mirror of
https://github.com/remsky/Kokoro-FastAPI.git
synced 2025-04-13 09:39:17 +00:00
Refactor project structure and update Dockerfiles for improved organization and dependency management
This commit is contained in:
parent
4c90a89545
commit
9198de2d95
11 changed files with 42 additions and 5245 deletions
|
@ -1,26 +0,0 @@
|
|||
{
|
||||
"decoder": {
|
||||
"type": "istftnet",
|
||||
"upsample_kernel_sizes": [20, 12],
|
||||
"upsample_rates": [10, 6],
|
||||
"gen_istft_hop_size": 5,
|
||||
"gen_istft_n_fft": 20,
|
||||
"resblock_dilation_sizes": [
|
||||
[1, 3, 5],
|
||||
[1, 3, 5],
|
||||
[1, 3, 5]
|
||||
],
|
||||
"resblock_kernel_sizes": [3, 7, 11],
|
||||
"upsample_initial_channel": 512
|
||||
},
|
||||
"dim_in": 64,
|
||||
"dropout": 0.2,
|
||||
"hidden_dim": 512,
|
||||
"max_conv_dim": 512,
|
||||
"max_dur": 50,
|
||||
"multispeaker": true,
|
||||
"n_layer": 3,
|
||||
"n_mels": 80,
|
||||
"n_token": 178,
|
||||
"style_dim": 128
|
||||
}
|
|
@ -1,524 +0,0 @@
|
|||
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from scipy.signal import get_window
|
||||
from torch.nn import Conv1d, ConvTranspose1d
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
|
||||
|
||||
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size*dilation - dilation)/2)
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
class AdaIN1d(nn.Module):
|
||||
def __init__(self, style_dim, num_features):
|
||||
super().__init__()
|
||||
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
||||
self.fc = nn.Linear(style_dim, num_features*2)
|
||||
|
||||
def forward(self, x, s):
|
||||
h = self.fc(s)
|
||||
h = h.view(h.size(0), h.size(1), 1)
|
||||
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
||||
return (1 + gamma) * self.norm(x) + beta
|
||||
|
||||
class AdaINResBlock1(torch.nn.Module):
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
||||
super(AdaINResBlock1, self).__init__()
|
||||
self.convs1 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2])))
|
||||
])
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1)))
|
||||
])
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
self.adain1 = nn.ModuleList([
|
||||
AdaIN1d(style_dim, channels),
|
||||
AdaIN1d(style_dim, channels),
|
||||
AdaIN1d(style_dim, channels),
|
||||
])
|
||||
|
||||
self.adain2 = nn.ModuleList([
|
||||
AdaIN1d(style_dim, channels),
|
||||
AdaIN1d(style_dim, channels),
|
||||
AdaIN1d(style_dim, channels),
|
||||
])
|
||||
|
||||
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
||||
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
||||
|
||||
|
||||
def forward(self, x, s):
|
||||
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
||||
xt = n1(x, s)
|
||||
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
||||
xt = c1(xt)
|
||||
xt = n2(xt, s)
|
||||
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
class TorchSTFT(torch.nn.Module):
|
||||
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
|
||||
super().__init__()
|
||||
self.filter_length = filter_length
|
||||
self.hop_length = hop_length
|
||||
self.win_length = win_length
|
||||
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
|
||||
|
||||
def transform(self, input_data):
|
||||
forward_transform = torch.stft(
|
||||
input_data,
|
||||
self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
|
||||
return_complex=True)
|
||||
|
||||
return torch.abs(forward_transform), torch.angle(forward_transform)
|
||||
|
||||
def inverse(self, magnitude, phase):
|
||||
inverse_transform = torch.istft(
|
||||
magnitude * torch.exp(phase * 1j),
|
||||
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
|
||||
|
||||
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
|
||||
|
||||
def forward(self, input_data):
|
||||
self.magnitude, self.phase = self.transform(input_data)
|
||||
reconstruction = self.inverse(self.magnitude, self.phase)
|
||||
return reconstruction
|
||||
|
||||
class SineGen(torch.nn.Module):
|
||||
""" Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
sine_amp = 0.1, noise_std = 0.003,
|
||||
voiced_threshold = 0,
|
||||
flag_for_pulse=False)
|
||||
samp_rate: sampling rate in Hz
|
||||
harmonic_num: number of harmonic overtones (default 0)
|
||||
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
||||
noise_std: std of Gaussian noise (default 0.003)
|
||||
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
||||
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
||||
Note: when flag_for_pulse is True, the first time step of a voiced
|
||||
segment is always sin(np.pi) or cos(0)
|
||||
"""
|
||||
|
||||
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
||||
sine_amp=0.1, noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False):
|
||||
super(SineGen, self).__init__()
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = noise_std
|
||||
self.harmonic_num = harmonic_num
|
||||
self.dim = self.harmonic_num + 1
|
||||
self.sampling_rate = samp_rate
|
||||
self.voiced_threshold = voiced_threshold
|
||||
self.flag_for_pulse = flag_for_pulse
|
||||
self.upsample_scale = upsample_scale
|
||||
|
||||
def _f02uv(self, f0):
|
||||
# generate uv signal
|
||||
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
||||
return uv
|
||||
|
||||
def _f02sine(self, f0_values):
|
||||
""" f0_values: (batchsize, length, dim)
|
||||
where dim indicates fundamental tone and overtones
|
||||
"""
|
||||
# convert to F0 in rad. The interger part n can be ignored
|
||||
# because 2 * np.pi * n doesn't affect phase
|
||||
rad_values = (f0_values / self.sampling_rate) % 1
|
||||
|
||||
# initial phase noise (no noise for fundamental component)
|
||||
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
||||
device=f0_values.device)
|
||||
rand_ini[:, 0] = 0
|
||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||
|
||||
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
||||
if not self.flag_for_pulse:
|
||||
# # for normal case
|
||||
|
||||
# # To prevent torch.cumsum numerical overflow,
|
||||
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
||||
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
||||
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
||||
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
||||
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
||||
# cumsum_shift = torch.zeros_like(rad_values)
|
||||
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
|
||||
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
||||
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
||||
scale_factor=1/self.upsample_scale,
|
||||
mode="linear").transpose(1, 2)
|
||||
|
||||
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
||||
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
||||
# cumsum_shift = torch.zeros_like(rad_values)
|
||||
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
|
||||
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
||||
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
||||
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
||||
sines = torch.sin(phase)
|
||||
|
||||
else:
|
||||
# If necessary, make sure that the first time step of every
|
||||
# voiced segments is sin(pi) or cos(0)
|
||||
# This is used for pulse-train generation
|
||||
|
||||
# identify the last time step in unvoiced segments
|
||||
uv = self._f02uv(f0_values)
|
||||
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
||||
uv_1[:, -1, :] = 1
|
||||
u_loc = (uv < 1) * (uv_1 > 0)
|
||||
|
||||
# get the instantanouse phase
|
||||
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
||||
# different batch needs to be processed differently
|
||||
for idx in range(f0_values.shape[0]):
|
||||
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
||||
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
||||
# stores the accumulation of i.phase within
|
||||
# each voiced segments
|
||||
tmp_cumsum[idx, :, :] = 0
|
||||
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
||||
|
||||
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
||||
# within the previous voiced segment.
|
||||
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
||||
|
||||
# get the sines
|
||||
sines = torch.cos(i_phase * 2 * np.pi)
|
||||
return sines
|
||||
|
||||
def forward(self, f0):
|
||||
""" sine_tensor, uv = forward(f0)
|
||||
input F0: tensor(batchsize=1, length, dim=1)
|
||||
f0 for unvoiced steps should be 0
|
||||
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||
output uv: tensor(batchsize=1, length, 1)
|
||||
"""
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
||||
device=f0.device)
|
||||
# fundamental component
|
||||
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
||||
|
||||
# generate sine waveforms
|
||||
sine_waves = self._f02sine(fn) * self.sine_amp
|
||||
|
||||
# generate uv signal
|
||||
# uv = torch.ones(f0.shape)
|
||||
# uv = uv * (f0 > self.voiced_threshold)
|
||||
uv = self._f02uv(f0)
|
||||
|
||||
# noise: for unvoiced should be similar to sine_amp
|
||||
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
||||
# . for voiced regions is self.noise_std
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
|
||||
# first: set the unvoiced part to 0 by uv
|
||||
# then: additive noise
|
||||
sine_waves = sine_waves * uv + noise
|
||||
return sine_waves, uv, noise
|
||||
|
||||
|
||||
class SourceModuleHnNSF(torch.nn.Module):
|
||||
""" SourceModule for hn-nsf
|
||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0)
|
||||
sampling_rate: sampling_rate in Hz
|
||||
harmonic_num: number of harmonic above F0 (default: 0)
|
||||
sine_amp: amplitude of sine source signal (default: 0.1)
|
||||
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
||||
note that amplitude of noise in unvoiced is decided
|
||||
by sine_amp
|
||||
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
uv (batchsize, length, 1)
|
||||
"""
|
||||
|
||||
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0):
|
||||
super(SourceModuleHnNSF, self).__init__()
|
||||
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = add_noise_std
|
||||
|
||||
# to produce sine waveforms
|
||||
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
||||
sine_amp, add_noise_std, voiced_threshod)
|
||||
|
||||
# to merge source harmonics into a single excitation
|
||||
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||
self.l_tanh = torch.nn.Tanh()
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
"""
|
||||
# source for harmonic branch
|
||||
with torch.no_grad():
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x)
|
||||
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||
|
||||
# source for noise branch, in the same shape as uv
|
||||
noise = torch.randn_like(uv) * self.sine_amp / 3
|
||||
return sine_merge, noise, uv
|
||||
def padDiff(x):
|
||||
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
||||
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
|
||||
super(Generator, self).__init__()
|
||||
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
self.num_upsamples = len(upsample_rates)
|
||||
resblock = AdaINResBlock1
|
||||
|
||||
self.m_source = SourceModuleHnNSF(
|
||||
sampling_rate=24000,
|
||||
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
|
||||
harmonic_num=8, voiced_threshod=10)
|
||||
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
|
||||
self.noise_convs = nn.ModuleList()
|
||||
self.noise_res = nn.ModuleList()
|
||||
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||
self.ups.append(weight_norm(
|
||||
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
||||
k, u, padding=(k-u)//2)))
|
||||
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = upsample_initial_channel//(2**(i+1))
|
||||
for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
|
||||
self.resblocks.append(resblock(ch, k, d, style_dim))
|
||||
|
||||
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
||||
|
||||
if i + 1 < len(upsample_rates): #
|
||||
stride_f0 = np.prod(upsample_rates[i + 1:])
|
||||
self.noise_convs.append(Conv1d(
|
||||
gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
||||
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
|
||||
else:
|
||||
self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
|
||||
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
|
||||
|
||||
|
||||
self.post_n_fft = gen_istft_n_fft
|
||||
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
|
||||
self.ups.apply(init_weights)
|
||||
self.conv_post.apply(init_weights)
|
||||
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
||||
self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
|
||||
|
||||
|
||||
def forward(self, x, s, f0):
|
||||
with torch.no_grad():
|
||||
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
||||
|
||||
har_source, noi_source, uv = self.m_source(f0)
|
||||
har_source = har_source.transpose(1, 2).squeeze(1)
|
||||
har_spec, har_phase = self.stft.transform(har_source)
|
||||
har = torch.cat([har_spec, har_phase], dim=1)
|
||||
|
||||
for i in range(self.num_upsamples):
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
x_source = self.noise_convs[i](har)
|
||||
x_source = self.noise_res[i](x_source, s)
|
||||
|
||||
x = self.ups[i](x)
|
||||
if i == self.num_upsamples - 1:
|
||||
x = self.reflection_pad(x)
|
||||
|
||||
x = x + x_source
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
||||
else:
|
||||
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
||||
x = xs / self.num_kernels
|
||||
x = F.leaky_relu(x)
|
||||
x = self.conv_post(x)
|
||||
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
||||
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
||||
return self.stft.inverse(spec, phase)
|
||||
|
||||
def fw_phase(self, x, s):
|
||||
for i in range(self.num_upsamples):
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
x = self.ups[i](x)
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
||||
else:
|
||||
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
||||
x = xs / self.num_kernels
|
||||
x = F.leaky_relu(x)
|
||||
x = self.reflection_pad(x)
|
||||
x = self.conv_post(x)
|
||||
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
||||
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
||||
return spec, phase
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
|
||||
|
||||
class AdainResBlk1d(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
||||
upsample='none', dropout_p=0.0):
|
||||
super().__init__()
|
||||
self.actv = actv
|
||||
self.upsample_type = upsample
|
||||
self.upsample = UpSample1d(upsample)
|
||||
self.learned_sc = dim_in != dim_out
|
||||
self._build_weights(dim_in, dim_out, style_dim)
|
||||
self.dropout = nn.Dropout(dropout_p)
|
||||
|
||||
if upsample == 'none':
|
||||
self.pool = nn.Identity()
|
||||
else:
|
||||
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
||||
|
||||
|
||||
def _build_weights(self, dim_in, dim_out, style_dim):
|
||||
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
||||
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
||||
self.norm1 = AdaIN1d(style_dim, dim_in)
|
||||
self.norm2 = AdaIN1d(style_dim, dim_out)
|
||||
if self.learned_sc:
|
||||
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
||||
|
||||
def _shortcut(self, x):
|
||||
x = self.upsample(x)
|
||||
if self.learned_sc:
|
||||
x = self.conv1x1(x)
|
||||
return x
|
||||
|
||||
def _residual(self, x, s):
|
||||
x = self.norm1(x, s)
|
||||
x = self.actv(x)
|
||||
x = self.pool(x)
|
||||
x = self.conv1(self.dropout(x))
|
||||
x = self.norm2(x, s)
|
||||
x = self.actv(x)
|
||||
x = self.conv2(self.dropout(x))
|
||||
return x
|
||||
|
||||
def forward(self, x, s):
|
||||
out = self._residual(x, s)
|
||||
out = (out + self._shortcut(x)) / np.sqrt(2)
|
||||
return out
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, layer_type):
|
||||
super().__init__()
|
||||
self.layer_type = layer_type
|
||||
|
||||
def forward(self, x):
|
||||
if self.layer_type == 'none':
|
||||
return x
|
||||
else:
|
||||
return F.interpolate(x, scale_factor=2, mode='nearest')
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
||||
resblock_kernel_sizes = [3,7,11],
|
||||
upsample_rates = [10, 6],
|
||||
upsample_initial_channel=512,
|
||||
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
|
||||
upsample_kernel_sizes=[20, 12],
|
||||
gen_istft_n_fft=20, gen_istft_hop_size=5):
|
||||
super().__init__()
|
||||
|
||||
self.decode = nn.ModuleList()
|
||||
|
||||
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
||||
|
||||
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
||||
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
||||
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
||||
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
||||
|
||||
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
||||
|
||||
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
||||
|
||||
self.asr_res = nn.Sequential(
|
||||
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
||||
)
|
||||
|
||||
|
||||
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
|
||||
upsample_initial_channel, resblock_dilation_sizes,
|
||||
upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
|
||||
|
||||
def forward(self, asr, F0_curve, N, s):
|
||||
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
||||
N = self.N_conv(N.unsqueeze(1))
|
||||
|
||||
x = torch.cat([asr, F0, N], axis=1)
|
||||
x = self.encode(x, s)
|
||||
|
||||
asr_res = self.asr_res(asr)
|
||||
|
||||
res = True
|
||||
for block in self.decode:
|
||||
if res:
|
||||
x = torch.cat([x, asr_res, F0, N], axis=1)
|
||||
x = block(x, s)
|
||||
if block.upsample_type != "none":
|
||||
res = False
|
||||
|
||||
x = self.generator(x, s, F0_curve)
|
||||
return x
|
|
@ -1,378 +0,0 @@
|
|||
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
||||
import json
|
||||
import os
|
||||
import os.path as osp
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from munch import Munch
|
||||
from torch.nn.utils import spectral_norm, weight_norm
|
||||
|
||||
from .istftnet import AdaIN1d, Decoder
|
||||
from .plbert import load_plbert
|
||||
|
||||
|
||||
class LinearNorm(torch.nn.Module):
|
||||
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
||||
super(LinearNorm, self).__init__()
|
||||
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
||||
|
||||
torch.nn.init.xavier_uniform_(
|
||||
self.linear_layer.weight,
|
||||
gain=torch.nn.init.calculate_gain(w_init_gain))
|
||||
|
||||
def forward(self, x):
|
||||
return self.linear_layer(x)
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(n_symbols, channels)
|
||||
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.cnn = nn.ModuleList()
|
||||
for _ in range(depth):
|
||||
self.cnn.append(nn.Sequential(
|
||||
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
||||
LayerNorm(channels),
|
||||
actv,
|
||||
nn.Dropout(0.2),
|
||||
))
|
||||
# self.cnn = nn.Sequential(*self.cnn)
|
||||
|
||||
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
||||
|
||||
def forward(self, x, input_lengths, m):
|
||||
x = self.embedding(x) # [B, T, emb]
|
||||
x = x.transpose(1, 2) # [B, emb, T]
|
||||
m = m.to(input_lengths.device).unsqueeze(1)
|
||||
x.masked_fill_(m, 0.0)
|
||||
|
||||
for c in self.cnn:
|
||||
x = c(x)
|
||||
x.masked_fill_(m, 0.0)
|
||||
|
||||
x = x.transpose(1, 2) # [B, T, chn]
|
||||
|
||||
input_lengths = input_lengths.cpu().numpy()
|
||||
x = nn.utils.rnn.pack_padded_sequence(
|
||||
x, input_lengths, batch_first=True, enforce_sorted=False)
|
||||
|
||||
self.lstm.flatten_parameters()
|
||||
x, _ = self.lstm(x)
|
||||
x, _ = nn.utils.rnn.pad_packed_sequence(
|
||||
x, batch_first=True)
|
||||
|
||||
x = x.transpose(-1, -2)
|
||||
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
||||
|
||||
x_pad[:, :, :x.shape[-1]] = x
|
||||
x = x_pad.to(x.device)
|
||||
|
||||
x.masked_fill_(m, 0.0)
|
||||
|
||||
return x
|
||||
|
||||
def inference(self, x):
|
||||
x = self.embedding(x)
|
||||
x = x.transpose(1, 2)
|
||||
x = self.cnn(x)
|
||||
x = x.transpose(1, 2)
|
||||
self.lstm.flatten_parameters()
|
||||
x, _ = self.lstm(x)
|
||||
return x
|
||||
|
||||
def length_to_mask(self, lengths):
|
||||
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||
return mask
|
||||
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, layer_type):
|
||||
super().__init__()
|
||||
self.layer_type = layer_type
|
||||
|
||||
def forward(self, x):
|
||||
if self.layer_type == 'none':
|
||||
return x
|
||||
else:
|
||||
return F.interpolate(x, scale_factor=2, mode='nearest')
|
||||
|
||||
class AdainResBlk1d(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
||||
upsample='none', dropout_p=0.0):
|
||||
super().__init__()
|
||||
self.actv = actv
|
||||
self.upsample_type = upsample
|
||||
self.upsample = UpSample1d(upsample)
|
||||
self.learned_sc = dim_in != dim_out
|
||||
self._build_weights(dim_in, dim_out, style_dim)
|
||||
self.dropout = nn.Dropout(dropout_p)
|
||||
|
||||
if upsample == 'none':
|
||||
self.pool = nn.Identity()
|
||||
else:
|
||||
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
||||
|
||||
|
||||
def _build_weights(self, dim_in, dim_out, style_dim):
|
||||
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
||||
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
||||
self.norm1 = AdaIN1d(style_dim, dim_in)
|
||||
self.norm2 = AdaIN1d(style_dim, dim_out)
|
||||
if self.learned_sc:
|
||||
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
||||
|
||||
def _shortcut(self, x):
|
||||
x = self.upsample(x)
|
||||
if self.learned_sc:
|
||||
x = self.conv1x1(x)
|
||||
return x
|
||||
|
||||
def _residual(self, x, s):
|
||||
x = self.norm1(x, s)
|
||||
x = self.actv(x)
|
||||
x = self.pool(x)
|
||||
x = self.conv1(self.dropout(x))
|
||||
x = self.norm2(x, s)
|
||||
x = self.actv(x)
|
||||
x = self.conv2(self.dropout(x))
|
||||
return x
|
||||
|
||||
def forward(self, x, s):
|
||||
out = self._residual(x, s)
|
||||
out = (out + self._shortcut(x)) / np.sqrt(2)
|
||||
return out
|
||||
|
||||
class AdaLayerNorm(nn.Module):
|
||||
def __init__(self, style_dim, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.fc = nn.Linear(style_dim, channels*2)
|
||||
|
||||
def forward(self, x, s):
|
||||
x = x.transpose(-1, -2)
|
||||
x = x.transpose(1, -1)
|
||||
|
||||
h = self.fc(s)
|
||||
h = h.view(h.size(0), h.size(1), 1)
|
||||
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
||||
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
||||
|
||||
|
||||
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
||||
x = (1 + gamma) * x + beta
|
||||
return x.transpose(1, -1).transpose(-1, -2)
|
||||
|
||||
class ProsodyPredictor(nn.Module):
|
||||
|
||||
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
||||
super().__init__()
|
||||
|
||||
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
||||
d_model=d_hid,
|
||||
nlayers=nlayers,
|
||||
dropout=dropout)
|
||||
|
||||
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
||||
self.duration_proj = LinearNorm(d_hid, max_dur)
|
||||
|
||||
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
||||
self.F0 = nn.ModuleList()
|
||||
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
||||
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
||||
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
||||
|
||||
self.N = nn.ModuleList()
|
||||
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
||||
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
||||
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
||||
|
||||
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
||||
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
||||
|
||||
|
||||
def forward(self, texts, style, text_lengths, alignment, m):
|
||||
d = self.text_encoder(texts, style, text_lengths, m)
|
||||
|
||||
batch_size = d.shape[0]
|
||||
text_size = d.shape[1]
|
||||
|
||||
# predict duration
|
||||
input_lengths = text_lengths.cpu().numpy()
|
||||
x = nn.utils.rnn.pack_padded_sequence(
|
||||
d, input_lengths, batch_first=True, enforce_sorted=False)
|
||||
|
||||
m = m.to(text_lengths.device).unsqueeze(1)
|
||||
|
||||
self.lstm.flatten_parameters()
|
||||
x, _ = self.lstm(x)
|
||||
x, _ = nn.utils.rnn.pad_packed_sequence(
|
||||
x, batch_first=True)
|
||||
|
||||
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
|
||||
|
||||
x_pad[:, :x.shape[1], :] = x
|
||||
x = x_pad.to(x.device)
|
||||
|
||||
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
|
||||
|
||||
en = (d.transpose(-1, -2) @ alignment)
|
||||
|
||||
return duration.squeeze(-1), en
|
||||
|
||||
def F0Ntrain(self, x, s):
|
||||
x, _ = self.shared(x.transpose(-1, -2))
|
||||
|
||||
F0 = x.transpose(-1, -2)
|
||||
for block in self.F0:
|
||||
F0 = block(F0, s)
|
||||
F0 = self.F0_proj(F0)
|
||||
|
||||
N = x.transpose(-1, -2)
|
||||
for block in self.N:
|
||||
N = block(N, s)
|
||||
N = self.N_proj(N)
|
||||
|
||||
return F0.squeeze(1), N.squeeze(1)
|
||||
|
||||
def length_to_mask(self, lengths):
|
||||
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||
return mask
|
||||
|
||||
class DurationEncoder(nn.Module):
|
||||
|
||||
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
||||
super().__init__()
|
||||
self.lstms = nn.ModuleList()
|
||||
for _ in range(nlayers):
|
||||
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
||||
d_model // 2,
|
||||
num_layers=1,
|
||||
batch_first=True,
|
||||
bidirectional=True,
|
||||
dropout=dropout))
|
||||
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
||||
|
||||
|
||||
self.dropout = dropout
|
||||
self.d_model = d_model
|
||||
self.sty_dim = sty_dim
|
||||
|
||||
def forward(self, x, style, text_lengths, m):
|
||||
masks = m.to(text_lengths.device)
|
||||
|
||||
x = x.permute(2, 0, 1)
|
||||
s = style.expand(x.shape[0], x.shape[1], -1)
|
||||
x = torch.cat([x, s], axis=-1)
|
||||
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
||||
|
||||
x = x.transpose(0, 1)
|
||||
input_lengths = text_lengths.cpu().numpy()
|
||||
x = x.transpose(-1, -2)
|
||||
|
||||
for block in self.lstms:
|
||||
if isinstance(block, AdaLayerNorm):
|
||||
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
||||
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
||||
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
||||
else:
|
||||
x = x.transpose(-1, -2)
|
||||
x = nn.utils.rnn.pack_padded_sequence(
|
||||
x, input_lengths, batch_first=True, enforce_sorted=False)
|
||||
block.flatten_parameters()
|
||||
x, _ = block(x)
|
||||
x, _ = nn.utils.rnn.pad_packed_sequence(
|
||||
x, batch_first=True)
|
||||
x = F.dropout(x, p=self.dropout, training=self.training)
|
||||
x = x.transpose(-1, -2)
|
||||
|
||||
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
||||
|
||||
x_pad[:, :, :x.shape[-1]] = x
|
||||
x = x_pad.to(x.device)
|
||||
|
||||
return x.transpose(-1, -2)
|
||||
|
||||
def inference(self, x, style):
|
||||
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
|
||||
style = style.expand(x.shape[0], x.shape[1], -1)
|
||||
x = torch.cat([x, style], axis=-1)
|
||||
src = self.pos_encoder(x)
|
||||
output = self.transformer_encoder(src).transpose(0, 1)
|
||||
return output
|
||||
|
||||
def length_to_mask(self, lengths):
|
||||
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||
return mask
|
||||
|
||||
# https://github.com/yl4579/StyleTTS2/blob/main/utils.py
|
||||
def recursive_munch(d):
|
||||
if isinstance(d, dict):
|
||||
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
||||
elif isinstance(d, list):
|
||||
return [recursive_munch(v) for v in d]
|
||||
else:
|
||||
return d
|
||||
|
||||
async def build_model(path, device):
|
||||
from ..core.paths import load_json, load_model_weights
|
||||
|
||||
config = Path(__file__).parent / 'config.json'
|
||||
assert config.exists(), f'Config path incorrect: config.json not found at {config}'
|
||||
|
||||
args = recursive_munch(await load_json(config))
|
||||
assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
|
||||
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
||||
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
||||
upsample_rates = args.decoder.upsample_rates,
|
||||
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
||||
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
||||
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
|
||||
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
|
||||
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
||||
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
||||
bert = load_plbert()
|
||||
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
|
||||
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
|
||||
for child in parent.children():
|
||||
if isinstance(child, nn.RNNBase):
|
||||
child.flatten_parameters()
|
||||
model = Munch(
|
||||
bert=bert.to(device).eval(),
|
||||
bert_encoder=bert_encoder.to(device).eval(),
|
||||
predictor=predictor.to(device).eval(),
|
||||
decoder=decoder.to(device).eval(),
|
||||
text_encoder=text_encoder.to(device).eval(),
|
||||
)
|
||||
weights = await load_model_weights(path, device=device)
|
||||
for key, state_dict in weights['net'].items():
|
||||
assert key in model, key
|
||||
try:
|
||||
model[key].load_state_dict(state_dict)
|
||||
except:
|
||||
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
||||
model[key].load_state_dict(state_dict, strict=False)
|
||||
return model
|
|
@ -1,16 +0,0 @@
|
|||
# https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py
|
||||
from transformers import AlbertConfig, AlbertModel
|
||||
|
||||
|
||||
class CustomAlbert(AlbertModel):
|
||||
def forward(self, *args, **kwargs):
|
||||
# Call the original forward method
|
||||
outputs = super().forward(*args, **kwargs)
|
||||
# Only return the last_hidden_state
|
||||
return outputs.last_hidden_state
|
||||
|
||||
def load_plbert():
|
||||
plbert_config = {'vocab_size': 178, 'hidden_size': 768, 'num_attention_heads': 12, 'intermediate_size': 2048, 'max_position_embeddings': 512, 'num_hidden_layers': 12, 'dropout': 0.1}
|
||||
albert_base_configuration = AlbertConfig(**plbert_config)
|
||||
bert = CustomAlbert(albert_base_configuration)
|
||||
return bert
|
|
@ -10,14 +10,16 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
|||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install uv for speed and glory
|
||||
COPY --from=ghcr.io/astral-sh/uv:latest /uv /uvx /bin/
|
||||
# Install UV using the installer script
|
||||
RUN curl -LsSf https://astral.sh/uv/install.sh | sh && \
|
||||
mv /root/.local/bin/uv /usr/local/bin/ && \
|
||||
mv /root/.local/bin/uvx /usr/local/bin/
|
||||
|
||||
# Create non-root user
|
||||
RUN useradd -m -u 1000 appuser
|
||||
|
||||
# Create directories and set ownership
|
||||
RUN mkdir -p /app/api/src/voices && \
|
||||
RUN mkdir -p /app/api/src/voices/v1_0 && \
|
||||
chown -R appuser:appuser /app
|
||||
|
||||
USER appuser
|
||||
|
@ -41,15 +43,18 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
|||
uv sync --extra cpu
|
||||
|
||||
# Set environment variables
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
ENV PYTHONPATH=/app
|
||||
ENV PATH="/app/.venv/bin:$PATH"
|
||||
ENV UV_LINK_MODE=copy
|
||||
ENV PYTHONUNBUFFERED=1 \
|
||||
PYTHONPATH=/app:/app/api \
|
||||
PATH="/app/.venv/bin:$PATH" \
|
||||
UV_LINK_MODE=copy
|
||||
|
||||
ENV USE_GPU=false
|
||||
ENV USE_ONNX=true
|
||||
ENV DOWNLOAD_ONNX=true
|
||||
ENV DOWNLOAD_PTH=false
|
||||
# Core settings that differ from config.py defaults
|
||||
ENV USE_GPU=false \
|
||||
USE_ONNX=true
|
||||
|
||||
# Model download flags (container-specific)
|
||||
ENV DOWNLOAD_ONNX=false \
|
||||
DOWNLOAD_PTH=false
|
||||
|
||||
# Download models based on environment variables
|
||||
RUN if [ "$DOWNLOAD_ONNX" = "true" ]; then \
|
||||
|
|
|
@ -11,17 +11,16 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
|||
libsndfile1 \
|
||||
curl \
|
||||
ffmpeg \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install uv
|
||||
COPY --from=ghcr.io/astral-sh/uv:latest /uv /uvx /bin/
|
||||
# Install UV using the installer script
|
||||
RUN curl -LsSf https://astral.sh/uv/install.sh | sh && \
|
||||
mv /root/.local/bin/uv /usr/local/bin/ && \
|
||||
mv /root/.local/bin/uvx /usr/local/bin/
|
||||
|
||||
# Create non-root user
|
||||
RUN useradd -m -u 1000 appuser
|
||||
|
||||
# Create directories and set ownership
|
||||
RUN mkdir -p /app/api/src/voices && \
|
||||
# Create non-root user and prepare /app in one layer
|
||||
RUN useradd -m -u 1000 appuser && \
|
||||
mkdir -p /app/api/src/voices/v1_0 && \
|
||||
chown -R appuser:appuser /app
|
||||
|
||||
USER appuser
|
||||
|
@ -30,34 +29,31 @@ WORKDIR /app
|
|||
# Copy dependency files
|
||||
COPY --chown=appuser:appuser pyproject.toml ./pyproject.toml
|
||||
|
||||
# Install dependencies with GPU extras
|
||||
# Install dependencies with GPU extras (using cache mounts)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv venv && \
|
||||
uv sync --extra gpu
|
||||
|
||||
# Copy project files including models
|
||||
# Copy project files including models and sync again
|
||||
COPY --chown=appuser:appuser api ./api
|
||||
COPY --chown=appuser:appuser web ./web
|
||||
COPY --chown=appuser:appuser docker/scripts/download_model.* ./
|
||||
|
||||
# Install project with GPU extras
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv sync --extra gpu
|
||||
|
||||
# Copy scripts and make them executable in a single RUN step
|
||||
COPY --chown=appuser:appuser docker/scripts/ /app/docker/scripts/
|
||||
RUN chmod +x docker/scripts/entrypoint.sh
|
||||
RUN chmod +x docker/scripts/download_model.sh
|
||||
RUN chmod +x docker/scripts/entrypoint.sh docker/scripts/download_model.sh
|
||||
|
||||
# Set environment variables
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
ENV PYTHONPATH=/app
|
||||
ENV PATH="/app/.venv/bin:$PATH"
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
ENV USE_GPU=true
|
||||
ENV USE_ONNX=false
|
||||
ENV DOWNLOAD_PTH=true
|
||||
ENV DOWNLOAD_ONNX=false
|
||||
# Set all environment variables in one go
|
||||
ENV PYTHONUNBUFFERED=1 \
|
||||
PYTHONPATH=/app:/app/api \
|
||||
PATH="/app/.venv/bin:$PATH" \
|
||||
UV_LINK_MODE=copy \
|
||||
USE_GPU=true \
|
||||
USE_ONNX=false \
|
||||
DOWNLOAD_PTH=true \
|
||||
DOWNLOAD_ONNX=false
|
||||
|
||||
# Run FastAPI server
|
||||
CMD ["/app/docker/scripts/entrypoint.sh"]
|
||||
|
|
|
@ -28,7 +28,7 @@ dependencies = [
|
|||
"munch==4.0.0",
|
||||
"tiktoken==0.8.0",
|
||||
"loguru==0.7.3",
|
||||
"transformers==4.47.1",
|
||||
# "transformers==4.47.1",
|
||||
"openai>=1.59.6",
|
||||
# "ebooklib>=0.18",
|
||||
# "html2text>=2024.2.26",
|
||||
|
|
|
@ -7,8 +7,8 @@ PROJECT_ROOT=$(pwd)
|
|||
export USE_GPU=false
|
||||
export USE_ONNX=false
|
||||
export PYTHONPATH=$PROJECT_ROOT:$PROJECT_ROOT/api
|
||||
export MODEL_DIR=$PROJECT_ROOT/api/src/models
|
||||
export VOICES_DIR=$PROJECT_ROOT/api/src/voices
|
||||
export MODEL_DIR=src/models
|
||||
export VOICES_DIR=src/voices/v1_0
|
||||
export WEB_PLAYER_PATH=$PROJECT_ROOT/web
|
||||
|
||||
# Run FastAPI with CPU extras using uv run
|
||||
|
|
|
@ -7,8 +7,8 @@ PROJECT_ROOT=$(pwd)
|
|||
export USE_GPU=true
|
||||
export USE_ONNX=false
|
||||
export PYTHONPATH=$PROJECT_ROOT:$PROJECT_ROOT/api
|
||||
export MODEL_DIR=$PROJECT_ROOT/api/src/models
|
||||
export VOICES_DIR=$PROJECT_ROOT/api/src/voices
|
||||
export MODEL_DIR=src/models
|
||||
export VOICES_DIR=src/voices/v1_0
|
||||
export WEB_PLAYER_PATH=$PROJECT_ROOT/web
|
||||
|
||||
# Run FastAPI with GPU extras using uv run
|
||||
|
|
Loading…
Add table
Reference in a new issue