mirror of
https://github.com/remsky/Kokoro-FastAPI.git
synced 2025-04-13 09:39:17 +00:00
Add preliminary Docker support for CPU deployment
This commit is contained in:
parent
32a35f9a5a
commit
0652056107
3 changed files with 90 additions and 4 deletions
43
Dockerfile.cpu
Normal file
43
Dockerfile.cpu
Normal file
|
@ -0,0 +1,43 @@
|
|||
FROM ubuntu:22.04
|
||||
|
||||
# Install base system dependencies
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
python3-pip \
|
||||
python3-dev \
|
||||
espeak-ng \
|
||||
git \
|
||||
libsndfile1 \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install PyTorch CPU version
|
||||
RUN pip3 install --no-cache-dir torch==2.5.1 --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
# Install all other dependencies from requirements.txt
|
||||
COPY requirements.txt .
|
||||
RUN pip3 install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Copy application code and model
|
||||
COPY . /app/
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Run with Python unbuffered output for live logging
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
|
||||
# Create non-root user
|
||||
RUN useradd -m -u 1000 appuser
|
||||
|
||||
# Create directories and set permissions
|
||||
RUN mkdir -p /app/Kokoro-82M && \
|
||||
chown -R appuser:appuser /app
|
||||
|
||||
# Switch to non-root user
|
||||
USER appuser
|
||||
|
||||
# Set Python path (app first for our imports, then model dir for model imports)
|
||||
ENV PYTHONPATH=/app:/app/Kokoro-82M
|
||||
|
||||
# Run FastAPI server with debug logging and reload
|
||||
CMD ["uvicorn", "api.src.main:app", "--host", "0.0.0.0", "--port", "8880", "--log-level", "debug"]
|
13
README.md
13
README.md
|
@ -8,7 +8,7 @@
|
|||
[]()
|
||||
|
||||
FastAPI wrapper for [Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M) text-to-speech model, providing an OpenAI-compatible endpoint with:
|
||||
- NVIDIA GPU acceleration enabled
|
||||
- NVIDIA GPU accelerated inference (or CPU) option
|
||||
- automatic chunking/stitching for long texts
|
||||
- very fast generation time (~35-49x RTF)
|
||||
|
||||
|
@ -24,10 +24,15 @@ FastAPI wrapper for [Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M) text
|
|||
git clone https://github.com/remsky/Kokoro-FastAPI.git
|
||||
cd Kokoro-FastAPI
|
||||
|
||||
# Start the API (will automatically clone source HF repo via git-lfs)
|
||||
# For GPU acceleration (requires NVIDIA GPU):
|
||||
docker compose up --build
|
||||
|
||||
# For CPU-only deployment (~10x slower, but doesn't require an NVIDIA GPU):
|
||||
docker compose -f docker-compose.cpu.yml up --build
|
||||
```
|
||||
|
||||
|
||||
|
||||
Test all voices (from another terminal):
|
||||
```bash
|
||||
python examples/test_all_voices.py
|
||||
|
@ -106,11 +111,12 @@ Key Performance Metrics:
|
|||
## Features
|
||||
|
||||
- OpenAI-compatible API endpoints
|
||||
- GPU-accelerated inference
|
||||
- GPU-accelerated inference (if desired)
|
||||
- Multiple audio formats: mp3, wav, opus, flac, (aac & pcm not implemented)
|
||||
- Natural Boundary Detection:
|
||||
- Automatically splits and stitches at sentence boundaries to reduce artifacts and maintain performacne
|
||||
|
||||
*Note: CPU Inference is currently a very basic implementation, and not heavily tested*
|
||||
|
||||
## Model
|
||||
|
||||
|
@ -135,4 +141,3 @@ The full Apache 2.0 license text can be found at: https://www.apache.org/license
|
|||
https://user-images.githubusercontent.com/338912d2-90f3-41fb-bca0-5db7b4e02287.mp4
|
||||
|
||||
</div>
|
||||
|
||||
|
|
38
docker-compose.cpu.yml
Normal file
38
docker-compose.cpu.yml
Normal file
|
@ -0,0 +1,38 @@
|
|||
services:
|
||||
model-fetcher:
|
||||
image: datamachines/git-lfs:latest
|
||||
volumes:
|
||||
- ./Kokoro-82M:/app/Kokoro-82M
|
||||
working_dir: /app/Kokoro-82M
|
||||
command: >
|
||||
sh -c "
|
||||
if [ -z \"$(ls -A .)\" ]; then
|
||||
git clone https://huggingface.co/hexgrad/Kokoro-82M . && \
|
||||
git checkout 8228a351f87c8a6076502c1e3b7e72e821ebec9a;
|
||||
touch .cloned;
|
||||
else
|
||||
touch .cloned;
|
||||
fi;
|
||||
tail -f /dev/null
|
||||
"
|
||||
healthcheck:
|
||||
test: ["CMD", "test", "-f", ".cloned"]
|
||||
interval: 1s
|
||||
timeout: 1s
|
||||
retries: 120
|
||||
start_period: 1s
|
||||
|
||||
kokoro-tts:
|
||||
build:
|
||||
context: .
|
||||
dockerfile: Dockerfile.cpu
|
||||
volumes:
|
||||
- ./api/src:/app/api/src
|
||||
- ./Kokoro-82M:/app/Kokoro-82M
|
||||
ports:
|
||||
- "8880:8880"
|
||||
environment:
|
||||
- PYTHONPATH=/app:/app/Kokoro-82M
|
||||
depends_on:
|
||||
model-fetcher:
|
||||
condition: service_healthy
|
Loading…
Add table
Reference in a new issue