Update .gitignore and benchmark scripts for GPU support; enhance TTS service handling and session management
3
.gitignore
vendored
|
@ -67,4 +67,5 @@ examples/*.flac
|
|||
examples/*.acc
|
||||
examples/*.ogg
|
||||
examples/speech.mp3
|
||||
examples/phoneme_examples/output/*.wav
|
||||
examples/phoneme_examples/output/*.wav
|
||||
examples/assorted_checks/benchmarks/output_audio/*
|
||||
|
|
28
CHANGELOG.md
|
@ -2,6 +2,34 @@
|
|||
|
||||
Notable changes to this project will be documented in this file.
|
||||
|
||||
## [v0.1.4] - 2025-01-30
|
||||
### Added
|
||||
- Smart Chunking System:
|
||||
- New text_processor with smart_split for improved sentence boundary detection
|
||||
- Dynamically adjusts chunk sizes based on sentence structure, using phoneme/token information in an intial pass
|
||||
- Should avoid ever going over the 510 limit per chunk, while preserving natural cadence
|
||||
- Web UI Added (To Be Replacing Gradio):
|
||||
- Integrated streaming with tempfile generation
|
||||
- Download links available in X-Download-Path header
|
||||
- Configurable cleanup triggers for temp files
|
||||
- Debug Endpoints:
|
||||
- /debug/threads for thread information and stack traces
|
||||
- /debug/storage for temp file and output directory monitoring
|
||||
- /debug/system for system resource information
|
||||
- /debug/session_pools for ONNX/CUDA session status
|
||||
- Automated Model Management:
|
||||
- Auto-download from releases page
|
||||
- Included download scripts for manual installation
|
||||
- Pre-packaged voice models in repository
|
||||
|
||||
### Changed
|
||||
- Significant architectural improvements:
|
||||
- Multi-model architecture support
|
||||
- Enhanced concurrency handling
|
||||
- Improved streaming header management
|
||||
- Better resource/session pool management
|
||||
|
||||
|
||||
## [v0.1.2] - 2025-01-23
|
||||
### Structural Improvements
|
||||
- Models can be manually download and placed in api/src/models, or use included script
|
||||
|
|
216
README.md
|
@ -3,51 +3,58 @@
|
|||
</p>
|
||||
|
||||
# <sub><sub>_`FastKoko`_ </sub></sub>
|
||||
[]()
|
||||
[]()
|
||||
[]()
|
||||
[](https://huggingface.co/hexgrad/Kokoro-82M/tree/c3b0d86e2a980e027ef71c28819ea02e351c2667) [](https://huggingface.co/spaces/Remsky/Kokoro-TTS-Zero)
|
||||
|
||||
> Pre-release. Not fully tested
|
||||
> Support for Kokoro-82M v1.0 coming very soon!
|
||||
|
||||
Dockerized FastAPI wrapper for [Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M) text-to-speech model
|
||||
- OpenAI-compatible Speech endpoint, with inline voice combination, and mapped naming/models for strict systems
|
||||
- NVIDIA GPU accelerated or CPU inference (ONNX, Pytorch)
|
||||
- very fast generation time
|
||||
- 35x-100x+ real time speed via 4060Ti+
|
||||
- 5x+ real time speed via M3 Pro CPU
|
||||
- streaming support w/ variable chunking to control latency, (new) improved concurrency
|
||||
- ~35x-100x+ real time speed via 4060Ti+
|
||||
- ~5x+ real time speed via M3 Pro CPU
|
||||
- streaming support & tempfile generation
|
||||
- phoneme based dev endpoints
|
||||
- (new) Integrated web UI on localhost:8880/web
|
||||
- (new) Debug endpoints for monitoring threads, storage, and session pools
|
||||
|
||||
> [!Tip]
|
||||
> You can try the new beta version from the `v0.1.2-pre` branch now:
|
||||
<table>
|
||||
<tr>
|
||||
<td>
|
||||
<img src="https://github.com/user-attachments/assets/440162eb-1918-4999-ab2b-e2730990efd0" width="100%" alt="Voice Analysis Comparison" style="border: 2px solid #333; padding: 5px;">
|
||||
</td>
|
||||
<td>
|
||||
<ul>
|
||||
<li>Integrated web UI (on localhost:8880/web)</li>
|
||||
<li>Better concurrency handling, baked in models and voices</li>
|
||||
<li>Voice name/model mappings to OAI standard</li>
|
||||
<pre> # with:
|
||||
docker run -p 8880:8880 ghcr.io/remsky/kokoro-fastapi-cpu:latest # CPU
|
||||
docker run --gpus all -p 8880:8880 ghcr.io/remsky/kokoro-fastapi-gpu:latest # Nvidia GPU
|
||||
</pre>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
<details open>
|
||||
<summary>Quick Start</summary>
|
||||
## Get Started
|
||||
|
||||
The service can be accessed through either the API endpoints or the Gradio web interface.
|
||||
<details >
|
||||
<summary>Quickest Start (docker run)</summary>
|
||||
|
||||
|
||||
Pre built images are available to run, with arm/multi-arch support, and baked in models
|
||||
Refer to the core/config.py file for a full list of variables which can be managed via the environment
|
||||
|
||||
```bash
|
||||
|
||||
docker run -p 8880:8880 ghcr.io/remsky/kokoro-fastapi-cpu:v0.1.4 # CPU, or:
|
||||
docker run --gpus all -p 8880:8880 ghcr.io/remsky/kokoro-fastapi-gpu:v0.1.4 #NVIDIA GPU
|
||||
```
|
||||
|
||||
Once running, access:
|
||||
- API Documentation: http://localhost:8880/docs
|
||||
- Web Interface: http://localhost:8880/web
|
||||
|
||||
<div align="center" style="display: flex; justify-content: center; gap: 20px;">
|
||||
<img src="assets/docs-screenshot.png" width="48%" alt="API Documentation" style="border: 2px solid #333; padding: 10px;">
|
||||
<img src="assets/webui-screenshot.png" width="48%" alt="Web UI Screenshot" style="border: 2px solid #333; padding: 10px;">
|
||||
</div>
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Quick Start (docker compose) </summary>
|
||||
|
||||
1. Install prerequisites, and start the service using Docker Compose (Full setup including UI):
|
||||
- Install [Docker](https://www.docker.com/products/docker-desktop/)
|
||||
|
||||
-
|
||||
- Clone the repository:
|
||||
```bash
|
||||
git clone https://github.com/remsky/Kokoro-FastAPI.git
|
||||
|
@ -60,20 +67,18 @@ The service can be accessed through either the API endpoints or the Gradio web i
|
|||
# python ../scripts/download_model.py --type pth # for GPU
|
||||
# python ../scripts/download_model.py --type onnx # for CPU
|
||||
```
|
||||
|
||||
|
||||
```bash
|
||||
Or directly via UV
|
||||
./start-cpu.sh
|
||||
./start-gpu.sh
|
||||
```
|
||||
|
||||
Once started:
|
||||
- The API will be available at http://localhost:8880
|
||||
- The *Web UI* can be tested at http://localhost:8880/web
|
||||
- The Gradio UI (deprecating) can be accessed at http://localhost:7860
|
||||
|
||||
__Or__ running the API alone using Docker (model + voice packs baked in) (Most Recent):
|
||||
|
||||
```bash
|
||||
docker run -p 8880:8880 ghcr.io/remsky/kokoro-fastapi-cpu:v0.1.2 # CPU
|
||||
docker run --gpus all -p 8880:8880 ghcr.io/remsky/kokoro-fastapi-gpu:v0.1.2 # Nvidia GPU
|
||||
```
|
||||
|
||||
|
||||
|
||||
2. Run locally as an OpenAI-Compatible Speech Endpoint
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
@ -91,13 +96,50 @@ The service can be accessed through either the API endpoints or the Gradio web i
|
|||
response.stream_to_file("output.mp3")
|
||||
|
||||
```
|
||||
</details>
|
||||
<summary>Direct Run (via uv) </summary>
|
||||
|
||||
<div align="center">
|
||||
<div style="display: flex; justify-content: center; gap: 20px;">
|
||||
<img src="assets/beta_web_ui.png" width="45%" alt="Beta Web UI" style="border: 2px solid #333; padding: 10px;">
|
||||
<img src="ui/GradioScreenShot.png" width="45%" alt="Voice Analysis Comparison" style="border: 2px solid #333; padding: 10px;">
|
||||
</div>
|
||||
</div>
|
||||
1. Install prerequisites ():
|
||||
- Install [astral-uv](https://docs.astral.sh/uv/)
|
||||
- Clone the repository:
|
||||
```bash
|
||||
git clone https://github.com/remsky/Kokoro-FastAPI.git
|
||||
cd Kokoro-FastAPI
|
||||
|
||||
# if you are missing any models, run:
|
||||
# python ../scripts/download_model.py --type pth # for GPU
|
||||
# python ../scripts/download_model.py --type onnx # for CPU
|
||||
```
|
||||
|
||||
Start directly via UV (with hot-reload)
|
||||
```bash
|
||||
./start-cpu.sh OR
|
||||
./start-gpu.sh
|
||||
```
|
||||
|
||||
Once started:
|
||||
- The API will be available at http://localhost:8880
|
||||
- The *Web UI* can be tested at http://localhost:8880/web
|
||||
- The Gradio UI (deprecating) can be accessed at http://localhost:7860
|
||||
|
||||
2. Run locally as an OpenAI-Compatible Speech Endpoint
|
||||
```python
|
||||
from openai import OpenAI
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:8880/v1",
|
||||
api_key="not-needed"
|
||||
)
|
||||
|
||||
with client.audio.speech.with_streaming_response.create(
|
||||
model="kokoro",
|
||||
voice="af_sky+af_bella", #single or multiple voicepack combo
|
||||
input="Hello world!",
|
||||
response_format="mp3"
|
||||
) as response:
|
||||
response.stream_to_file("output.mp3")
|
||||
|
||||
```
|
||||
</details>
|
||||
|
||||
## Features
|
||||
<details>
|
||||
|
@ -211,13 +253,12 @@ If you only want the API, just comment out everything in the docker-compose.yml
|
|||
|
||||
Currently, voices created via the API are accessible here, but voice combination/creation has not yet been added
|
||||
|
||||
Running the UI Docker Service
|
||||
Running the UI Docker Service [deprecating]
|
||||
- If you only want to run the Gradio web interface separately and connect it to an existing API service:
|
||||
```bash
|
||||
docker run -p 7860:7860 \
|
||||
-e API_HOST=<api-hostname-or-ip> \
|
||||
-e API_PORT=8880 \
|
||||
ghcr.io/remsky/kokoro-fastapi-ui:v0.1.0
|
||||
```
|
||||
|
||||
- Replace `<api-hostname-or-ip>` with:
|
||||
|
@ -236,7 +277,7 @@ environment:
|
|||
|
||||
When running the Docker image directly:
|
||||
```bash
|
||||
docker run -p 7860:7860 -e DISABLE_LOCAL_SAVING=true ghcr.io/remsky/kokoro-fastapi-ui:latest
|
||||
docker run -p 7860:7860 -e DISABLE_LOCAL_SAVING=true ghcr.io/remsky/kokoro-fastapi-ui:v0.1.4
|
||||
```
|
||||
</details>
|
||||
|
||||
|
@ -247,7 +288,7 @@ docker run -p 7860:7860 -e DISABLE_LOCAL_SAVING=true ghcr.io/remsky/kokoro-fasta
|
|||
# OpenAI-compatible streaming
|
||||
from openai import OpenAI
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:8880", api_key="not-needed")
|
||||
base_url="http://localhost:8880/v1", api_key="not-needed")
|
||||
|
||||
# Stream to file
|
||||
with client.audio.speech.with_streaming_response.create(
|
||||
|
@ -329,17 +370,17 @@ Benchmarking was performed on generation via the local API using text lengths up
|
|||
</p>
|
||||
|
||||
Key Performance Metrics:
|
||||
- Realtime Speed: Ranges between 25-50x (generation time to output audio length)
|
||||
- Realtime Speed: Ranges between 35x-100x (generation time to output audio length)
|
||||
- Average Processing Rate: 137.67 tokens/second (cl100k_base)
|
||||
</details>
|
||||
<details>
|
||||
<summary>GPU Vs. CPU</summary>
|
||||
|
||||
```bash
|
||||
# GPU: Requires NVIDIA GPU with CUDA 12.1 support (~35x realtime speed)
|
||||
# GPU: Requires NVIDIA GPU with CUDA 12.1 support (~35x-100x realtime speed)
|
||||
docker compose up --build
|
||||
|
||||
# CPU: ONNX optimized inference (~2.4x realtime speed)
|
||||
# CPU: ONNX optimized inference (~5x+ realtime speed on M3 Pro)
|
||||
docker compose -f docker-compose.cpu.yml up --build
|
||||
```
|
||||
*Note: Overall speed may have reduced somewhat with the structural changes to accomodate streaming. Looking into it*
|
||||
|
@ -359,36 +400,61 @@ Convert text to phonemes and/or generate audio directly from phonemes:
|
|||
```python
|
||||
import requests
|
||||
|
||||
# Convert text to phonemes
|
||||
response = requests.post(
|
||||
"http://localhost:8880/dev/phonemize",
|
||||
json={
|
||||
"text": "Hello world!",
|
||||
"language": "a" # "a" for American English
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
phonemes = result["phonemes"] # Phoneme string e.g ðɪs ɪz ˈoʊnli ɐ tˈɛst
|
||||
tokens = result["tokens"] # Token IDs including start/end tokens
|
||||
def get_phonemes(text: str, language: str = "a"):
|
||||
"""Get phonemes and tokens for input text"""
|
||||
response = requests.post(
|
||||
"http://localhost:8880/dev/phonemize",
|
||||
json={"text": text, "language": language} # "a" for American English
|
||||
)
|
||||
response.raise_for_status()
|
||||
result = response.json()
|
||||
return result["phonemes"], result["tokens"]
|
||||
|
||||
# Generate audio from phonemes
|
||||
response = requests.post(
|
||||
"http://localhost:8880/dev/generate_from_phonemes",
|
||||
json={
|
||||
"phonemes": phonemes,
|
||||
"voice": "af_bella",
|
||||
"speed": 1.0
|
||||
}
|
||||
)
|
||||
def generate_audio_from_phonemes(phonemes: str, voice: str = "af_bella"):
|
||||
"""Generate audio from phonemes"""
|
||||
response = requests.post(
|
||||
"http://localhost:8880/dev/generate_from_phonemes",
|
||||
json={"phonemes": phonemes, "voice": voice},
|
||||
headers={"Accept": "audio/wav"}
|
||||
)
|
||||
if response.status_code != 200:
|
||||
print(f"Error: {response.text}")
|
||||
return None
|
||||
return response.content
|
||||
|
||||
# Save WAV audio
|
||||
with open("speech.wav", "wb") as f:
|
||||
f.write(response.content)
|
||||
# Example usage
|
||||
text = "Hello world!"
|
||||
try:
|
||||
# Convert text to phonemes
|
||||
phonemes, tokens = get_phonemes(text)
|
||||
print(f"Phonemes: {phonemes}") # e.g. ðɪs ɪz ˈoʊnli ɐ tˈɛst
|
||||
print(f"Tokens: {tokens}") # Token IDs including start/end tokens
|
||||
|
||||
# Generate and save audio
|
||||
if audio_bytes := generate_audio_from_phonemes(phonemes):
|
||||
with open("speech.wav", "wb") as f:
|
||||
f.write(audio_bytes)
|
||||
print(f"Generated {len(audio_bytes)} bytes of audio")
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
```
|
||||
|
||||
See `examples/phoneme_examples/generate_phonemes.py` for a sample script.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Debug Endpoints</summary>
|
||||
|
||||
Monitor system state and resource usage with these endpoints:
|
||||
|
||||
- `/debug/threads` - Get thread information and stack traces
|
||||
- `/debug/storage` - Monitor temp file and output directory usage
|
||||
- `/debug/system` - Get system information (CPU, memory, GPU)
|
||||
- `/debug/session_pools` - View ONNX session and CUDA stream status
|
||||
|
||||
Useful for debugging resource exhaustion or performance issues.
|
||||
</details>
|
||||
|
||||
## Known Issues
|
||||
|
||||
<details>
|
||||
|
|
|
@ -119,13 +119,17 @@ class BaseSessionPool:
|
|||
# Clean expired sessions
|
||||
self._cleanup_expired()
|
||||
|
||||
# TODO: Change session tracking to use unique IDs instead of model paths
|
||||
# This would allow multiple instances of the same model
|
||||
|
||||
# Check if session exists and is valid
|
||||
if model_path in self._sessions:
|
||||
session_info = self._sessions[model_path]
|
||||
session_info.last_used = time.time()
|
||||
return session_info.session
|
||||
|
||||
# Check if we can create new session
|
||||
# TODO: Modify session limit check to count instances per model path
|
||||
# Rather than total sessions across all models
|
||||
if len(self._sessions) >= self._max_size:
|
||||
raise RuntimeError(
|
||||
f"Maximum number of sessions reached ({self._max_size}). "
|
||||
|
|
|
@ -50,6 +50,10 @@ class TTSService:
|
|||
try:
|
||||
# Handle stream finalization
|
||||
if is_last:
|
||||
# Skip format conversion for raw audio mode
|
||||
if not output_format:
|
||||
return np.array([], dtype=np.float32)
|
||||
|
||||
return await AudioService.convert_audio(
|
||||
np.array([0], dtype=np.float32), # Dummy data for type checking
|
||||
24000,
|
||||
|
@ -229,7 +233,7 @@ class TTSService:
|
|||
try:
|
||||
# Use streaming generator but collect all chunks
|
||||
async for chunk in self.generate_audio_stream(
|
||||
text, voice, speed, output_format=None
|
||||
text, voice, speed, # Default to WAV for raw audio
|
||||
):
|
||||
if chunk is not None:
|
||||
chunks.append(chunk)
|
||||
|
|
BIN
assets/docs-screenshot.png
Normal file
After Width: | Height: | Size: 78 KiB |
BIN
assets/webui-screenshot.png
Normal file
After Width: | Height: | Size: 283 KiB |
|
@ -68,7 +68,7 @@ def main():
|
|||
# Initialize system monitor
|
||||
monitor = SystemMonitor(interval=1.0) # 1 second interval
|
||||
# Set prefix for output files (e.g. "gpu", "cpu", "onnx", etc.)
|
||||
prefix = "cpu"
|
||||
prefix = "gpu"
|
||||
# Generate token sizes
|
||||
if "gpu" in prefix:
|
||||
token_sizes = generate_token_sizes(
|
||||
|
|
|
@ -1,23 +1,23 @@
|
|||
=== Benchmark Statistics (with correct RTF) ===
|
||||
|
||||
Total tokens processed: 1800
|
||||
Total audio generated (s): 568.53
|
||||
Total test duration (s): 306.02
|
||||
Average processing rate (tokens/s): 5.75
|
||||
Average RTF: 0.55
|
||||
Average Real Time Speed: 1.81
|
||||
Total tokens processed: 1500
|
||||
Total audio generated (s): 427.90
|
||||
Total test duration (s): 10.84
|
||||
Average processing rate (tokens/s): 133.35
|
||||
Average RTF: 0.02
|
||||
Average Real Time Speed: 41.67
|
||||
|
||||
=== Per-chunk Stats ===
|
||||
|
||||
Average chunk size (tokens): 600.00
|
||||
Min chunk size (tokens): 300
|
||||
Max chunk size (tokens): 900
|
||||
Average processing time (s): 101.89
|
||||
Average output length (s): 189.51
|
||||
Average chunk size (tokens): 300.00
|
||||
Min chunk size (tokens): 100
|
||||
Max chunk size (tokens): 500
|
||||
Average processing time (s): 2.13
|
||||
Average output length (s): 85.58
|
||||
|
||||
=== Performance Ranges ===
|
||||
|
||||
Processing rate range (tokens/s): 5.30 - 6.26
|
||||
RTF range: 0.51x - 0.59x
|
||||
Real Time Speed range: 1.69x - 1.96x
|
||||
Processing rate range (tokens/s): 102.04 - 159.74
|
||||
RTF range: 0.02x - 0.03x
|
||||
Real Time Speed range: 33.33x - 50.00x
|
||||
|
||||
|
|
|
@ -2,616 +2,240 @@
|
|||
"results": [
|
||||
{
|
||||
"tokens": 150,
|
||||
"processing_time": 2.36,
|
||||
"output_length": 45.9,
|
||||
"rtf": 0.05,
|
||||
"elapsed_time": 2.44626
|
||||
"processing_time": 1.18,
|
||||
"output_length": 43.7,
|
||||
"rtf": 0.03,
|
||||
"elapsed_time": 1.20302
|
||||
},
|
||||
{
|
||||
"tokens": 300,
|
||||
"processing_time": 4.94,
|
||||
"output_length": 96.425,
|
||||
"rtf": 0.05,
|
||||
"elapsed_time": 7.46073
|
||||
"processing_time": 2.27,
|
||||
"output_length": 86.75,
|
||||
"rtf": 0.03,
|
||||
"elapsed_time": 3.49958
|
||||
},
|
||||
{
|
||||
"tokens": 450,
|
||||
"processing_time": 8.94,
|
||||
"output_length": 143.1,
|
||||
"rtf": 0.06,
|
||||
"elapsed_time": 16.55036
|
||||
"processing_time": 3.49,
|
||||
"output_length": 125.9,
|
||||
"rtf": 0.03,
|
||||
"elapsed_time": 7.03862
|
||||
},
|
||||
{
|
||||
"tokens": 600,
|
||||
"processing_time": 19.78,
|
||||
"output_length": 188.675,
|
||||
"rtf": 0.1,
|
||||
"elapsed_time": 36.69352
|
||||
"processing_time": 4.64,
|
||||
"output_length": 169.325,
|
||||
"rtf": 0.03,
|
||||
"elapsed_time": 11.71062
|
||||
},
|
||||
{
|
||||
"tokens": 750,
|
||||
"processing_time": 19.89,
|
||||
"output_length": 236.7,
|
||||
"rtf": 0.08,
|
||||
"elapsed_time": 56.77695
|
||||
"processing_time": 5.07,
|
||||
"output_length": 212.3,
|
||||
"rtf": 0.02,
|
||||
"elapsed_time": 16.83186
|
||||
},
|
||||
{
|
||||
"tokens": 900,
|
||||
"processing_time": 16.83,
|
||||
"output_length": 283.425,
|
||||
"rtf": 0.06,
|
||||
"elapsed_time": 73.8079
|
||||
"processing_time": 6.66,
|
||||
"output_length": 258.0,
|
||||
"rtf": 0.03,
|
||||
"elapsed_time": 23.54135
|
||||
}
|
||||
],
|
||||
"system_metrics": [
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:20.888295",
|
||||
"cpu_percent": 36.92,
|
||||
"ram_percent": 68.6,
|
||||
"ram_used_gb": 43.6395263671875,
|
||||
"gpu_memory_used": 7022.0,
|
||||
"relative_time": 0.09646010398864746
|
||||
"timestamp": "2025-01-30T05:06:38.733338",
|
||||
"cpu_percent": 0.0,
|
||||
"ram_percent": 18.6,
|
||||
"ram_used_gb": 5.284908294677734,
|
||||
"gpu_memory_used": 1925.0,
|
||||
"relative_time": 0.039948463439941406
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:21.983741",
|
||||
"cpu_percent": 22.29,
|
||||
"ram_percent": 68.6,
|
||||
"ram_used_gb": 43.642677307128906,
|
||||
"gpu_memory_used": 7021.0,
|
||||
"relative_time": 1.1906661987304688
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:23.078293",
|
||||
"cpu_percent": 27.39,
|
||||
"ram_percent": 68.6,
|
||||
"ram_used_gb": 43.61421203613281,
|
||||
"gpu_memory_used": 7190.0,
|
||||
"relative_time": 2.264479160308838
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:24.151445",
|
||||
"cpu_percent": 20.28,
|
||||
"ram_percent": 68.6,
|
||||
"ram_used_gb": 43.65406036376953,
|
||||
"gpu_memory_used": 7193.0,
|
||||
"relative_time": 3.349093198776245
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:25.237021",
|
||||
"cpu_percent": 23.03,
|
||||
"ram_percent": 68.6,
|
||||
"ram_used_gb": 43.647274017333984,
|
||||
"gpu_memory_used": 7191.0,
|
||||
"relative_time": 4.413560628890991
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:26.300255",
|
||||
"cpu_percent": 23.62,
|
||||
"ram_percent": 68.6,
|
||||
"ram_used_gb": 43.642295837402344,
|
||||
"gpu_memory_used": 7185.0,
|
||||
"relative_time": 5.484973430633545
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:27.377319",
|
||||
"cpu_percent": 46.04,
|
||||
"ram_percent": 68.7,
|
||||
"ram_used_gb": 43.7291374206543,
|
||||
"gpu_memory_used": 7178.0,
|
||||
"relative_time": 6.658120632171631
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:28.546053",
|
||||
"cpu_percent": 29.79,
|
||||
"ram_percent": 68.7,
|
||||
"ram_used_gb": 43.73202133178711,
|
||||
"gpu_memory_used": 7177.0,
|
||||
"relative_time": 7.725939035415649
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:29.613327",
|
||||
"cpu_percent": 18.19,
|
||||
"ram_percent": 68.8,
|
||||
"ram_used_gb": 43.791343688964844,
|
||||
"gpu_memory_used": 7177.0,
|
||||
"relative_time": 8.800285577774048
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:30.689097",
|
||||
"cpu_percent": 22.29,
|
||||
"ram_percent": 68.9,
|
||||
"ram_used_gb": 43.81514358520508,
|
||||
"gpu_memory_used": 7176.0,
|
||||
"relative_time": 9.899119853973389
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:31.786443",
|
||||
"cpu_percent": 32.59,
|
||||
"ram_percent": 68.9,
|
||||
"ram_used_gb": 43.834510803222656,
|
||||
"gpu_memory_used": 7189.0,
|
||||
"relative_time": 11.042734384536743
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:32.929720",
|
||||
"cpu_percent": 42.48,
|
||||
"ram_percent": 68.8,
|
||||
"ram_used_gb": 43.77507019042969,
|
||||
"gpu_memory_used": 7192.0,
|
||||
"relative_time": 12.117269277572632
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:34.004481",
|
||||
"cpu_percent": 26.33,
|
||||
"ram_percent": 68.8,
|
||||
"ram_used_gb": 43.77891159057617,
|
||||
"gpu_memory_used": 7192.0,
|
||||
"relative_time": 13.19830870628357
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:35.086024",
|
||||
"cpu_percent": 26.53,
|
||||
"ram_percent": 68.8,
|
||||
"ram_used_gb": 43.77515411376953,
|
||||
"gpu_memory_used": 7192.0,
|
||||
"relative_time": 14.29457426071167
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:36.183496",
|
||||
"cpu_percent": 40.33,
|
||||
"ram_percent": 68.9,
|
||||
"ram_used_gb": 43.81095886230469,
|
||||
"gpu_memory_used": 7192.0,
|
||||
"relative_time": 15.402768850326538
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:37.290635",
|
||||
"cpu_percent": 43.6,
|
||||
"ram_percent": 69.0,
|
||||
"ram_used_gb": 43.87236022949219,
|
||||
"gpu_memory_used": 7190.0,
|
||||
"relative_time": 16.574281930923462
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:38.462164",
|
||||
"cpu_percent": 85.74,
|
||||
"ram_percent": 69.0,
|
||||
"ram_used_gb": 43.864280700683594,
|
||||
"gpu_memory_used": 6953.0,
|
||||
"relative_time": 17.66074824333191
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:39.548295",
|
||||
"cpu_percent": 23.88,
|
||||
"ram_percent": 68.8,
|
||||
"ram_used_gb": 43.75236129760742,
|
||||
"gpu_memory_used": 4722.0,
|
||||
"relative_time": 18.739423036575317
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:40.626692",
|
||||
"cpu_percent": 59.24,
|
||||
"ram_percent": 68.7,
|
||||
"ram_used_gb": 43.720741271972656,
|
||||
"gpu_memory_used": 4723.0,
|
||||
"relative_time": 19.846031665802002
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:41.733597",
|
||||
"cpu_percent": 41.74,
|
||||
"ram_percent": 68.4,
|
||||
"ram_used_gb": 43.53546142578125,
|
||||
"gpu_memory_used": 4722.0,
|
||||
"relative_time": 20.920310020446777
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:42.808191",
|
||||
"cpu_percent": 35.43,
|
||||
"ram_percent": 68.3,
|
||||
"ram_used_gb": 43.424468994140625,
|
||||
"gpu_memory_used": 4726.0,
|
||||
"relative_time": 22.00457763671875
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:43.891669",
|
||||
"cpu_percent": 43.81,
|
||||
"ram_percent": 68.2,
|
||||
"ram_used_gb": 43.38311004638672,
|
||||
"gpu_memory_used": 4727.0,
|
||||
"relative_time": 23.08402943611145
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:44.971246",
|
||||
"cpu_percent": 58.13,
|
||||
"ram_percent": 68.0,
|
||||
"ram_used_gb": 43.27970886230469,
|
||||
"gpu_memory_used": 4731.0,
|
||||
"relative_time": 24.249765396118164
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:46.137626",
|
||||
"cpu_percent": 66.76,
|
||||
"ram_percent": 68.0,
|
||||
"ram_used_gb": 43.23844528198242,
|
||||
"gpu_memory_used": 4731.0,
|
||||
"relative_time": 25.32853865623474
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:47.219723",
|
||||
"cpu_percent": 27.95,
|
||||
"ram_percent": 67.8,
|
||||
"ram_used_gb": 43.106136322021484,
|
||||
"gpu_memory_used": 4734.0,
|
||||
"relative_time": 26.499221563339233
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:48.386913",
|
||||
"cpu_percent": 73.13,
|
||||
"ram_percent": 67.7,
|
||||
"ram_used_gb": 43.049781799316406,
|
||||
"gpu_memory_used": 4736.0,
|
||||
"relative_time": 27.592528104782104
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:49.480407",
|
||||
"cpu_percent": 50.63,
|
||||
"ram_percent": 67.6,
|
||||
"ram_used_gb": 43.007415771484375,
|
||||
"gpu_memory_used": 4736.0,
|
||||
"relative_time": 28.711266040802002
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:50.599220",
|
||||
"cpu_percent": 92.36,
|
||||
"ram_percent": 67.5,
|
||||
"ram_used_gb": 42.9685173034668,
|
||||
"gpu_memory_used": 4728.0,
|
||||
"relative_time": 29.916289567947388
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:51.803667",
|
||||
"cpu_percent": 83.07,
|
||||
"ram_percent": 67.5,
|
||||
"ram_used_gb": 42.96232986450195,
|
||||
"gpu_memory_used": 4724.0,
|
||||
"relative_time": 31.039498805999756
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:52.927208",
|
||||
"cpu_percent": 90.61,
|
||||
"ram_percent": 67.5,
|
||||
"ram_used_gb": 42.96202850341797,
|
||||
"gpu_memory_used": 5037.0,
|
||||
"relative_time": 32.2381911277771
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:54.128135",
|
||||
"cpu_percent": 89.47,
|
||||
"ram_percent": 67.5,
|
||||
"ram_used_gb": 42.94692611694336,
|
||||
"gpu_memory_used": 5085.0,
|
||||
"relative_time": 33.35147500038147
|
||||
{
|
||||
"timestamp": "2025-01-30T05:06:39.774003",
|
||||
"cpu_percent": 13.37,
|
||||
"ram_percent": 18.6,
|
||||
"ram_used_gb": 5.2852630615234375,
|
||||
"gpu_memory_used": 3047.0,
|
||||
"relative_time": 1.0883615016937256
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:55.238967",
|
||||
"cpu_percent": 60.01,
|
||||
"ram_percent": 67.4,
|
||||
"ram_used_gb": 42.88222122192383,
|
||||
"gpu_memory_used": 5085.0,
|
||||
"relative_time": 34.455963373184204
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:56.344164",
|
||||
"cpu_percent": 62.12,
|
||||
"ram_percent": 67.3,
|
||||
"ram_used_gb": 42.81411361694336,
|
||||
"gpu_memory_used": 5083.0,
|
||||
"relative_time": 35.549962282180786
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:57.437566",
|
||||
"cpu_percent": 53.56,
|
||||
"ram_percent": 67.3,
|
||||
"ram_used_gb": 42.83011245727539,
|
||||
"gpu_memory_used": 5078.0,
|
||||
"relative_time": 36.66783380508423
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:58.554923",
|
||||
"cpu_percent": 80.27,
|
||||
"ram_percent": 67.3,
|
||||
"ram_used_gb": 42.79304504394531,
|
||||
"gpu_memory_used": 5069.0,
|
||||
"relative_time": 37.77330660820007
|
||||
{
|
||||
"timestamp": "2025-01-30T05:06:40.822449",
|
||||
"cpu_percent": 13.68,
|
||||
"ram_percent": 18.7,
|
||||
"ram_used_gb": 5.303462982177734,
|
||||
"gpu_memory_used": 3040.0,
|
||||
"relative_time": 2.12058687210083
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:43:59.660456",
|
||||
"cpu_percent": 72.33,
|
||||
"ram_percent": 67.2,
|
||||
"ram_used_gb": 42.727474212646484,
|
||||
"gpu_memory_used": 5079.0,
|
||||
"relative_time": 38.885955810546875
|
||||
{
|
||||
"timestamp": "2025-01-30T05:06:41.854375",
|
||||
"cpu_percent": 15.39,
|
||||
"ram_percent": 18.7,
|
||||
"ram_used_gb": 5.306262969970703,
|
||||
"gpu_memory_used": 3326.0,
|
||||
"relative_time": 3.166278600692749
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:00.773867",
|
||||
"cpu_percent": 59.29,
|
||||
"ram_percent": 66.9,
|
||||
"ram_used_gb": 42.566131591796875,
|
||||
"gpu_memory_used": 5079.0,
|
||||
"relative_time": 39.99704432487488
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:01.884399",
|
||||
"cpu_percent": 43.52,
|
||||
"ram_percent": 66.5,
|
||||
"ram_used_gb": 42.32980728149414,
|
||||
"gpu_memory_used": 5079.0,
|
||||
"relative_time": 41.13008522987366
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:03.018905",
|
||||
"cpu_percent": 84.46,
|
||||
"ram_percent": 66.5,
|
||||
"ram_used_gb": 42.28911590576172,
|
||||
"gpu_memory_used": 5087.0,
|
||||
"relative_time": 42.296770095825195
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:04.184606",
|
||||
"cpu_percent": 88.27,
|
||||
"ram_percent": 66.3,
|
||||
"ram_used_gb": 42.16263961791992,
|
||||
"gpu_memory_used": 5091.0,
|
||||
"relative_time": 43.42832589149475
|
||||
{
|
||||
"timestamp": "2025-01-30T05:06:42.900882",
|
||||
"cpu_percent": 14.19,
|
||||
"ram_percent": 18.8,
|
||||
"ram_used_gb": 5.337162017822266,
|
||||
"gpu_memory_used": 2530.0,
|
||||
"relative_time": 4.256956577301025
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:05.315967",
|
||||
"cpu_percent": 80.91,
|
||||
"ram_percent": 65.9,
|
||||
"ram_used_gb": 41.9491081237793,
|
||||
"gpu_memory_used": 5089.0,
|
||||
"relative_time": 44.52496290206909
|
||||
{
|
||||
"timestamp": "2025-01-30T05:06:43.990792",
|
||||
"cpu_percent": 12.63,
|
||||
"ram_percent": 18.8,
|
||||
"ram_used_gb": 5.333805084228516,
|
||||
"gpu_memory_used": 3331.0,
|
||||
"relative_time": 5.2854602336883545
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:06.412298",
|
||||
"cpu_percent": 41.68,
|
||||
"ram_percent": 65.6,
|
||||
"ram_used_gb": 41.72716522216797,
|
||||
"gpu_memory_used": 5090.0,
|
||||
"relative_time": 45.679444313049316
|
||||
{
|
||||
"timestamp": "2025-01-30T05:06:45.019134",
|
||||
"cpu_percent": 14.14,
|
||||
"ram_percent": 18.8,
|
||||
"ram_used_gb": 5.334297180175781,
|
||||
"gpu_memory_used": 3332.0,
|
||||
"relative_time": 6.351738929748535
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:07.566964",
|
||||
"cpu_percent": 73.02,
|
||||
"ram_percent": 65.5,
|
||||
"ram_used_gb": 41.64710998535156,
|
||||
"gpu_memory_used": 5091.0,
|
||||
"relative_time": 46.81710481643677
|
||||
{
|
||||
"timestamp": "2025-01-30T05:06:46.085997",
|
||||
"cpu_percent": 12.78,
|
||||
"ram_percent": 18.8,
|
||||
"ram_used_gb": 5.351467132568359,
|
||||
"gpu_memory_used": 2596.0,
|
||||
"relative_time": 7.392607688903809
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:08.704786",
|
||||
"cpu_percent": 75.38,
|
||||
"ram_percent": 65.4,
|
||||
"ram_used_gb": 41.59475326538086,
|
||||
"gpu_memory_used": 5097.0,
|
||||
"relative_time": 47.91444158554077
|
||||
{
|
||||
"timestamp": "2025-01-30T05:06:47.127113",
|
||||
"cpu_percent": 14.7,
|
||||
"ram_percent": 18.9,
|
||||
"ram_used_gb": 5.367542266845703,
|
||||
"gpu_memory_used": 3341.0,
|
||||
"relative_time": 8.441826343536377
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:09.802745",
|
||||
"cpu_percent": 42.21,
|
||||
"ram_percent": 65.2,
|
||||
"ram_used_gb": 41.45526885986328,
|
||||
"gpu_memory_used": 5111.0,
|
||||
"relative_time": 49.04095649719238
|
||||
{
|
||||
"timestamp": "2025-01-30T05:06:48.176033",
|
||||
"cpu_percent": 13.47,
|
||||
"ram_percent": 18.9,
|
||||
"ram_used_gb": 5.361263275146484,
|
||||
"gpu_memory_used": 3339.0,
|
||||
"relative_time": 9.500520706176758
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:10.928231",
|
||||
"cpu_percent": 65.65,
|
||||
"ram_percent": 64.4,
|
||||
"ram_used_gb": 40.93437957763672,
|
||||
"gpu_memory_used": 5111.0,
|
||||
"relative_time": 50.14311861991882
|
||||
{
|
||||
"timestamp": "2025-01-30T05:06:49.234332",
|
||||
"cpu_percent": 15.84,
|
||||
"ram_percent": 18.9,
|
||||
"ram_used_gb": 5.3612213134765625,
|
||||
"gpu_memory_used": 3339.0,
|
||||
"relative_time": 10.53744649887085
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-30T05:06:50.271159",
|
||||
"cpu_percent": 14.89,
|
||||
"ram_percent": 18.9,
|
||||
"ram_used_gb": 5.379688262939453,
|
||||
"gpu_memory_used": 3646.0,
|
||||
"relative_time": 11.570110321044922
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-30T05:06:51.303841",
|
||||
"cpu_percent": 15.71,
|
||||
"ram_percent": 19.0,
|
||||
"ram_used_gb": 5.390773773193359,
|
||||
"gpu_memory_used": 3037.0,
|
||||
"relative_time": 12.60651707649231
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:12.036249",
|
||||
"cpu_percent": 28.51,
|
||||
"ram_percent": 64.1,
|
||||
"ram_used_gb": 40.749881744384766,
|
||||
"gpu_memory_used": 5107.0,
|
||||
"relative_time": 51.250269651412964
|
||||
},
|
||||
"timestamp": "2025-01-30T05:06:52.340383",
|
||||
"cpu_percent": 15.46,
|
||||
"ram_percent": 19.0,
|
||||
"ram_used_gb": 5.389518737792969,
|
||||
"gpu_memory_used": 3319.0,
|
||||
"relative_time": 13.636165380477905
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:13.137586",
|
||||
"cpu_percent": 52.99,
|
||||
"ram_percent": 64.2,
|
||||
"ram_used_gb": 40.84278869628906,
|
||||
"gpu_memory_used": 5104.0,
|
||||
"relative_time": 52.34805965423584
|
||||
},
|
||||
"timestamp": "2025-01-30T05:06:53.370342",
|
||||
"cpu_percent": 13.12,
|
||||
"ram_percent": 19.0,
|
||||
"ram_used_gb": 5.391136169433594,
|
||||
"gpu_memory_used": 3320.0,
|
||||
"relative_time": 14.67578935623169
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:14.235248",
|
||||
"cpu_percent": 34.55,
|
||||
"ram_percent": 64.1,
|
||||
"ram_used_gb": 40.7873420715332,
|
||||
"gpu_memory_used": 5097.0,
|
||||
"relative_time": 53.424301862716675
|
||||
},
|
||||
"timestamp": "2025-01-30T05:06:54.376175",
|
||||
"cpu_percent": 14.98,
|
||||
"ram_percent": 19.0,
|
||||
"ram_used_gb": 5.390045166015625,
|
||||
"gpu_memory_used": 3627.0,
|
||||
"relative_time": 15.70747685432434
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:15.311386",
|
||||
"cpu_percent": 39.07,
|
||||
"ram_percent": 64.2,
|
||||
"ram_used_gb": 40.860008239746094,
|
||||
"gpu_memory_used": 5091.0,
|
||||
"relative_time": 54.50679922103882
|
||||
},
|
||||
"timestamp": "2025-01-30T05:06:55.441172",
|
||||
"cpu_percent": 13.45,
|
||||
"ram_percent": 19.0,
|
||||
"ram_used_gb": 5.394947052001953,
|
||||
"gpu_memory_used": 1937.0,
|
||||
"relative_time": 16.758784770965576
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:16.393626",
|
||||
"cpu_percent": 31.02,
|
||||
"ram_percent": 64.3,
|
||||
"ram_used_gb": 40.884307861328125,
|
||||
"gpu_memory_used": 5093.0,
|
||||
"relative_time": 55.57431173324585
|
||||
},
|
||||
"timestamp": "2025-01-30T05:06:56.492442",
|
||||
"cpu_percent": 17.03,
|
||||
"ram_percent": 18.9,
|
||||
"ram_used_gb": 5.361682891845703,
|
||||
"gpu_memory_used": 3041.0,
|
||||
"relative_time": 17.789713144302368
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:17.461449",
|
||||
"cpu_percent": 24.53,
|
||||
"ram_percent": 64.3,
|
||||
"ram_used_gb": 40.89955520629883,
|
||||
"gpu_memory_used": 5070.0,
|
||||
"relative_time": 56.660638093948364
|
||||
},
|
||||
"timestamp": "2025-01-30T05:06:57.523536",
|
||||
"cpu_percent": 13.76,
|
||||
"ram_percent": 18.9,
|
||||
"ram_used_gb": 5.360996246337891,
|
||||
"gpu_memory_used": 3321.0,
|
||||
"relative_time": 18.838542222976685
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:18.547558",
|
||||
"cpu_percent": 19.93,
|
||||
"ram_percent": 64.3,
|
||||
"ram_used_gb": 40.92641830444336,
|
||||
"gpu_memory_used": 5074.0,
|
||||
"relative_time": 57.736456871032715
|
||||
},
|
||||
"timestamp": "2025-01-30T05:06:58.572158",
|
||||
"cpu_percent": 15.94,
|
||||
"ram_percent": 18.9,
|
||||
"ram_used_gb": 5.3652801513671875,
|
||||
"gpu_memory_used": 3323.0,
|
||||
"relative_time": 19.86689043045044
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:19.624478",
|
||||
"cpu_percent": 15.63,
|
||||
"ram_percent": 64.3,
|
||||
"ram_used_gb": 40.92564392089844,
|
||||
"gpu_memory_used": 5082.0,
|
||||
"relative_time": 58.81701683998108
|
||||
},
|
||||
"timestamp": "2025-01-30T05:06:59.600551",
|
||||
"cpu_percent": 15.67,
|
||||
"ram_percent": 18.9,
|
||||
"ram_used_gb": 5.363399505615234,
|
||||
"gpu_memory_used": 3630.0,
|
||||
"relative_time": 20.89712619781494
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:20.705184",
|
||||
"cpu_percent": 29.86,
|
||||
"ram_percent": 64.4,
|
||||
"ram_used_gb": 40.935394287109375,
|
||||
"gpu_memory_used": 5082.0,
|
||||
"relative_time": 59.88701677322388
|
||||
},
|
||||
"timestamp": "2025-01-30T05:07:00.631315",
|
||||
"cpu_percent": 15.37,
|
||||
"ram_percent": 18.9,
|
||||
"ram_used_gb": 5.3663482666015625,
|
||||
"gpu_memory_used": 3629.0,
|
||||
"relative_time": 22.01374316215515
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:21.775463",
|
||||
"cpu_percent": 43.55,
|
||||
"ram_percent": 64.4,
|
||||
"ram_used_gb": 40.9350471496582,
|
||||
"gpu_memory_used": 5080.0,
|
||||
"relative_time": 60.96005439758301
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:22.847939",
|
||||
"cpu_percent": 26.66,
|
||||
"ram_percent": 64.4,
|
||||
"ram_used_gb": 40.94179916381836,
|
||||
"gpu_memory_used": 5076.0,
|
||||
"relative_time": 62.02673673629761
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:23.914337",
|
||||
"cpu_percent": 22.46,
|
||||
"ram_percent": 64.4,
|
||||
"ram_used_gb": 40.9537467956543,
|
||||
"gpu_memory_used": 5076.0,
|
||||
"relative_time": 63.10581707954407
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:24.993313",
|
||||
"cpu_percent": 28.07,
|
||||
"ram_percent": 64.4,
|
||||
"ram_used_gb": 40.94577407836914,
|
||||
"gpu_memory_used": 5076.0,
|
||||
"relative_time": 64.18998432159424
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:26.077028",
|
||||
"cpu_percent": 26.1,
|
||||
"ram_percent": 64.4,
|
||||
"ram_used_gb": 40.98012161254883,
|
||||
"gpu_memory_used": 5197.0,
|
||||
"relative_time": 65.28782486915588
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:27.175228",
|
||||
"cpu_percent": 35.17,
|
||||
"ram_percent": 64.6,
|
||||
"ram_used_gb": 41.0831184387207,
|
||||
"gpu_memory_used": 5422.0,
|
||||
"relative_time": 66.37566781044006
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:28.265025",
|
||||
"cpu_percent": 55.14,
|
||||
"ram_percent": 64.9,
|
||||
"ram_used_gb": 41.25740432739258,
|
||||
"gpu_memory_used": 5512.0,
|
||||
"relative_time": 67.48023676872253
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:29.367776",
|
||||
"cpu_percent": 53.84,
|
||||
"ram_percent": 65.0,
|
||||
"ram_used_gb": 41.36682891845703,
|
||||
"gpu_memory_used": 5616.0,
|
||||
"relative_time": 68.57096815109253
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:30.458301",
|
||||
"cpu_percent": 33.42,
|
||||
"ram_percent": 65.3,
|
||||
"ram_used_gb": 41.5602912902832,
|
||||
"gpu_memory_used": 5724.0,
|
||||
"relative_time": 69.66709041595459
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:31.554329",
|
||||
"cpu_percent": 50.81,
|
||||
"ram_percent": 65.5,
|
||||
"ram_used_gb": 41.66044616699219,
|
||||
"gpu_memory_used": 5827.0,
|
||||
"relative_time": 70.75874853134155
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:32.646414",
|
||||
"cpu_percent": 34.34,
|
||||
"ram_percent": 65.6,
|
||||
"ram_used_gb": 41.739715576171875,
|
||||
"gpu_memory_used": 5843.0,
|
||||
"relative_time": 71.86718988418579
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:33.754223",
|
||||
"cpu_percent": 44.32,
|
||||
"ram_percent": 66.0,
|
||||
"ram_used_gb": 42.005794525146484,
|
||||
"gpu_memory_used": 5901.0,
|
||||
"relative_time": 72.95793795585632
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:34.848852",
|
||||
"cpu_percent": 48.36,
|
||||
"ram_percent": 66.5,
|
||||
"ram_used_gb": 42.3160514831543,
|
||||
"gpu_memory_used": 5924.0,
|
||||
"relative_time": 74.35109186172485
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:36.240235",
|
||||
"cpu_percent": 58.06,
|
||||
"ram_percent": 67.5,
|
||||
"ram_used_gb": 42.95722198486328,
|
||||
"gpu_memory_used": 5930.0,
|
||||
"relative_time": 75.47581958770752
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:37.363208",
|
||||
"cpu_percent": 46.82,
|
||||
"ram_percent": 67.6,
|
||||
"ram_used_gb": 42.97764587402344,
|
||||
"gpu_memory_used": 6364.0,
|
||||
"relative_time": 76.58708119392395
|
||||
},
|
||||
"timestamp": "2025-01-30T05:07:01.747500",
|
||||
"cpu_percent": 13.79,
|
||||
"ram_percent": 18.9,
|
||||
"ram_used_gb": 5.367362976074219,
|
||||
"gpu_memory_used": 3620.0,
|
||||
"relative_time": 23.05113124847412
|
||||
},
|
||||
{
|
||||
"timestamp": "2025-01-06T00:44:38.474408",
|
||||
"cpu_percent": 50.93,
|
||||
"ram_percent": 67.9,
|
||||
"ram_used_gb": 43.1597900390625,
|
||||
"gpu_memory_used": 6426.0,
|
||||
"relative_time": 77.6842532157898
|
||||
"timestamp": "2025-01-30T05:07:02.784828",
|
||||
"cpu_percent": 10.16,
|
||||
"ram_percent": 19.1,
|
||||
"ram_used_gb": 5.443946838378906,
|
||||
"gpu_memory_used": 1916.0,
|
||||
"relative_time": 24.08937978744507
|
||||
}
|
||||
],
|
||||
"test_duration": 82.49591493606567
|
||||
"test_duration": 26.596059799194336
|
||||
}
|
|
@ -1,23 +1,23 @@
|
|||
=== Benchmark Statistics (with correct RTF) ===
|
||||
|
||||
Total tokens processed: 3150
|
||||
Total audio generated (s): 994.22
|
||||
Total test duration (s): 73.81
|
||||
Average processing rate (tokens/s): 49.36
|
||||
Average RTF: 0.07
|
||||
Average Real Time Speed: 15.00
|
||||
Total audio generated (s): 895.98
|
||||
Total test duration (s): 23.54
|
||||
Average processing rate (tokens/s): 133.43
|
||||
Average RTF: 0.03
|
||||
Average Real Time Speed: 35.29
|
||||
|
||||
=== Per-chunk Stats ===
|
||||
|
||||
Average chunk size (tokens): 525.00
|
||||
Min chunk size (tokens): 150
|
||||
Max chunk size (tokens): 900
|
||||
Average processing time (s): 12.12
|
||||
Average output length (s): 165.70
|
||||
Average processing time (s): 3.88
|
||||
Average output length (s): 149.33
|
||||
|
||||
=== Performance Ranges ===
|
||||
|
||||
Processing rate range (tokens/s): 30.33 - 63.56
|
||||
RTF range: 0.05x - 0.10x
|
||||
Real Time Speed range: 10.00x - 20.00x
|
||||
Processing rate range (tokens/s): 127.12 - 147.93
|
||||
RTF range: 0.02x - 0.03x
|
||||
Real Time Speed range: 33.33x - 50.00x
|
||||
|
||||
|
|
Before Width: | Height: | Size: 230 KiB After Width: | Height: | Size: 230 KiB |
Before Width: | Height: | Size: 206 KiB After Width: | Height: | Size: 260 KiB |
Before Width: | Height: | Size: 491 KiB After Width: | Height: | Size: 392 KiB |
Before Width: | Height: | Size: 224 KiB After Width: | Height: | Size: 235 KiB |
Before Width: | Height: | Size: 221 KiB After Width: | Height: | Size: 265 KiB |
Before Width: | Height: | Size: 463 KiB After Width: | Height: | Size: 429 KiB |