301ab051449a2b1cb6690fbe90d2b372f411521c86018b950f3d7922", size = 9938035 },
]
[[package]] [[package]]
name = "nvidia-cuda-nvrtc-cu12" name = "nvidia-cuda-nvrtc-cu12"
version = "12.1.105" version = "12.1.105"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/b6/9f/c64c03f49d6fbc56196664d05dba14e3a561038a81a638eeb47f4d4cfd48/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2", size = 23671734 }, { url = "https://files.pythonhosted.org/packages/b6/9f/c64c03f49d6fbc56196664d05dba14e3a561038a81a638eeb47f4d4cfd48/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2", size = 23671734 },
{ url = "https://files.pythonhosted.org/packages/ad/1d/f76987c4f454eb86e0b9a0e4f57c3bf1ac1d13ad13cd1a4da4eb0e0c0ce9/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed", size = 19331863 }, { url = "https://files.pythonhosted.org/packages/ad/1d/f76987c4f454eb86e0b9a0e4f57c3bf1ac1d13ad13cd1a4da4eb0e0c0ce9/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed", size = 19331863 },
] ]
[[package]]
name = "nvidia-cuda-nvrtc-cu12"
version = "12.4.127"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/77/aa/083b01c427e963ad0b314040565ea396f914349914c298556484f799e61b/nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0eedf14185e04b76aa05b1fea04133e59f465b6f960c0cbf4e37c3cb6b0ea198", size = 24133372 },
{ url = "https://files.pythonhosted.org/packages/2c/14/91ae57cd4db3f9ef7aa99f4019cfa8d54cb4caa7e00975df6467e9725a9f/nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a178759ebb095827bd30ef56598ec182b85547f1508941a3d560eb7ea1fbf338", size = 24640306 },
{ url = "https://files.pythonhosted.org/packages/7c/30/8c844bfb770f045bcd8b2c83455c5afb45983e1a8abf0c4e5297b481b6a5/nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:a961b2f1d5f17b14867c619ceb99ef6fcec12e46612711bcec78eb05068a60ec", size = 19751955 },
]
[[package]] [[package]]
name = "nvidia-cuda-runtime-cu12" name = "nvidia-cuda-runtime-cu12"
version = "12.1.105" version = "12.1.105"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/eb/d5/c68b1d2cdfcc59e72e8a5949a37ddb22ae6cade80cd4a57a84d4c8b55472/nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40", size = 823596 }, { url = "https://files.pythonhosted.org/packages/eb/d5/c68b1d2cdfcc59e72e8a5949a37ddb22ae6cade80cd4a57a84d4c8b55472/nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40", size = 823596 },
{ url = "https://files.pythonhosted.org/packages/9f/e2/7a2b4b5064af56ea8ea2d8b2776c0f2960d95c88716138806121ae52a9c9/nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344", size = 821226 }, { url = "https://files.pythonhosted.org/packages/9f/e2/7a2b4b5064af56ea8ea2d8b2776c0f2960d95c88716138806121ae52a9c9/nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344", size = 821226 },
] ]
[[package]]
name = "nvidia-cuda-runtime-cu12"
version = "12.4.127"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/a1/aa/b656d755f474e2084971e9a297def515938d56b466ab39624012070cb773/nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:961fe0e2e716a2a1d967aab7caee97512f71767f852f67432d572e36cb3a11f3", size = 894177 },
{ url = "https://files.pythonhosted.org/packages/ea/27/1795d86fe88ef397885f2e580ac37628ed058a92ed2c39dc8eac3adf0619/nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:64403288fa2136ee8e467cdc9c9427e0434110899d07c779f25b5c068934faa5", size = 883737 },
{ url = "https://files.pythonhosted.org/packages/a8/8b/450e93fab75d85a69b50ea2d5fdd4ff44541e0138db16f9cd90123ef4de4/nvidia_cuda_runtime_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:09c2e35f48359752dfa822c09918211844a3d93c100a715d79b59591130c5e1e", size = 878808 },
]
[[package]] [[package]]
name = "nvidia-cudnn-cu12" name = "nvidia-cudnn-cu12"
version = "9.1.0.70" version = "9.1.0.70"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "nvidia-cublas-cu12" }, { name = "nvidia-cublas-cu12", version = "12.1.3.1", source = { registry = "https://pypi.org/simple" }, marker = "extra == 'extra-14-kokoro-fastapi-gpu'" },
{ name = "nvidia-cublas-cu12", version = "12.4.5.8", source = { registry = "https://pypi.org/simple" }, marker = "extra == 'extra-14-kokoro-fastapi-cpu'" },
] ]
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 }, { url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 },
@ -1155,27 +1532,100 @@ wheels = [
name = "nvidia-cufft-cu12" name = "nvidia-cufft-cu12"
version = "11.0.2.54" version = "11.0.2.54"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/86/94/eb540db023ce1d162e7bea9f8f5aa781d57c65aed513c33ee9a5123ead4d/nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56", size = 121635161 }, { url = "https://files.pythonhosted.org/packages/86/94/eb540db023ce1d162e7bea9f8f5aa781d57c65aed513c33ee9a5123ead4d/nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56", size = 121635161 },
{ url = "https://files.pythonhosted.org/packages/f7/57/7927a3aa0e19927dfed30256d1c854caf991655d847a4e7c01fe87e3d4ac/nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253", size = 121344196 }, { url = "https://files.pythonhosted.org/packages/f7/57/7927a3aa0e19927dfed30256d1c854caf991655d847a4e7c01fe87e3d4ac/nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253", size = 121344196 },
] ]
[[package]]
name = "nvidia-cufft-cu12"
version = "11.2.1.3"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
dependencies = [
{ name = "nvidia-nvjitlink-cu12" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/7a/8a/0e728f749baca3fbeffad762738276e5df60851958be7783af121a7221e7/nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5dad8008fc7f92f5ddfa2101430917ce2ffacd86824914c82e28990ad7f00399", size = 211422548 },
{ url = "https://files.pythonhosted.org/packages/27/94/3266821f65b92b3138631e9c8e7fe1fb513804ac934485a8d05776e1dd43/nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f083fc24912aa410be21fa16d157fed2055dab1cc4b6934a0e03cba69eb242b9", size = 211459117 },
{ url = "https://files.pythonhosted.org/packages/f6/ee/3f3f8e9874f0be5bbba8fb4b62b3de050156d159f8b6edc42d6f1074113b/nvidia_cufft_cu12-11.2.1.3-py3-none-win_amd64.whl", hash = "sha256:d802f4954291101186078ccbe22fc285a902136f974d369540fd4a5333d1440b", size = 210576476 },
]
[[package]] [[package]]
name = "nvidia-curand-cu12" name = "nvidia-curand-cu12"
version = "10.3.2.106" version = "10.3.2.106"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/44/31/4890b1c9abc496303412947fc7dcea3d14861720642b49e8ceed89636705/nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0", size = 56467784 }, { url = "https://files.pythonhosted.org/packages/44/31/4890b1c9abc496303412947fc7dcea3d14861720642b49e8ceed89636705/nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0", size = 56467784 },
{ url = "https://files.pythonhosted.org/packages/5c/97/4c9c7c79efcdf5b70374241d48cf03b94ef6707fd18ea0c0f53684931d0b/nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a", size = 55995813 }, { url = "https://files.pythonhosted.org/packages/5c/97/4c9c7c79efcdf5b70374241d48cf03b94ef6707fd18ea0c0f53684931d0b/nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a", size = 55995813 },
] ]
[[package]]
name = "nvidia-curand-cu12"
version = "10.3.5.147"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/80/9c/a79180e4d70995fdf030c6946991d0171555c6edf95c265c6b2bf7011112/nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1f173f09e3e3c76ab084aba0de819c49e56614feae5c12f69883f4ae9bb5fad9", size = 56314811 },
{ url = "https://files.pythonhosted.org/packages/8a/6d/44ad094874c6f1b9c654f8ed939590bdc408349f137f9b98a3a23ccec411/nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a88f583d4e0bb643c49743469964103aa59f7f708d862c3ddb0fc07f851e3b8b", size = 56305206 },
{ url = "https://files.pythonhosted.org/packages/1c/22/2573503d0d4e45673c263a313f79410e110eb562636b0617856fdb2ff5f6/nvidia_curand_cu12-10.3.5.147-py3-none-win_amd64.whl", hash = "sha256:f307cc191f96efe9e8f05a87096abc20d08845a841889ef78cb06924437f6771", size = 55799918 },
]
[[package]] [[package]]
name = "nvidia-cusolver-cu12" name = "nvidia-cusolver-cu12"
version = "11.4.5.107" version = "11.4.5.107"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
dependencies = [ dependencies = [
{ name = "nvidia-cublas-cu12" }, { name = "nvidia-cublas-cu12", version = "12.1.3.1", source = { registry = "https://pypi.org/simple" } },
{ name = "nvidia-cusparse-cu12" }, { name = "nvidia-cusparse-cu12", version = "12.1.0.106", source = { registry = "https://pypi.org/simple" } },
{ name = "nvidia-nvjitlink-cu12" }, { name = "nvidia-nvjitlink-cu12" },
] ]
wheels = [ wheels = [
@ -1183,10 +1633,45 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/b8/80/8fca0bf819122a631c3976b6fc517c1b10741b643b94046bd8dd451522c5/nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5", size = 121643081 }, { url = "https://files.pythonhosted.org/packages/b8/80/8fca0bf819122a631c3976b6fc517c1b10741b643b94046bd8dd451522c5/nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5", size = 121643081 },
] ]
[[package]]
name = "nvidia-cusolver-cu12"
version = "11.6.1.9"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
dependencies = [
{ name = "nvidia-cublas-cu12", version = "12.4.5.8", source = { registry = "https://pypi.org/simple" } },
{ name = "nvidia-cusparse-cu12", version = "12.3.1.170", source = { registry = "https://pypi.org/simple" } },
{ name = "nvidia-nvjitlink-cu12" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/46/6b/a5c33cf16af09166845345275c34ad2190944bcc6026797a39f8e0a282e0/nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_aarch64.whl", hash = "sha256:d338f155f174f90724bbde3758b7ac375a70ce8e706d70b018dd3375545fc84e", size = 127634111 },
{ url = "https://files.pythonhosted.org/packages/3a/e1/5b9089a4b2a4790dfdea8b3a006052cfecff58139d5a4e34cb1a51df8d6f/nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl", hash = "sha256:19e33fa442bcfd085b3086c4ebf7e8debc07cfe01e11513cc6d332fd918ac260", size = 127936057 },
{ url = "https://files.pythonhosted.org/packages/f2/be/d435b7b020e854d5d5a682eb5de4328fd62f6182507406f2818280e206e2/nvidia_cusolver_cu12-11.6.1.9-py3-none-win_amd64.whl", hash = "sha256:e77314c9d7b694fcebc84f58989f3aa4fb4cb442f12ca1a9bde50f5e8f6d1b9c", size = 125224015 },
]
[[package]] [[package]]
name = "nvidia-cusparse-cu12" name = "nvidia-cusparse-cu12"
version = "12.1.0.106" version = "12.1.0.106"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
dependencies = [ dependencies = [
{ name = "nvidia-nvjitlink-cu12" }, { name = "nvidia-nvjitlink-cu12" },
] ]
@ -1195,6 +1680,29 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/0f/95/48fdbba24c93614d1ecd35bc6bdc6087bd17cbacc3abc4b05a9c2a1ca232/nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a", size = 195414588 }, { url = "https://files.pythonhosted.org/packages/0f/95/48fdbba24c93614d1ecd35bc6bdc6087bd17cbacc3abc4b05a9c2a1ca232/nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a", size = 195414588 },
] ]
[[package]]
name = "nvidia-cusparse-cu12"
version = "12.3.1.170"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
dependencies = [
{ name = "nvidia-nvjitlink-cu12" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/96/a9/c0d2f83a53d40a4a41be14cea6a0bf9e668ffcf8b004bd65633f433050c0/nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_aarch64.whl", hash = "sha256:9d32f62896231ebe0480efd8a7f702e143c98cfaa0e8a76df3386c1ba2b54df3", size = 207381987 },
{ url = "https://files.pythonhosted.org/packages/db/f7/97a9ea26ed4bbbfc2d470994b8b4f338ef663be97b8f677519ac195e113d/nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ea4f11a2904e2a8dc4b1833cc1b5181cde564edd0d5cd33e3c168eff2d1863f1", size = 207454763 },
{ url = "https://files.pythonhosted.org/packages/a2/e0/3155ca539760a8118ec94cc279b34293309bcd14011fc724f87f31988843/nvidia_cusparse_cu12-12.3.1.170-py3-none-win_amd64.whl", hash = "sha256:9bc90fb087bc7b4c15641521f31c0371e9a612fc2ba12c338d3ae032e6b6797f", size = 204684315 },
]
[[package]] [[package]]
name = "nvidia-nccl-cu12" name = "nvidia-nccl-cu12"
version = "2.21.5" version = "2.21.5"
@ -1205,23 +1713,53 @@ wheels = [
[[package]] [[package]]
name = "nvidia-nvjitlink-cu12" name = "nvidia-nvjitlink-cu12"
version = "12.6.85" version = "12.4.127"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/9d/d7/c5383e47c7e9bf1c99d5bd2a8c935af2b6d705ad831a7ec5c97db4d82f4f/nvidia_nvjitlink_cu12-12.6.85-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:eedc36df9e88b682efe4309aa16b5b4e78c2407eac59e8c10a6a47535164369a", size = 19744971 }, { url = "https://files.pythonhosted.org/packages/02/45/239d52c05074898a80a900f49b1615d81c07fceadd5ad6c4f86a987c0bc4/nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:4abe7fef64914ccfa909bc2ba39739670ecc9e820c83ccc7a6ed414122599b83", size = 20552510 },
{ url = "https://files.pythonhosted.org/packages/31/db/dc71113d441f208cdfe7ae10d4983884e13f464a6252450693365e166dcf/nvidia_nvjitlink_cu12-12.6.85-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cf4eaa7d4b6b543ffd69d6abfb11efdeb2db48270d94dfd3a452c24150829e41", size = 19270338 }, { url = "https://files.pythonhosted.org/packages/ff/ff/847841bacfbefc97a00036e0fce5a0f086b640756dc38caea5e1bb002655/nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:06b3b9b25bf3f8af351d664978ca26a16d2c5127dbd53c0497e28d1fb9611d57", size = 21066810 },
{ url = "https://files.pythonhosted.org/packages/89/76/93c1467b1387387440a4d25102d86b7794535449b689f8e2dc22c1c8ff7f/nvidia_nvjitlink_cu12-12.6.85-py3-none-win_amd64.whl", hash = "sha256:e61120e52ed675747825cdd16febc6a0730537451d867ee58bee3853b1b13d1c", size = 161908572 }, { url = "https://files.pythonhosted.org/packages/81/19/0babc919031bee42620257b9a911c528f05fb2688520dcd9ca59159ffea8/nvidia_nvjitlink_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:fd9020c501d27d135f983c6d3e244b197a7ccad769e34df53a42e276b0e25fa1", size = 95336325 },
] ]
[[package]] [[package]]
name = "nvidia-nvtx-cu12" name = "nvidia-nvtx-cu12"
version = "12.1.105" version = "12.1.105"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/da/d3/8057f0587683ed2fcd4dbfbdfdfa807b9160b809976099d36b8f60d08f03/nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5", size = 99138 }, { url = "https://files.pythonhosted.org/packages/da/d3/8057f0587683ed2fcd4dbfbdfdfa807b9160b809976099d36b8f60d08f03/nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5", size = 99138 },
{ url = "https://files.pythonhosted.org/packages/b8/d7/bd7cb2d95ac6ac6e8d05bfa96cdce69619f1ef2808e072919044c2d47a8c/nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82", size = 66307 }, { url = "https://files.pythonhosted.org/packages/b8/d7/bd7cb2d95ac6ac6e8d05bfa96cdce69619f1ef2808e072919044c2d47a8c/nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82", size = 66307 },
] ]
[[package]]
name = "nvidia-nvtx-cu12"
version = "12.4.127"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/06/39/471f581edbb7804b39e8063d92fc8305bdc7a80ae5c07dbe6ea5c50d14a5/nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:7959ad635db13edf4fc65c06a6e9f9e55fc2f92596db928d169c0bb031e88ef3", size = 100417 },
{ url = "https://files.pythonhosted.org/packages/87/20/199b8713428322a2f22b722c62b8cc278cc53dffa9705d744484b5035ee9/nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:781e950d9b9f60d8241ccea575b32f5105a5baf4c2351cab5256a24869f12a1a", size = 99144 },
{ url = "https://files.pythonhosted.org/packages/54/1b/f77674fbb73af98843be25803bbd3b9a4f0a96c75b8d33a2854a5c7d2d77/nvidia_nvtx_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:641dccaaa1139f3ffb0d3164b4b84f9d253397e38246a4f2f36728b48566d485", size = 66307 },
]
[[package]] [[package]]
name = "onnxruntime" name = "onnxruntime"
version = "1.20.1" version = "1.20.1"
@ -1258,6 +1796,30 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/14/56/fd990ca222cef4f9f4a9400567b9a15b220dee2eafffb16b2adbc55c8281/onnxruntime-1.20.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0df6f2df83d61f46e842dbcde610ede27218947c33e994545a22333491e72a3b", size = 13337040 }, { url = "https://files.pythonhosted.org/packages/14/56/fd990ca222cef4f9f4a9400567b9a15b220dee2eafffb16b2adbc55c8281/onnxruntime-1.20.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0df6f2df83d61f46e842dbcde610ede27218947c33e994545a22333491e72a3b", size = 13337040 },
] ]
[[package]]
name = "onnxruntime-gpu"
version = "1.20.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "coloredlogs" },
{ name = "flatbuffers" },
{ name = "numpy" },
{ name = "packaging" },
{ name = "protobuf" },
{ name = "sympy" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/45/35/4f2df54e3161c61304d9463b5f2ee52c6408b5bca5960029bb787777d913/onnxruntime_gpu-1.20.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a5b4e1641db48752118dda353b8614c6d6570344062b58faea70b5350c41cf68", size = 291523128 },
{ url = "https://files.pythonhosted.org/packages/d6/54/e2fb1eadc21b6f8347860e9d53ad0ed34fec462cf51ab1b4303027503706/onnxruntime_gpu-1.20.1-cp310-cp310-win_amd64.whl", hash = "sha256:5e2a1d659924f19425e6b2fde1f36c0998b398a8a9b76a2b266d4fa518cfe8ed", size = 279696832 },
{ url = "https://files.pythonhosted.org/packages/e0/a5/5c2287d61f359c7342e9d59d1e3dd728a982dea85f846c7af305a801c3ca/onnxruntime_gpu-1.20.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1795e8bc6f9a1488a4d51d242edc4232a5ae60ec44ab4d4b0a7c65b3d17fcbff", size = 291519550 },
{ url = "https://files.pythonhosted.org/packages/be/33/6f21ea03dc4eeaa3f049127f5f17360c38799134eefd1e524f0296b23cb4/onnxruntime_gpu-1.20.1-cp311-cp311-win_amd64.whl", hash = "sha256:1348e6a0af9e8f5e8e1cfc379b70356ea40497932f5bc7f858501fe7940794ff", size = 279698022 },
{ url = "https://files.pythonhosted.org/packages/91/a8/6984a2fb070be372a866108e3e85c9eb6e8f0378a8567a66967d80befb75/onnxruntime_gpu-1.20.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1951f96cd534c6151721e552606d0d792ea6a4c3e57e2f10eed17cca8105e953", size = 291510989 },
{ url = "https://files.pythonhosted.org/packages/e8/15/0a9887bd2931b7b7e5f36995f266d51e66c0e02f84d18cab65133b111ac1/onnxruntime_gpu-1.20.1-cp312-cp312-win_amd64.whl", hash = "sha256:696de465884480fad1deffd936bee05c6f10fdfe4f5fcef1927a71f5d28ed9ef", size = 279699210 },
{ url = "https://files.pythonhosted.org/packages/51/86/de1d7e513e178265e5fac8fd7fd529decd06416cbe316ce77a5b0ff6915b/onnxruntime_gpu-1.20.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8337d7badb59b3f4af530ed6437a7471d48ab2e45f7b253a355c8db9cabee67c", size = 291512781 },
{ url = "https://files.pythonhosted.org/packages/c7/87/1361640e9277622591926f84d10fcc289c20be03e1ff5480d66c3cd2402f/onnxruntime_gpu-1.20.1-cp313-cp313-win_amd64.whl", hash = "sha256:9f0cc7ccd8e75da510ddab65d891b1384442d1b161863c521d335d1a56e5aa40", size = 279698268 },
{ url = "https://files.pythonhosted.org/packages/7a/26/67059fa067d9584121981cfa9983e1526e5f3ca393d1ace4a99ce9af500d/onnxruntime_gpu-1.20.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:965d6ee002c114d310c8d38680f42f1c94603b3547bcc62956ff565d528caa88", size = 291503278 },
]
[[package]] [[package]]
name = "openai" name = "openai"
version = "1.59.6" version = "1.59.6"
@ -2348,19 +2910,39 @@ name = "torch"
version = "2.5.1" version = "2.5.1"
source = { registry = "https://download.pytorch.org/whl/cpu" } source = { registry = "https://download.pytorch.org/whl/cpu" }
resolution-markers = [ resolution-markers = [
"python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"(python_full_version == '3.11.*' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform == 'darwin')", "(python_full_version == '3.11.*' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform == 'darwin')",
"python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"(python_full_version < '3.11' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform == 'darwin')", "(python_full_version < '3.11' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform == 'darwin')",
"python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"(python_full_version >= '3.13' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform == 'darwin')", "(python_full_version >= '3.13' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform == 'darwin')",
"python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"(python_full_version == '3.12.*' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform == 'darwin')", "(python_full_version == '3.12.*' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform == 'darwin')",
] ]
dependencies = [ dependencies = [
{ name = "filelock", marker = "(platform_machine == 'aarch64' and sys_platform == 'linux') or sys_platform == 'darwin'" }, { name = "filelock" },
{ name = "fsspec", marker = "(platform_machine == 'aarch64' and sys_platform == 'linux') or sys_platform == 'darwin'" }, { name = "fsspec" },
{ name = "jinja2", marker = "(platform_machine == 'aarch64' and sys_platform == 'linux') or sys_platform == 'darwin'" }, { name = "jinja2" },
{ name = "networkx", marker = "(platform_machine == 'aarch64' and sys_platform == 'linux') or sys_platform == 'darwin'" }, { name = "networkx" },
{ name = "setuptools", marker = "(python_full_version >= '3.12' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.12' and sys_platform == 'darwin')" }, { name = "nvidia-cublas-cu12", version = "12.4.5.8", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "sympy", marker = "(platform_machine == 'aarch64' and sys_platform == 'linux') or sys_platform == 'darwin'" }, { name = "nvidia-cuda-cupti-cu12", version = "12.4.127", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "typing-extensions", marker = "(platform_machine == 'aarch64' and sys_platform == 'linux') or sys_platform == 'darwin'" }, { name = "nvidia-cuda-nvrtc-cu12", version = "12.4.127", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-runtime-cu12", version = "12.4.127", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cufft-cu12", version = "11.2.1.3", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-curand-cu12", version = "10.3.5.147", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusolver-cu12", version = "11.6.1.9", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusparse-cu12", version = "12.3.1.170", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvtx-cu12", version = "12.4.127", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "setuptools", marker = "python_full_version >= '3.12'" },
{ name = "sympy" },
{ name = "typing-extensions" },
] ]
wheels = [ wheels = [
{ url = "https://download.pytorch.org/whl/cpu/torch-2.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:269b10c34430aa8e9643dbe035dc525c4a9b1d671cd3dbc8ecbcaed280ae322d" }, { url = "https://download.pytorch.org/whl/cpu/torch-2.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:269b10c34430aa8e9643dbe035dc525c4a9b1d671cd3dbc8ecbcaed280ae322d" },
@ -2371,61 +2953,40 @@ wheels = [
{ url = "https://download.pytorch.org/whl/cpu/torch-2.5.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:8c712df61101964eb11910a846514011f0b6f5920c55dbf567bff8a34163d5b1" }, { url = "https://download.pytorch.org/whl/cpu/torch-2.5.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:8c712df61101964eb11910a846514011f0b6f5920c55dbf567bff8a34163d5b1" },
] ]
[[package]]
name = "torch"
version = "2.5.1+cpu"
source = { registry = "https://download.pytorch.org/whl/cpu" }
resolution-markers = [
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
dependencies = [
{ name = "filelock", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "fsspec", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "jinja2", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "networkx", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "setuptools", marker = "(python_full_version >= '3.12' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.12' and sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "sympy", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "typing-extensions", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
]
wheels = [
{ url = "https://download.pytorch.org/whl/cpu/torch-2.5.1%2Bcpu-cp310-cp310-linux_x86_64.whl", hash = "sha256:7f91a2200e352745d70e22396bd501448e28350fbdbd8d8b1c83037e25451150" },
{ url = "https://download.pytorch.org/whl/cpu/torch-2.5.1%2Bcpu-cp310-cp310-win_amd64.whl", hash = "sha256:df93157482b672892d29134d3fae9d38ba3219702faedd79f407eb36774c56ce" },
{ url = "https://download.pytorch.org/whl/cpu/torch-2.5.1%2Bcpu-cp311-cp311-linux_x86_64.whl", hash = "sha256:07d7c9e069123d5af08b0cf0013d74f680b2d8be7d9e2cf561a52c90c55d9409" },
{ url = "https://download.pytorch.org/whl/cpu/torch-2.5.1%2Bcpu-cp311-cp311-win_amd64.whl", hash = "sha256:81531d4d5ca74163dc9574b87396531e546a60cceb6253303c7db6a21e867fdf" },
{ url = "https://download.pytorch.org/whl/cpu/torch-2.5.1%2Bcpu-cp312-cp312-linux_x86_64.whl", hash = "sha256:4856f9d6925121d13c2df07aa7580b767f449dfe71ae5acde9c27535d5da4840" },
{ url = "https://download.pytorch.org/whl/cpu/torch-2.5.1%2Bcpu-cp312-cp312-win_amd64.whl", hash = "sha256:a6b720410350765d3d77c01a5ce098a6c45af446284e45e87a98b8a16e7d564d" },
{ url = "https://download.pytorch.org/whl/cpu/torch-2.5.1%2Bcpu-cp313-cp313-linux_x86_64.whl", hash = "sha256:5dbbdf83caa90d0bcaa50e4933ca424889133b35226db79000877d4ec5d9ea37" },
]
[[package]] [[package]]
name = "torch" name = "torch"
version = "2.5.1+cu121" version = "2.5.1+cu121"
source = { registry = "https://download.pytorch.org/whl/cu121" } source = { registry = "https://download.pytorch.org/whl/cu121" }
resolution-markers = [ resolution-markers = [
"python_full_version == '3.11.*'", "python_full_version == '3.11.*'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"(python_full_version == '3.11.*' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform == 'darwin')",
"python_full_version < '3.11'", "python_full_version < '3.11'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"(python_full_version < '3.11' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform == 'darwin')",
"python_full_version >= '3.13'", "python_full_version >= '3.13'",
"(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')",
"(python_full_version >= '3.13' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform == 'darwin')",
"python_full_version == '3.12.*'", "python_full_version == '3.12.*'",
"(python_full_version == '3.12.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"(python_full_version == '3.12.*' and platform_machine == 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.12.*' and sys_platform == 'darwin')",
] ]
dependencies = [ dependencies = [
{ name = "filelock" }, { name = "filelock" },
{ name = "fsspec" }, { name = "fsspec" },
{ name = "jinja2" }, { name = "jinja2" },
{ name = "networkx" }, { name = "networkx" },
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, { name = "nvidia-cublas-cu12", version = "12.1.3.1", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, { name = "nvidia-cuda-cupti-cu12", version = "12.1.105", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, { name = "nvidia-cuda-nvrtc-cu12", version = "12.1.105", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, { name = "nvidia-cuda-runtime-cu12", version = "12.1.105", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, { name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, { name = "nvidia-cufft-cu12", version = "11.0.2.54", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, { name = "nvidia-curand-cu12", version = "10.3.2.106", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, { name = "nvidia-cusolver-cu12", version = "11.4.5.107", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, { name = "nvidia-cusparse-cu12", version = "12.1.0.106", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, { name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, { name = "nvidia-nvtx-cu12", version = "12.1.105", source = { registry = "https://pypi.org/simple" }, marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "setuptools", marker = "python_full_version >= '3.12'" }, { name = "setuptools", marker = "python_full_version >= '3.12'" },
{ name = "sympy" }, { name = "sympy" },
{ name = "triton", marker = "python_full_version < '3.13' and platform_machine == 'x86_64' and sys_platform == 'linux'" }, { name = "triton", marker = "python_full_version < '3.13' and platform_machine == 'x86_64' and sys_platform == 'linux'" },

203
web/app.js Normal file
View file

@ -0,0 +1,203 @@
class KokoroPlayer {
constructor() {
this.elements = {
textInput: document.getElementById('text-input'),
voiceSelect: document.getElementById('voice-select'),
streamToggle: document.getElementById('stream-toggle'),
autoplayToggle: document.getElementById('autoplay-toggle'),
generateBtn: document.getElementById('generate-btn'),
audioPlayer: document.getElementById('audio-player'),
status: document.getElementById('status')
};
this.isGenerating = false;
this.init();
}
async init() {
await this.loadVoices();
this.setupEventListeners();
}
async loadVoices() {
try {
const response = await fetch('/v1/audio/voices');
if (!response.ok) {
const error = await response.json();
throw new Error(error.detail?.message || 'Failed to load voices');
}
const data = await response.json();
if (!data.voices?.length) {
throw new Error('No voices available');
}
this.elements.voiceSelect.innerHTML = data.voices
.map(voice => `<option value="${voice}">${voice}</option>`)
.join('');
// Select first voice by default
if (data.voices.length > 0) {
this.elements.voiceSelect.value = data.voices[0];
}
this.showStatus('Voices loaded successfully', 'success');
} catch (error) {
this.showStatus('Failed to load voices: ' + error.message, 'error');
// Disable generate button if no voices
this.elements.generateBtn.disabled = true;
}
}
setupEventListeners() {
this.elements.generateBtn.addEventListener('click', () => this.generateSpeech());
this.elements.audioPlayer.addEventListener('ended', () => {
this.elements.generateBtn.disabled = false;
});
}
showStatus(message, type = 'info') {
this.elements.status.textContent = message;
this.elements.status.className = 'status ' + type;
setTimeout(() => {
this.elements.status.className = 'status';
}, 5000);
}
setLoading(loading) {
this.isGenerating = loading;
this.elements.generateBtn.disabled = loading;
this.elements.generateBtn.className = loading ? 'primary loading' : 'primary';
}
validateInput() {
const text = this.elements.textInput.value.trim();
if (!text) {
this.showStatus('Please enter some text', 'error');
return false;
}
const voice = this.elements.voiceSelect.value;
if (!voice) {
this.showStatus('Please select a voice', 'error');
return false;
}
return true;
}
async generateSpeech() {
if (this.isGenerating || !this.validateInput()) return;
const text = this.elements.textInput.value.trim();
const voice = this.elements.voiceSelect.value;
const stream = this.elements.streamToggle.checked;
this.setLoading(true);
try {
if (stream) {
await this.handleStreamingAudio(text, voice);
} else {
await this.handleNonStreamingAudio(text, voice);
}
} catch (error) {
this.showStatus('Error generating speech: ' + error.message, 'error');
} finally {
this.setLoading(false);
}
}
async handleStreamingAudio(text, voice) {
this.showStatus('Initializing audio stream...', 'info');
const response = await fetch('/v1/audio/speech', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
input: text,
voice: voice,
response_format: 'mp3',
stream: true
})
});
if (!response.ok) {
const error = await response.json();
throw new Error(error.detail?.message || 'Failed to generate speech');
}
const mediaSource = new MediaSource();
this.elements.audioPlayer.src = URL.createObjectURL(mediaSource);
return new Promise((resolve, reject) => {
mediaSource.addEventListener('sourceopen', async () => {
try {
const sourceBuffer = mediaSource.addSourceBuffer('audio/mpeg');
const reader = response.body.getReader();
let totalChunks = 0;
while (true) {
const {done, value} = await reader.read();
if (done) break;
// Wait for the buffer to be ready
if (sourceBuffer.updating) {
await new Promise(resolve => {
sourceBuffer.addEventListener('updateend', resolve, {once: true});
});
}
sourceBuffer.appendBuffer(value);
totalChunks++;
this.showStatus(`Received chunk ${totalChunks}...`, 'info');
}
mediaSource.endOfStream();
if (this.elements.autoplayToggle.checked) {
await this.elements.audioPlayer.play();
}
this.showStatus('Audio stream ready', 'success');
this.showStatus('Audio stream ready', 'success');
resolve();
} catch (error) {
mediaSource.endOfStream();
this.showStatus('Error during streaming: ' + error.message, 'error');
reject(error);
}
});
});
}
async handleNonStreamingAudio(text, voice) {
this.showStatus('Generating audio...', 'info');
const response = await fetch('/v1/audio/speech', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
input: text,
voice: voice,
response_format: 'mp3',
stream: false
})
});
if (!response.ok) {
const error = await response.json();
throw new Error(error.detail?.message || 'Failed to generate speech');
}
const blob = await response.blob();
const url = URL.createObjectURL(blob);
this.elements.audioPlayer.src = url;
if (this.elements.autoplayToggle.checked) {
await this.elements.audioPlayer.play();
}
this.showStatus('Audio ready', 'success');
}
}
// Initialize the player when the page loads
document.addEventListener('DOMContentLoaded', () => {
new KokoroPlayer();
});

51
web/index.html Normal file
View file

@ -0,0 +1,51 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>FastKoko: Kokoro-based TTS Player</title>
<link rel="stylesheet" href="styles.css">
</head>
<body>
<div class="container">
<header>
<h1>Kokoro TTS</h1>
</header>
<main>
<div class="input-section">
<textarea
id="text-input"
placeholder="Enter text to convert to speech..."
rows="4"
></textarea>
<div class="controls">
<select id="voice-select">
<option value="">Loading voices...</option>
</select>
<div class="options">
<label>
<input type="checkbox" id="stream-toggle" checked>
Stream audio
</label>
<label>
<input type="checkbox" id="autoplay-toggle" checked>
Auto-play
</label>
</div>
<button id="generate-btn" class="primary">
<span class="btn-text">Generate Speech</span>
<span class="loader"></span>
</button>
</div>
</div>
<div class="player-section">
<div id="status" class="status"></div>
<audio id="audio-player" controls></audio>
</div>
</main>
</div>
<script src="app.js"></script>
</body>
</html>

176
web/styles.css Normal file
View file

@ -0,0 +1,176 @@
:root {
--primary-color: #007bff;
--primary-hover: #0056b3;
--background: #ffffff;
--surface: #f8f9fa;
--text: #212529;
--text-light: #6c757d;
--border: #dee2e6;
--error: #dc3545;
--success: #28a745;
--font-family: system-ui, -apple-system, "Segoe UI", Roboto, sans-serif;
}
* {
margin: 0;
padding: 0;
box-sizing: border-box;
}
body {
font-family: var(--font-family);
line-height: 1.6;
color: var(--text);
background: var(--background);
}
.container {
max-width: 800px;
margin: 0 auto;
padding: 2rem 1rem;
}
header {
margin-bottom: 2rem;
text-align: center;
}
h1 {
color: var(--primary-color);
font-size: 2rem;
font-weight: 600;
}
.input-section {
background: var(--surface);
padding: 1.5rem;
border-radius: 8px;
margin-bottom: 1.5rem;
}
textarea {
width: 100%;
padding: 0.75rem;
border: 1px solid var(--border);
border-radius: 4px;
font-family: inherit;
font-size: 1rem;
resize: vertical;
margin-bottom: 1rem;
}
textarea:focus {
outline: none;
border-color: var(--primary-color);
}
.controls {
display: flex;
gap: 1rem;
align-items: center;
flex-wrap: wrap;
}
select {
padding: 0.5rem;
border: 1px solid var(--border);
border-radius: 4px;
font-size: 1rem;
min-width: 200px;
}
.options {
display: flex;
align-items: center;
gap: 1rem;
}
button {
padding: 0.5rem 1rem;
border: none;
border-radius: 4px;
font-size: 1rem;
cursor: pointer;
display: flex;
align-items: center;
gap: 0.5rem;
transition: background-color 0.2s;
}
button.primary {
background: var(--primary-color);
color: white;
}
button.primary:hover {
background: var(--primary-hover);
}
button:disabled {
opacity: 0.7;
cursor: not-allowed;
}
.loader {
display: none;
width: 16px;
height: 16px;
border: 2px solid #ffffff;
border-radius: 50%;
border-top-color: transparent;
animation: spin 1s linear infinite;
}
@keyframes spin {
to {
transform: rotate(360deg);
}
}
.loading .loader {
display: inline-block;
}
.loading .btn-text {
display: none;
}
.player-section {
background: var(--surface);
padding: 1.5rem;
border-radius: 8px;
}
.status {
margin-bottom: 1rem;
padding: 0.5rem;
border-radius: 4px;
display: none;
}
.status.error {
display: block;
background: rgba(220, 53, 69, 0.1);
color: var(--error);
}
.status.success {
display: block;
background: rgba(40, 167, 69, 0.1);
color: var(--success);
}
audio {
width: 100%;
}
@media (max-width: 600px) {
.controls {
flex-direction: column;
align-items: stretch;
}
select, button {
width: 100%;
}
}