mirror of
https://github.com/remsky/Kokoro-FastAPI.git
synced 2025-08-05 16:48:53 +00:00
Enhance TTS text processing: Implement pause tag handling in smart_split, allowing for better audio chunk generation with pauses. Update related tests to validate new functionality and ensure compatibility with existing features.
This commit is contained in:
parent
ab8ab7d749
commit
84d2a4d806
3 changed files with 282 additions and 167 deletions
|
@ -2,7 +2,7 @@
|
|||
|
||||
import re
|
||||
import time
|
||||
from typing import AsyncGenerator, Dict, List, Tuple
|
||||
from typing import AsyncGenerator, Dict, List, Tuple, Optional
|
||||
|
||||
from loguru import logger
|
||||
|
||||
|
@ -13,7 +13,11 @@ from .phonemizer import phonemize
|
|||
from .vocabulary import tokenize
|
||||
|
||||
# Pre-compiled regex patterns for performance
|
||||
CUSTOM_PHONEMES = re.compile(r"(\[([^\]]|\n)*?\])(\(\/([^\/)]|\n)*?\/\))")
|
||||
# Updated regex to be more strict and avoid matching isolated brackets
|
||||
# Only matches complete patterns like [word](/ipa/) and prevents catastrophic backtracking
|
||||
CUSTOM_PHONEMES = re.compile(r"(\[[^\[\]]*?\])(\(\/[^\/\(\)]*?\/\))")
|
||||
# Pattern to find pause tags like [pause:0.5s]
|
||||
PAUSE_TAG_PATTERN = re.compile(r"\[pause:(\d+(?:\.\d+)?)s\]", re.IGNORECASE)
|
||||
|
||||
|
||||
def process_text_chunk(
|
||||
|
@ -142,148 +146,189 @@ async def smart_split(
|
|||
max_tokens: int = settings.absolute_max_tokens,
|
||||
lang_code: str = "a",
|
||||
normalization_options: NormalizationOptions = NormalizationOptions(),
|
||||
) -> AsyncGenerator[Tuple[str, List[int]], None]:
|
||||
"""Build optimal chunks targeting 300-400 tokens, never exceeding max_tokens."""
|
||||
) -> AsyncGenerator[Tuple[str, List[int], Optional[float]], None]:
|
||||
"""Build optimal chunks targeting 300-400 tokens, never exceeding max_tokens.
|
||||
|
||||
Yields:
|
||||
Tuple of (text_chunk, tokens, pause_duration_s).
|
||||
If pause_duration_s is not None, it's a pause chunk with empty text/tokens.
|
||||
Otherwise, it's a text chunk containing the original text.
|
||||
"""
|
||||
start_time = time.time()
|
||||
chunk_count = 0
|
||||
logger.info(f"Starting smart split for {len(text)} chars")
|
||||
|
||||
custom_phoneme_list = {}
|
||||
# --- Step 1: Split by Pause Tags FIRST ---
|
||||
# This operates on the raw input text
|
||||
parts = PAUSE_TAG_PATTERN.split(text)
|
||||
logger.debug(f"Split raw text into {len(parts)} parts by pause tags.")
|
||||
|
||||
# Normalize text
|
||||
if settings.advanced_text_normalization and normalization_options.normalize:
|
||||
if lang_code in ["a", "b", "en-us", "en-gb"]:
|
||||
text = CUSTOM_PHONEMES.sub(
|
||||
lambda s: handle_custom_phonemes(s, custom_phoneme_list), text
|
||||
)
|
||||
text = normalize_text(text, normalization_options)
|
||||
else:
|
||||
logger.info(
|
||||
"Skipping text normalization as it is only supported for english"
|
||||
)
|
||||
part_idx = 0
|
||||
while part_idx < len(parts):
|
||||
text_part_raw = parts[part_idx] # This part is raw text
|
||||
part_idx += 1
|
||||
|
||||
# Process all sentences
|
||||
sentences = get_sentence_info(text, custom_phoneme_list, lang_code=lang_code)
|
||||
# --- Process Text Part ---
|
||||
if text_part_raw and text_part_raw.strip(): # Only process if the part is not empty string
|
||||
# Strip leading and trailing spaces to prevent pause tag splitting artifacts
|
||||
text_part_raw = text_part_raw.strip()
|
||||
|
||||
current_chunk = []
|
||||
current_tokens = []
|
||||
current_count = 0
|
||||
# Apply the original smart_split logic to this text part
|
||||
custom_phoneme_list = {}
|
||||
|
||||
for sentence, tokens, count in sentences:
|
||||
# Handle sentences that exceed max tokens
|
||||
if count > max_tokens:
|
||||
# Yield current chunk if any
|
||||
if current_chunk:
|
||||
chunk_text = " ".join(current_chunk).strip() # Strip after joining
|
||||
chunk_count += 1
|
||||
logger.debug(
|
||||
f"Yielding chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(text) > 50 else ''}' ({current_count} tokens)"
|
||||
)
|
||||
yield chunk_text, current_tokens
|
||||
current_chunk = []
|
||||
current_tokens = []
|
||||
current_count = 0
|
||||
|
||||
# Split long sentence on commas
|
||||
clauses = re.split(r"([,])", sentence)
|
||||
clause_chunk = []
|
||||
clause_tokens = []
|
||||
clause_count = 0
|
||||
|
||||
for j in range(0, len(clauses), 2):
|
||||
clause = clauses[j].strip()
|
||||
comma = clauses[j + 1] if j + 1 < len(clauses) else ""
|
||||
|
||||
if not clause:
|
||||
continue
|
||||
|
||||
full_clause = clause + comma
|
||||
|
||||
tokens = process_text_chunk(full_clause)
|
||||
count = len(tokens)
|
||||
|
||||
# If adding clause keeps us under max and not optimal yet
|
||||
if (
|
||||
clause_count + count <= max_tokens
|
||||
and clause_count + count <= settings.target_max_tokens
|
||||
):
|
||||
clause_chunk.append(full_clause)
|
||||
clause_tokens.extend(tokens)
|
||||
clause_count += count
|
||||
# Normalize text (original logic)
|
||||
processed_text = text_part_raw
|
||||
if settings.advanced_text_normalization and normalization_options.normalize:
|
||||
if lang_code in ["a", "b", "en-us", "en-gb"]:
|
||||
processed_text = CUSTOM_PHONEMES.sub(
|
||||
lambda s: handle_custom_phonemes(s, custom_phoneme_list), processed_text
|
||||
)
|
||||
processed_text = normalize_text(processed_text, normalization_options)
|
||||
else:
|
||||
# Yield clause chunk if we have one
|
||||
if clause_chunk:
|
||||
chunk_text = " ".join(clause_chunk).strip() # Strip after joining
|
||||
logger.info(
|
||||
"Skipping text normalization as it is only supported for english"
|
||||
)
|
||||
|
||||
# Process all sentences (original logic)
|
||||
sentences = get_sentence_info(processed_text, custom_phoneme_list, lang_code=lang_code)
|
||||
|
||||
current_chunk = []
|
||||
current_tokens = []
|
||||
current_count = 0
|
||||
|
||||
for sentence, tokens, count in sentences:
|
||||
# Handle sentences that exceed max tokens (original logic)
|
||||
if count > max_tokens:
|
||||
# Yield current chunk if any
|
||||
if current_chunk:
|
||||
chunk_text = " ".join(current_chunk).strip()
|
||||
chunk_count += 1
|
||||
logger.debug(
|
||||
f"Yielding clause chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(text) > 50 else ''}' ({clause_count} tokens)"
|
||||
f"Yielding chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(processed_text) > 50 else ''}' ({current_count} tokens)"
|
||||
)
|
||||
yield chunk_text, clause_tokens
|
||||
clause_chunk = [full_clause]
|
||||
clause_tokens = tokens
|
||||
clause_count = count
|
||||
yield chunk_text, current_tokens, None
|
||||
current_chunk = []
|
||||
current_tokens = []
|
||||
current_count = 0
|
||||
|
||||
# Don't forget last clause chunk
|
||||
if clause_chunk:
|
||||
chunk_text = " ".join(clause_chunk).strip() # Strip after joining
|
||||
chunk_count += 1
|
||||
logger.debug(
|
||||
f"Yielding final clause chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(text) > 50 else ''}' ({clause_count} tokens)"
|
||||
)
|
||||
yield chunk_text, clause_tokens
|
||||
# Split long sentence on commas (original logic)
|
||||
clauses = re.split(r"([,])", sentence)
|
||||
clause_chunk = []
|
||||
clause_tokens = []
|
||||
clause_count = 0
|
||||
|
||||
# Regular sentence handling
|
||||
elif (
|
||||
current_count >= settings.target_min_tokens
|
||||
and current_count + count > settings.target_max_tokens
|
||||
):
|
||||
# If we have a good sized chunk and adding next sentence exceeds target,
|
||||
# yield current chunk and start new one
|
||||
chunk_text = " ".join(current_chunk).strip() # Strip after joining
|
||||
chunk_count += 1
|
||||
logger.info(
|
||||
f"Yielding chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(text) > 50 else ''}' ({current_count} tokens)"
|
||||
)
|
||||
yield chunk_text, current_tokens
|
||||
current_chunk = [sentence]
|
||||
current_tokens = tokens
|
||||
current_count = count
|
||||
elif current_count + count <= settings.target_max_tokens:
|
||||
# Keep building chunk while under target max
|
||||
current_chunk.append(sentence)
|
||||
current_tokens.extend(tokens)
|
||||
current_count += count
|
||||
elif (
|
||||
current_count + count <= max_tokens
|
||||
and current_count < settings.target_min_tokens
|
||||
):
|
||||
# Only exceed target max if we haven't reached minimum size yet
|
||||
current_chunk.append(sentence)
|
||||
current_tokens.extend(tokens)
|
||||
current_count += count
|
||||
else:
|
||||
# Yield current chunk and start new one
|
||||
for j in range(0, len(clauses), 2):
|
||||
clause = clauses[j].strip()
|
||||
comma = clauses[j + 1] if j + 1 < len(clauses) else ""
|
||||
|
||||
if not clause:
|
||||
continue
|
||||
|
||||
full_clause = clause + comma
|
||||
|
||||
tokens = process_text_chunk(full_clause)
|
||||
count = len(tokens)
|
||||
|
||||
# If adding clause keeps us under max and not optimal yet
|
||||
if (
|
||||
clause_count + count <= max_tokens
|
||||
and clause_count + count <= settings.target_max_tokens
|
||||
):
|
||||
clause_chunk.append(full_clause)
|
||||
clause_tokens.extend(tokens)
|
||||
clause_count += count
|
||||
else:
|
||||
# Yield clause chunk if we have one
|
||||
if clause_chunk:
|
||||
chunk_text = " ".join(clause_chunk).strip()
|
||||
chunk_count += 1
|
||||
logger.debug(
|
||||
f"Yielding clause chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(processed_text) > 50 else ''}' ({clause_count} tokens)"
|
||||
)
|
||||
yield chunk_text, clause_tokens, None
|
||||
clause_chunk = [full_clause]
|
||||
clause_tokens = tokens
|
||||
clause_count = count
|
||||
|
||||
# Don't forget last clause chunk
|
||||
if clause_chunk:
|
||||
chunk_text = " ".join(clause_chunk).strip()
|
||||
chunk_count += 1
|
||||
logger.debug(
|
||||
f"Yielding final clause chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(processed_text) > 50 else ''}' ({clause_count} tokens)"
|
||||
)
|
||||
yield chunk_text, clause_tokens, None
|
||||
|
||||
# Regular sentence handling (original logic)
|
||||
elif (
|
||||
current_count >= settings.target_min_tokens
|
||||
and current_count + count > settings.target_max_tokens
|
||||
):
|
||||
# If we have a good sized chunk and adding next sentence exceeds target,
|
||||
# yield current chunk and start new one
|
||||
chunk_text = " ".join(current_chunk).strip()
|
||||
chunk_count += 1
|
||||
logger.info(
|
||||
f"Yielding chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(processed_text) > 50 else ''}' ({current_count} tokens)"
|
||||
)
|
||||
yield chunk_text, current_tokens, None
|
||||
current_chunk = [sentence]
|
||||
current_tokens = tokens
|
||||
current_count = count
|
||||
elif current_count + count <= settings.target_max_tokens:
|
||||
# Keep building chunk while under target max
|
||||
current_chunk.append(sentence)
|
||||
current_tokens.extend(tokens)
|
||||
current_count += count
|
||||
elif (
|
||||
current_count + count <= max_tokens
|
||||
and current_count < settings.target_min_tokens
|
||||
):
|
||||
# Only exceed target max if we haven't reached minimum size yet
|
||||
current_chunk.append(sentence)
|
||||
current_tokens.extend(tokens)
|
||||
current_count += count
|
||||
else:
|
||||
# Yield current chunk and start new one
|
||||
if current_chunk:
|
||||
chunk_text = " ".join(current_chunk).strip()
|
||||
chunk_count += 1
|
||||
logger.info(
|
||||
f"Yielding chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(processed_text) > 50 else ''}' ({current_count} tokens)"
|
||||
)
|
||||
yield chunk_text, current_tokens, None
|
||||
current_chunk = [sentence]
|
||||
current_tokens = tokens
|
||||
current_count = count
|
||||
|
||||
# Don't forget the last chunk for this text part
|
||||
if current_chunk:
|
||||
chunk_text = " ".join(current_chunk).strip() # Strip after joining
|
||||
chunk_text = " ".join(current_chunk).strip()
|
||||
chunk_count += 1
|
||||
logger.info(
|
||||
f"Yielding chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(text) > 50 else ''}' ({current_count} tokens)"
|
||||
f"Yielding final chunk {chunk_count} for part: '{chunk_text[:50]}{'...' if len(processed_text) > 50 else ''}' ({current_count} tokens)"
|
||||
)
|
||||
yield chunk_text, current_tokens
|
||||
current_chunk = [sentence]
|
||||
current_tokens = tokens
|
||||
current_count = count
|
||||
yield chunk_text, current_tokens, None
|
||||
|
||||
# Don't forget the last chunk
|
||||
if current_chunk:
|
||||
chunk_text = " ".join(current_chunk).strip() # Strip after joining
|
||||
chunk_count += 1
|
||||
logger.info(
|
||||
f"Yielding final chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(text) > 50 else ''}' ({current_count} tokens)"
|
||||
)
|
||||
yield chunk_text, current_tokens
|
||||
# --- Handle Pause Part ---
|
||||
# Check if the next part is a pause duration string
|
||||
if part_idx < len(parts):
|
||||
duration_str = parts[part_idx]
|
||||
# Check if it looks like a valid number string captured by the regex group
|
||||
if re.fullmatch(r"\d+(?:\.\d+)?", duration_str):
|
||||
part_idx += 1 # Consume the duration string as it's been processed
|
||||
try:
|
||||
duration = float(duration_str)
|
||||
if duration > 0:
|
||||
chunk_count += 1
|
||||
logger.info(f"Yielding pause chunk {chunk_count}: {duration}s")
|
||||
yield "", [], duration # Yield pause chunk
|
||||
except (ValueError, TypeError):
|
||||
# This case should be rare if re.fullmatch passed, but handle anyway
|
||||
logger.warning(f"Could not parse valid-looking pause duration: {duration_str}")
|
||||
|
||||
# --- End of parts loop ---
|
||||
total_time = time.time() - start_time
|
||||
logger.info(
|
||||
f"Split completed in {total_time * 1000:.2f}ms, produced {chunk_count} chunks"
|
||||
f"Split completed in {total_time * 1000:.2f}ms, produced {chunk_count} chunks (including pauses)"
|
||||
)
|
||||
|
|
|
@ -280,48 +280,88 @@ class TTSService:
|
|||
f"Using lang_code '{pipeline_lang_code}' for voice '{voice_name}' in audio stream"
|
||||
)
|
||||
|
||||
# Process text in chunks with smart splitting
|
||||
async for chunk_text, tokens in smart_split(
|
||||
# Process text in chunks with smart splitting, handling pause tags
|
||||
async for chunk_text, tokens, pause_duration_s in smart_split(
|
||||
text,
|
||||
lang_code=pipeline_lang_code,
|
||||
normalization_options=normalization_options,
|
||||
):
|
||||
try:
|
||||
# Process audio for chunk
|
||||
async for chunk_data in self._process_chunk(
|
||||
chunk_text, # Pass text for Kokoro V1
|
||||
tokens, # Pass tokens for legacy backends
|
||||
voice_name, # Pass voice name
|
||||
voice_path, # Pass voice path
|
||||
speed,
|
||||
writer,
|
||||
output_format,
|
||||
is_first=(chunk_index == 0),
|
||||
is_last=False, # We'll update the last chunk later
|
||||
normalizer=stream_normalizer,
|
||||
lang_code=pipeline_lang_code, # Pass lang_code
|
||||
return_timestamps=return_timestamps,
|
||||
):
|
||||
if chunk_data.word_timestamps is not None:
|
||||
for timestamp in chunk_data.word_timestamps:
|
||||
timestamp.start_time += current_offset
|
||||
timestamp.end_time += current_offset
|
||||
if pause_duration_s is not None and pause_duration_s > 0:
|
||||
# --- Handle Pause Chunk ---
|
||||
try:
|
||||
logger.debug(f"Generating {pause_duration_s}s silence chunk")
|
||||
silence_samples = int(pause_duration_s * 24000) # 24kHz sample rate
|
||||
# Create proper silence as int16 zeros to avoid normalization artifacts
|
||||
silence_audio = np.zeros(silence_samples, dtype=np.int16)
|
||||
pause_chunk = AudioChunk(audio=silence_audio, word_timestamps=[]) # Empty timestamps for silence
|
||||
|
||||
current_offset += len(chunk_data.audio) / 24000
|
||||
|
||||
if chunk_data.output is not None:
|
||||
yield chunk_data
|
||||
|
||||
else:
|
||||
logger.warning(
|
||||
f"No audio generated for chunk: '{chunk_text[:100]}...'"
|
||||
# Format and yield the silence chunk
|
||||
if output_format:
|
||||
formatted_pause_chunk = await AudioService.convert_audio(
|
||||
pause_chunk, output_format, writer, speed=speed, chunk_text="",
|
||||
is_last_chunk=False, trim_audio=False, normalizer=stream_normalizer,
|
||||
)
|
||||
chunk_index += 1
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to process audio for chunk: '{chunk_text[:100]}...'. Error: {str(e)}"
|
||||
)
|
||||
continue
|
||||
if formatted_pause_chunk.output:
|
||||
yield formatted_pause_chunk
|
||||
else: # Raw audio mode
|
||||
# For raw audio mode, silence is already in the correct format (int16)
|
||||
# Skip normalization to avoid any potential artifacts
|
||||
if len(pause_chunk.audio) > 0:
|
||||
yield pause_chunk
|
||||
|
||||
# Update offset based on silence duration
|
||||
current_offset += pause_duration_s
|
||||
chunk_index += 1 # Count pause as a yielded chunk
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process pause chunk: {str(e)}")
|
||||
continue
|
||||
|
||||
elif tokens or chunk_text.strip(): # Process if there are tokens OR non-whitespace text
|
||||
# --- Handle Text Chunk ---
|
||||
try:
|
||||
# Process audio for chunk
|
||||
async for chunk_data in self._process_chunk(
|
||||
chunk_text, # Pass text for Kokoro V1
|
||||
tokens, # Pass tokens for legacy backends
|
||||
voice_name, # Pass voice name
|
||||
voice_path, # Pass voice path
|
||||
speed,
|
||||
writer,
|
||||
output_format,
|
||||
is_first=(chunk_index == 0),
|
||||
is_last=False, # We'll update the last chunk later
|
||||
normalizer=stream_normalizer,
|
||||
lang_code=pipeline_lang_code, # Pass lang_code
|
||||
return_timestamps=return_timestamps,
|
||||
):
|
||||
if chunk_data.word_timestamps is not None:
|
||||
for timestamp in chunk_data.word_timestamps:
|
||||
timestamp.start_time += current_offset
|
||||
timestamp.end_time += current_offset
|
||||
|
||||
# Update offset based on the actual duration of the generated audio chunk
|
||||
chunk_duration = 0
|
||||
if chunk_data.audio is not None and len(chunk_data.audio) > 0:
|
||||
chunk_duration = len(chunk_data.audio) / 24000
|
||||
current_offset += chunk_duration
|
||||
|
||||
# Yield the processed chunk (either formatted or raw)
|
||||
if chunk_data.output is not None:
|
||||
yield chunk_data
|
||||
elif chunk_data.audio is not None and len(chunk_data.audio) > 0:
|
||||
yield chunk_data
|
||||
else:
|
||||
logger.warning(
|
||||
f"No audio generated for chunk: '{chunk_text[:100]}...'"
|
||||
)
|
||||
|
||||
chunk_index += 1 # Increment chunk index after processing text
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to process audio for chunk: '{chunk_text[:100]}...'. Error: {str(e)}"
|
||||
)
|
||||
continue
|
||||
|
||||
# Only finalize if we successfully processed at least one chunk
|
||||
if chunk_index > 0:
|
||||
|
|
|
@ -67,7 +67,7 @@ async def test_smart_split_short_text():
|
|||
"""Test smart splitting with text under max tokens."""
|
||||
text = "This is a short test sentence."
|
||||
chunks = []
|
||||
async for chunk_text, chunk_tokens in smart_split(text):
|
||||
async for chunk_text, chunk_tokens, _ in smart_split(text):
|
||||
chunks.append((chunk_text, chunk_tokens))
|
||||
|
||||
assert len(chunks) == 1
|
||||
|
@ -82,7 +82,7 @@ async def test_smart_split_long_text():
|
|||
text = ". ".join(["This is test sentence number " + str(i) for i in range(20)])
|
||||
|
||||
chunks = []
|
||||
async for chunk_text, chunk_tokens in smart_split(text):
|
||||
async for chunk_text, chunk_tokens, _ in smart_split(text):
|
||||
chunks.append((chunk_text, chunk_tokens))
|
||||
|
||||
assert len(chunks) > 1
|
||||
|
@ -98,12 +98,13 @@ async def test_smart_split_with_punctuation():
|
|||
text = "First sentence! Second sentence? Third sentence; Fourth sentence: Fifth sentence."
|
||||
|
||||
chunks = []
|
||||
async for chunk_text, chunk_tokens in smart_split(text):
|
||||
async for chunk_text, chunk_tokens, _ in smart_split(text):
|
||||
chunks.append(chunk_text)
|
||||
|
||||
# Verify punctuation is preserved
|
||||
assert all(any(p in chunk for p in "!?;:.") for chunk in chunks)
|
||||
|
||||
|
||||
def test_process_text_chunk_chinese_phonemes():
|
||||
"""Test processing with Chinese pinyin phonemes."""
|
||||
pinyin = "nǐ hǎo lì" # Example pinyin sequence with tones
|
||||
|
@ -125,12 +126,13 @@ def test_get_sentence_info_chinese():
|
|||
assert count == len(tokens)
|
||||
assert count > 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_split_chinese_short():
|
||||
"""Test Chinese smart splitting with short text."""
|
||||
text = "这是一句话。"
|
||||
chunks = []
|
||||
async for chunk_text, chunk_tokens in smart_split(text, lang_code="z"):
|
||||
async for chunk_text, chunk_tokens, _ in smart_split(text, lang_code="z"):
|
||||
chunks.append((chunk_text, chunk_tokens))
|
||||
|
||||
assert len(chunks) == 1
|
||||
|
@ -144,7 +146,7 @@ async def test_smart_split_chinese_long():
|
|||
text = "。".join([f"测试句子 {i}" for i in range(20)])
|
||||
|
||||
chunks = []
|
||||
async for chunk_text, chunk_tokens in smart_split(text, lang_code="z"):
|
||||
async for chunk_text, chunk_tokens, _ in smart_split(text, lang_code="z"):
|
||||
chunks.append((chunk_text, chunk_tokens))
|
||||
|
||||
assert len(chunks) > 1
|
||||
|
@ -160,8 +162,36 @@ async def test_smart_split_chinese_punctuation():
|
|||
text = "第一句!第二问?第三句;第四句:第五句。"
|
||||
|
||||
chunks = []
|
||||
async for chunk_text, _ in smart_split(text, lang_code="z"):
|
||||
async for chunk_text, _, _ in smart_split(text, lang_code="z"):
|
||||
chunks.append(chunk_text)
|
||||
|
||||
# Verify Chinese punctuation is preserved
|
||||
assert all(any(p in chunk for p in "!?;:。") for chunk in chunks)
|
||||
assert all(any(p in chunk for p in "!?;:。") for chunk in chunks)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_split_with_pause():
|
||||
"""Test smart splitting with pause tags."""
|
||||
text = "Hello world [pause:2.5s] How are you?"
|
||||
|
||||
chunks = []
|
||||
async for chunk_text, chunk_tokens, pause_duration in smart_split(text):
|
||||
chunks.append((chunk_text, chunk_tokens, pause_duration))
|
||||
|
||||
# Should have 3 chunks: text, pause, text
|
||||
assert len(chunks) == 3
|
||||
|
||||
# First chunk: text
|
||||
assert chunks[0][2] is None # No pause
|
||||
assert "Hello world" in chunks[0][0]
|
||||
assert len(chunks[0][1]) > 0
|
||||
|
||||
# Second chunk: pause
|
||||
assert chunks[1][2] == 2.5 # 2.5 second pause
|
||||
assert chunks[1][0] == "" # Empty text
|
||||
assert len(chunks[1][1]) == 0 # No tokens
|
||||
|
||||
# Third chunk: text
|
||||
assert chunks[2][2] is None # No pause
|
||||
assert "How are you?" in chunks[2][0]
|
||||
assert len(chunks[2][1]) > 0
|
Loading…
Add table
Reference in a new issue