- modified voice loading to copy on init

- adjustments to the combine voices functionality
- error handling and analysis
This commit is contained in:
remsky 2024-12-31 18:55:26 -07:00
parent 510b01cc90
commit 05e1e30c47
11 changed files with 612 additions and 145 deletions

BIN
.coverage

Binary file not shown.

1
.gitignore vendored
View file

@ -5,6 +5,7 @@ output/
*.db
*.pyc
*.pth
*.pt
Kokoro-82M/*
__pycache__/

View file

@ -4,8 +4,8 @@
# Kokoro TTS API
[![Model Commit](https://img.shields.io/badge/model--commit-a67f113-blue)](https://huggingface.co/hexgrad/Kokoro-82M/tree/8228a351f87c8a6076502c1e3b7e72e821ebec9a)
[![Tests](https://img.shields.io/badge/tests-33%20passed-darkgreen)]()
[![Coverage](https://img.shields.io/badge/coverage-97%25-darkgreen)]()
[![Tests](https://img.shields.io/badge/tests-36%20passed-darkgreen)]()
[![Coverage](https://img.shields.io/badge/coverage-91%25-darkgreen)]()
FastAPI wrapper for [Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M) text-to-speech model, providing an OpenAI-compatible endpoint with:
- NVIDIA GPU accelerated inference (or CPU) option
@ -30,33 +30,40 @@ docker compose up --build
# For CPU-only deployment (~10x slower, but doesn't require an NVIDIA GPU):
docker compose -f docker-compose.cpu.yml up --build
```
Test all voices (from another terminal):
```bash
python examples/test_all_voices.py
```
Quick tests (run from another terminal):
Test OpenAI compatibility:
```bash
# Test OpenAI Compatibility
python examples/test_openai_tts.py
# Test all available voices
python examples/test_all_voices.py
```
## OpenAI-Compatible API
List available voices:
```python
# Using OpenAI's Python library
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8880", api_key="not-needed")
response = client.audio.speech.create(
model="kokoro", # Not used but required for compatibility, also accepts library defaults
voice="af_bella",
input="Hello world!",
response_format="mp3"
)
response.stream_to_file("output.mp3")
```
Or Via Requests:
```python
import requests
# Get list of all available voices
response = requests.get("http://localhost:8880/audio/voices")
voices = response.json()["voices"]
```
Generate speech:
```python
import requests
# Generate audio
response = requests.post(
"http://localhost:8880/audio/speech",
json={
@ -73,20 +80,28 @@ with open("output.mp3", "wb") as f:
f.write(response.content)
```
Using OpenAI's Python library:
## Voice Combination
Combine voices and generate audio:
```python
from openai import OpenAI
import requests
client = OpenAI(base_url="http://localhost:8880", api_key="not-needed")
response = client.audio.speech.create(
model="kokoro", # Not used but required for compatibility, also accepts library defaults
voice="af_bella",
input="Hello world!",
response_format="mp3"
# Create combined voice (saved locally on server)
response = requests.post(
"http://localhost:8880/v1/audio/voices/combine",
json=["af_bella", "af_sarah"]
)
combined_voice = response.json()["voice"]
response.stream_to_file("output.mp3")
# Generate audio with combined voice
response = requests.post(
"http://localhost:8880/v1/audio/speech",
json={
"input": "Hello world!",
"voice": combined_voice,
"response_format": "mp3"
}
)
```
## Performance Benchmarks
@ -115,6 +130,13 @@ Key Performance Metrics:
- Multiple audio formats: mp3, wav, opus, flac, (aac & pcm not implemented)
- Natural Boundary Detection:
- Automatically splits and stitches at sentence boundaries to reduce artifacts and maintain performacne
- Voice Combination:
- Averages model weights of any existing voicepacks
- Saves generated voicepacks for future use
<p align="center">
<img src="examples/benchmarks/analysis_comparison.png" width="60%" alt="Voice Analysis Comparison" style="border: 2px solid #333; padding: 10px;">
</p>
*Note: CPU Inference is currently a very basic implementation, and not heavily tested*
@ -133,11 +155,3 @@ This project is licensed under the Apache License 2.0 - see below for details:
- The inference code adapted from StyleTTS2 is MIT licensed
The full Apache 2.0 license text can be found at: https://www.apache.org/licenses/LICENSE-2.0
## Sample
<div align="center";">
https://user-images.githubusercontent.com/338912d2-90f3-41fb-bca0-5db7b4e02287.mp4
</div>

View file

@ -26,6 +26,13 @@ async def create_speech(
):
"""OpenAI-compatible endpoint for text-to-speech"""
try:
# Validate voice exists
available_voices = tts_service.list_voices()
if request.voice not in available_voices:
raise ValueError(
f"Voice '{request.voice}' not found. Available voices: {', '.join(sorted(available_voices))}"
)
# Generate audio directly using TTSService's method
audio, _ = tts_service._generate_audio(
text=request.input,
@ -45,9 +52,18 @@ async def create_speech(
},
)
except ValueError as e:
logger.error(f"Invalid request: {str(e)}")
raise HTTPException(
status_code=400,
detail={"error": "Invalid request", "message": str(e)}
)
except Exception as e:
logger.error(f"Error generating speech: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
raise HTTPException(
status_code=500,
detail={"error": "Server error", "message": str(e)}
)
@router.get("/audio/voices")
@ -63,10 +79,41 @@ async def list_voices(tts_service: TTSService = Depends(get_tts_service)):
@router.post("/audio/voices/combine")
async def combine_voices(request: List[str], tts_service: TTSService = Depends(get_tts_service)):
"""Combine multiple voices into a new voice.
Args:
request: List of voice names to combine
Returns:
Dict with combined voice name and list of all available voices
Raises:
HTTPException:
- 400: Invalid request (wrong number of voices, voice not found)
- 500: Server error (file system issues, combination failed)
"""
try:
t = tts_service.combine_voices(voices=request)
combined_voice = tts_service.combine_voices(voices=request)
voices = tts_service.list_voices()
return {"voices": voices, "voice": t}
return {"voices": voices, "voice": combined_voice}
except ValueError as e:
logger.error(f"Invalid voice combination request: {str(e)}")
raise HTTPException(
status_code=400,
detail={"error": "Invalid request", "message": str(e)}
)
except RuntimeError as e:
logger.error(f"Server error during voice combination: {str(e)}")
raise HTTPException(
status_code=500,
detail={"error": "Server error", "message": str(e)}
)
except Exception as e:
logger.error(f"Error listing voices: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
logger.error(f"Unexpected error during voice combination: {str(e)}")
raise HTTPException(
status_code=500,
detail={"error": "Unexpected error", "message": str(e)}
)

View file

@ -3,7 +3,7 @@ import os
import re
import threading
import time
from typing import List, Tuple
from typing import List, Tuple, Optional
import numpy as np
import scipy.io.wavfile as wavfile
@ -24,6 +24,9 @@ class TTSModel:
_lock = threading.Lock()
_voicepacks = {}
# Directory for all voices (copied base voices, and any created combined voices)
VOICES_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), "voices")
@classmethod
def get_instance(cls):
if cls._instance is None:
@ -39,18 +42,18 @@ class TTSModel:
@classmethod
def get_voicepack(cls, voice_name: str) -> torch.Tensor:
"""Get a voice pack from the voices directory."""
model, device = cls.get_instance()
if voice_name not in cls._voicepacks:
try:
voice_path = os.path.join(
settings.model_dir, settings.voices_dir, f"{voice_name}.pt"
)
voicepack = torch.load(
voice_path, map_location=device, weights_only=True
)
voice_path = os.path.join(cls.VOICES_DIR, f"{voice_name}.pt")
if not os.path.exists(voice_path):
raise FileNotFoundError(f"Voice file not found: {voice_name}")
voicepack = torch.load(voice_path, map_location=device, weights_only=True)
cls._voicepacks[voice_name] = voicepack
except Exception as e:
print(f"Error loading voice {voice_name}: {str(e)}")
logger.error(f"Error loading voice {voice_name}: {str(e)}")
if voice_name != "af":
return cls.get_voicepack("af")
raise
@ -60,13 +63,45 @@ class TTSModel:
class TTSService:
def __init__(self, output_dir: str = None, start_worker: bool = False):
self.output_dir = output_dir
self._ensure_voices()
if start_worker:
self.start_worker()
def _ensure_voices(self):
"""Copy base voices to local voices directory during initialization"""
os.makedirs(TTSModel.VOICES_DIR, exist_ok=True)
base_voices_dir = os.path.join(settings.model_dir, settings.voices_dir)
if os.path.exists(base_voices_dir):
for file in os.listdir(base_voices_dir):
if file.endswith(".pt"):
voice_name = file[:-3]
voice_path = os.path.join(TTSModel.VOICES_DIR, file)
if not os.path.exists(voice_path):
try:
base_path = os.path.join(base_voices_dir, file)
logger.info(f"Copying base voice {voice_name} to voices directory")
voicepack = torch.load(base_path, map_location=TTSModel.get_instance()[1], weights_only=True)
torch.save(voicepack, voice_path)
except Exception as e:
logger.error(f"Error copying voice {voice_name}: {str(e)}")
def _split_text(self, text: str) -> List[str]:
"""Split text into sentences"""
return [s.strip() for s in re.split(r"(?<=[.!?])\s+", text) if s.strip()]
def _get_voice_path(self, voice_name: str) -> Optional[str]:
"""Get the path to a voice file.
Args:
voice_name: Name of the voice to find
Returns:
Path to the voice file if found, None otherwise
"""
voice_path = os.path.join(TTSModel.VOICES_DIR, f"{voice_name}.pt")
return voice_path if os.path.exists(voice_path) else None
def _generate_audio(
self, text: str, voice: str, speed: float, stitch_long_output: bool = True
) -> Tuple[torch.Tensor, float]:
@ -79,9 +114,15 @@ class TTSService:
if not text:
raise ValueError("Text is empty after preprocessing")
# Get model instance and voicepack
# Get model instance
model, device = TTSModel.get_instance()
voicepack = TTSModel.get_voicepack(voice)
# Load voice
voice_path = self._get_voice_path(voice)
if not voice_path:
raise ValueError(f"Voice not found: {voice}")
voicepack = torch.load(voice_path, map_location=device, weights_only=True)
# Generate audio with or without stitching
if stitch_long_output:
@ -143,34 +184,63 @@ class TTSService:
return buffer.getvalue()
def combine_voices(self, voices: List[str]) -> str:
"""Combine multiple voices into a new voice.
Args:
voices: List of voice names to combine
Returns:
Name of the combined voice
Raises:
ValueError: If less than 2 voices provided or voice loading fails
RuntimeError: If voice combination or saving fails
"""
if len(voices) < 2:
return "af"
raise ValueError("At least 2 voices are required for combination")
# Load voices
t_voices: List[torch.Tensor] = []
v_name: List[str] = []
for voice in voices:
voice_path = self._get_voice_path(voice)
if not voice_path:
raise ValueError(f"Voice not found: {voice}")
try:
for file in os.listdir("voices"):
voice_name = file[:-3] # Remove .pt extension
for n in voices:
if n == voice_name:
v_name.append(voice_name)
t_voices.append(torch.load(f"voices/{file}", weights_only=True))
voicepack = torch.load(voice_path, map_location=TTSModel.get_instance()[1], weights_only=True)
t_voices.append(voicepack)
v_name.append(voice)
except Exception as e:
print(f"Error combining voices: {str(e)}")
return "af"
raise ValueError(f"Failed to load voice {voice}: {str(e)}")
# Combine voices
try:
f: str = "_".join(v_name)
v = torch.mean(torch.stack(t_voices), dim=0)
torch.save(v, f"voices/{f}.pt")
combined_path = os.path.join(TTSModel.VOICES_DIR, f"{f}.pt")
# Save combined voice
try:
torch.save(v, combined_path)
except Exception as e:
raise RuntimeError(f"Failed to save combined voice to {combined_path}: {str(e)}")
return f
except Exception as e:
if not isinstance(e, (ValueError, RuntimeError)):
raise RuntimeError(f"Error combining voices: {str(e)}")
raise
def list_voices(self) -> List[str]:
"""List all available voices"""
voices = []
try:
voices_path = os.path.join(settings.model_dir, settings.voices_dir)
for file in os.listdir(voices_path):
for file in os.listdir(TTSModel.VOICES_DIR):
if file.endswith(".pt"):
voice_name = file[:-3] # Remove .pt extension
voices.append(voice_name)
voices.append(file[:-3]) # Remove .pt extension
except Exception as e:
print(f"Error listing voices: {str(e)}")
return voices
logger.error(f"Error listing voices: {str(e)}")
return sorted(voices)

View file

@ -16,18 +16,10 @@ class TTSStatus(str, Enum):
class OpenAISpeechRequest(BaseModel):
model: Literal["tts-1", "tts-1-hd", "kokoro"] = "kokoro"
input: str = Field(..., description="The text to generate audio for")
voice: Literal[
"am_adam",
"am_michael",
"bm_lewis",
"af",
"bm_george",
"bf_isabella",
"bf_emma",
"af_sarah",
"af_bella",
"af_nicole",
] = Field(default="af", description="The voice to use for generation")
voice: str = Field(
default="af",
description="The voice to use for generation. Can be a base voice or a combined voice name."
)
response_format: Literal["mp3", "opus", "aac", "flac", "wav", "pcm"] = Field(
default="mp3",
description="The format to return audio in. Supported formats: mp3, opus, flac, wav. AAC and PCM are not currently supported.",

View file

@ -78,7 +78,8 @@ def test_openai_speech_invalid_voice(mock_tts_service):
"speed": 1.0,
}
response = client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 422 # Validation error
assert response.status_code == 400 # Bad request
assert "not found" in response.json()["detail"]["message"]
def test_openai_speech_invalid_speed(mock_tts_service):
@ -106,4 +107,49 @@ def test_openai_speech_generation_error(mock_tts_service):
}
response = client.post("/v1/audio/speech", json=test_request)
assert response.status_code == 500
assert "Generation failed" in response.json()["detail"]
assert "Generation failed" in response.json()["detail"]["message"]
def test_combine_voices_success(mock_tts_service):
"""Test successful voice combination"""
test_voices = ["af_bella", "af_sarah"]
mock_tts_service.combine_voices.return_value = "af_bella_af_sarah"
response = client.post("/v1/audio/voices/combine", json=test_voices)
assert response.status_code == 200
assert response.json()["voice"] == "af_bella_af_sarah"
mock_tts_service.combine_voices.assert_called_once_with(voices=test_voices)
def test_combine_voices_single_voice(mock_tts_service):
"""Test combining single voice returns default voice"""
test_voices = ["af_bella"]
mock_tts_service.combine_voices.return_value = "af"
response = client.post("/v1/audio/voices/combine", json=test_voices)
assert response.status_code == 200
assert response.json()["voice"] == "af"
def test_combine_voices_empty_list(mock_tts_service):
"""Test combining empty voice list returns default voice"""
test_voices = []
mock_tts_service.combine_voices.return_value = "af"
response = client.post("/v1/audio/voices/combine", json=test_voices)
assert response.status_code == 200
assert response.json()["voice"] == "af"
def test_combine_voices_error(mock_tts_service):
"""Test error handling in voice combination"""
test_voices = ["af_bella", "af_sarah"]
mock_tts_service.combine_voices.side_effect = Exception("Combination failed")
response = client.post("/v1/audio/voices/combine", json=test_voices)
assert response.status_code == 500
assert "Combination failed" in response.json()["detail"]["message"]

View file

@ -79,36 +79,42 @@ def test_generate_audio_empty_text(mock_generate, mock_tokenize, mock_phonemize,
@patch('api.src.services.tts.TTSModel.get_instance')
@patch('api.src.services.tts.TTSModel.get_voicepack')
@patch('os.path.exists')
@patch('api.src.services.tts.normalize_text')
@patch('api.src.services.tts.phonemize')
@patch('api.src.services.tts.tokenize')
@patch('api.src.services.tts.generate')
def test_generate_audio_no_chunks(mock_generate, mock_tokenize, mock_phonemize, mock_normalize, mock_voicepack, mock_instance, tts_service):
@patch('torch.load')
def test_generate_audio_no_chunks(mock_torch_load, mock_generate, mock_tokenize, mock_phonemize, mock_normalize, mock_exists, mock_instance, tts_service):
"""Test generating audio with no successful chunks"""
mock_normalize.return_value = "Test text"
mock_phonemize.return_value = "Test text"
mock_tokenize.return_value = ["test", "text"]
mock_generate.return_value = (None, None)
mock_instance.return_value = (MagicMock(), "cpu")
mock_exists.return_value = True
mock_torch_load.return_value = MagicMock()
with pytest.raises(ValueError, match="No audio chunks were generated successfully"):
tts_service._generate_audio("Test text", "af", 1.0)
@patch('api.src.services.tts.TTSModel.get_instance')
@patch('api.src.services.tts.TTSModel.get_voicepack')
@patch('os.path.exists')
@patch('api.src.services.tts.normalize_text')
@patch('api.src.services.tts.phonemize')
@patch('api.src.services.tts.tokenize')
@patch('api.src.services.tts.generate')
def test_generate_audio_success(mock_generate, mock_tokenize, mock_phonemize, mock_normalize, mock_voicepack, mock_instance, tts_service, sample_audio):
@patch('torch.load')
def test_generate_audio_success(mock_torch_load, mock_generate, mock_tokenize, mock_phonemize, mock_normalize, mock_exists, mock_instance, tts_service, sample_audio):
"""Test successful audio generation"""
mock_normalize.return_value = "Test text"
mock_phonemize.return_value = "Test text"
mock_tokenize.return_value = ["test", "text"]
mock_generate.return_value = (sample_audio, None)
mock_instance.return_value = (MagicMock(), "cpu")
mock_exists.return_value = True
mock_torch_load.return_value = MagicMock()
audio, processing_time = tts_service._generate_audio("Test text", "af", 1.0)
assert isinstance(audio, np.ndarray)
@ -148,34 +154,19 @@ def test_model_initialization_cpu(mock_build_model, mock_cuda_available):
mock_build_model.assert_called_once()
@patch('os.path.exists')
@patch('api.src.services.tts.torch.load')
@patch('os.path.join')
def test_voicepack_loading_error(mock_join, mock_torch_load):
def test_voicepack_loading_error(mock_join, mock_torch_load, mock_exists):
"""Test voicepack loading error handling"""
mock_join.side_effect = lambda *args: '/'.join(args)
mock_torch_load.side_effect = [Exception("Failed to load voice"), MagicMock()]
mock_exists.side_effect = lambda x: False # All voice files don't exist
TTSModel._instance = (MagicMock(), "cpu") # Mock instance
TTSModel._voicepacks = {} # Reset voicepacks
# Should fall back to 'af' voice
voicepack = TTSModel.get_voicepack("nonexistent_voice")
assert mock_torch_load.call_count == 2 # Tried original voice then fallback
assert isinstance(voicepack, MagicMock) # Successfully got fallback voice
@patch('api.src.services.tts.torch.load')
@patch('os.path.join')
def test_voicepack_loading_error_af(mock_join, mock_torch_load):
"""Test voicepack loading error for 'af' voice"""
mock_join.side_effect = lambda *args: '/'.join(args)
mock_torch_load.side_effect = Exception("Failed to load voice")
TTSModel._instance = (MagicMock(), "cpu") # Mock instance
TTSModel._voicepacks = {} # Reset voicepacks
with pytest.raises(Exception):
TTSModel.get_voicepack("af")
with pytest.raises(FileNotFoundError, match="Voice file not found: af"):
TTSModel.get_voicepack("nonexistent_voice")
def test_save_audio(tts_service, sample_audio, tmp_path):
@ -188,14 +179,17 @@ def test_save_audio(tts_service, sample_audio, tmp_path):
@patch('api.src.services.tts.TTSModel.get_instance')
@patch('api.src.services.tts.TTSModel.get_voicepack')
@patch('os.path.exists')
@patch('api.src.services.tts.normalize_text')
@patch('api.src.services.tts.generate')
def test_generate_audio_without_stitching(mock_generate, mock_normalize, mock_voicepack, mock_instance, tts_service, sample_audio):
@patch('torch.load')
def test_generate_audio_without_stitching(mock_torch_load, mock_generate, mock_normalize, mock_exists, mock_instance, tts_service, sample_audio):
"""Test generating audio without text stitching"""
mock_normalize.return_value = "Test text"
mock_generate.return_value = (sample_audio, None)
mock_instance.return_value = (MagicMock(), "cpu")
mock_exists.return_value = True
mock_torch_load.return_value = MagicMock()
audio, processing_time = tts_service._generate_audio("Test text", "af", 1.0, stitch_long_output=False)
assert isinstance(audio, np.ndarray)
@ -214,16 +208,19 @@ def test_list_voices_error(mock_listdir, tts_service):
@patch('api.src.services.tts.TTSModel.get_instance')
@patch('api.src.services.tts.TTSModel.get_voicepack')
@patch('os.path.exists')
@patch('api.src.services.tts.normalize_text')
@patch('api.src.services.tts.phonemize')
@patch('api.src.services.tts.tokenize')
@patch('api.src.services.tts.generate')
def test_generate_audio_phonemize_error(mock_generate, mock_tokenize, mock_phonemize, mock_normalize, mock_voicepack, mock_instance, tts_service):
@patch('torch.load')
def test_generate_audio_phonemize_error(mock_torch_load, mock_generate, mock_tokenize, mock_phonemize, mock_normalize, mock_exists, mock_instance, tts_service):
"""Test handling phonemization error"""
mock_normalize.return_value = "Test text"
mock_phonemize.side_effect = Exception("Phonemization failed")
mock_instance.return_value = (MagicMock(), "cpu")
mock_exists.return_value = True
mock_torch_load.return_value = MagicMock()
mock_generate.return_value = (None, None)
with pytest.raises(ValueError, match="No audio chunks were generated successfully"):
@ -231,14 +228,17 @@ def test_generate_audio_phonemize_error(mock_generate, mock_tokenize, mock_phone
@patch('api.src.services.tts.TTSModel.get_instance')
@patch('api.src.services.tts.TTSModel.get_voicepack')
@patch('os.path.exists')
@patch('api.src.services.tts.normalize_text')
@patch('api.src.services.tts.generate')
def test_generate_audio_error(mock_generate, mock_normalize, mock_voicepack, mock_instance, tts_service):
@patch('torch.load')
def test_generate_audio_error(mock_torch_load, mock_generate, mock_normalize, mock_exists, mock_instance, tts_service):
"""Test handling generation error"""
mock_normalize.return_value = "Test text"
mock_generate.side_effect = Exception("Generation failed")
mock_instance.return_value = (MagicMock(), "cpu")
mock_exists.return_value = True
mock_torch_load.return_value = MagicMock()
with pytest.raises(ValueError, match="No audio chunks were generated successfully"):
tts_service._generate_audio("Test text", "af", 1.0)

Binary file not shown.

After

Width:  |  Height:  |  Size: 754 KiB

View file

@ -0,0 +1,330 @@
#!/usr/bin/env python3
import argparse
import os
from typing import List, Optional, Dict, Tuple
import requests
import numpy as np
from scipy.io import wavfile
import matplotlib.pyplot as plt
def submit_combine_voices(voices: List[str], base_url: str = "http://localhost:8880") -> Optional[str]:
"""Combine multiple voices into a new voice.
Args:
voices: List of voice names to combine (e.g. ["af_bella", "af_sarah"])
base_url: API base URL
Returns:
Name of the combined voice (e.g. "af_bella_af_sarah") or None if error
"""
try:
response = requests.post(f"{base_url}/v1/audio/voices/combine", json=voices)
print(f"Response status: {response.status_code}")
print(f"Raw response: {response.text}")
# Accept both 200 and 201 as success
if response.status_code not in [200, 201]:
try:
error = response.json()["detail"]["message"]
print(f"Error combining voices: {error}")
except:
print(f"Error combining voices: {response.text}")
return None
try:
data = response.json()
if "voices" in data:
print(f"Available voices: {', '.join(sorted(data['voices']))}")
return data["voice"]
except Exception as e:
print(f"Error parsing response: {e}")
return None
except Exception as e:
print(f"Error: {e}")
return None
def generate_speech(text: str, voice: str, base_url: str = "http://localhost:8880", output_file: str = "output.mp3") -> bool:
"""Generate speech using specified voice.
Args:
text: Text to convert to speech
voice: Voice name to use
base_url: API base URL
output_file: Path to save audio file
Returns:
True if successful, False otherwise
"""
try:
response = requests.post(
f"{base_url}/v1/audio/speech",
json={
"input": text,
"voice": voice,
"speed": 1.0,
"response_format": "wav" # Use WAV for analysis
}
)
if response.status_code != 200:
error = response.json().get("detail", {}).get("message", response.text)
print(f"Error generating speech: {error}")
return False
# Save the audio
os.makedirs(os.path.dirname(output_file) if os.path.dirname(output_file) else ".", exist_ok=True)
with open(output_file, "wb") as f:
f.write(response.content)
print(f"Saved audio to {output_file}")
return True
except Exception as e:
print(f"Error: {e}")
return False
def analyze_audio(filepath: str) -> Tuple[np.ndarray, int, dict]:
"""Analyze audio file and return samples, sample rate, and audio characteristics.
Args:
filepath: Path to audio file
Returns:
Tuple of (samples, sample_rate, characteristics)
"""
sample_rate, samples = wavfile.read(filepath)
# Convert to mono if stereo
if len(samples.shape) > 1:
samples = np.mean(samples, axis=1)
# Calculate basic stats
max_amp = np.max(np.abs(samples))
rms = np.sqrt(np.mean(samples**2))
duration = len(samples) / sample_rate
# Zero crossing rate (helps identify voice characteristics)
zero_crossings = np.sum(np.abs(np.diff(np.signbit(samples)))) / len(samples)
# Simple frequency analysis
if len(samples) > 0:
# Use FFT to get frequency components
fft_result = np.fft.fft(samples)
freqs = np.fft.fftfreq(len(samples), 1/sample_rate)
# Get positive frequencies only
pos_mask = freqs > 0
freqs = freqs[pos_mask]
magnitudes = np.abs(fft_result)[pos_mask]
# Find dominant frequencies (top 3)
top_indices = np.argsort(magnitudes)[-3:]
dominant_freqs = freqs[top_indices]
# Calculate spectral centroid (brightness of sound)
spectral_centroid = np.sum(freqs * magnitudes) / np.sum(magnitudes)
else:
dominant_freqs = []
spectral_centroid = 0
characteristics = {
"max_amplitude": max_amp,
"rms": rms,
"duration": duration,
"zero_crossing_rate": zero_crossings,
"dominant_frequencies": dominant_freqs,
"spectral_centroid": spectral_centroid
}
return samples, sample_rate, characteristics
def setup_plot(fig, ax, title):
"""Configure plot styling"""
# Improve grid
ax.grid(True, linestyle="--", alpha=0.3, color="#ffffff")
# Set title and labels with better fonts
ax.set_title(title, pad=20, fontsize=16, fontweight="bold", color="#ffffff")
ax.set_xlabel(ax.get_xlabel(), fontsize=14, fontweight="medium", color="#ffffff")
ax.set_ylabel(ax.get_ylabel(), fontsize=14, fontweight="medium", color="#ffffff")
# Improve tick labels
ax.tick_params(labelsize=12, colors="#ffffff")
# Style spines
for spine in ax.spines.values():
spine.set_color("#ffffff")
spine.set_alpha(0.3)
spine.set_linewidth(0.5)
# Set background colors
ax.set_facecolor("#1a1a2e")
fig.patch.set_facecolor("#1a1a2e")
return fig, ax
def plot_analysis(audio_files: Dict[str, str], output_dir: str):
"""Plot comprehensive voice analysis including waveforms and metrics comparison.
Args:
audio_files: Dictionary of label -> filepath
output_dir: Directory to save plot files
"""
# Set dark style
plt.style.use('dark_background')
# Create figure with subplots
fig = plt.figure(figsize=(15, 15))
fig.patch.set_facecolor("#1a1a2e")
num_files = len(audio_files)
# Create subplot grid with proper spacing
gs = plt.GridSpec(num_files + 1, 2, height_ratios=[1.5]*num_files + [1],
hspace=0.4, wspace=0.3)
# Analyze all files first
all_chars = {}
for i, (label, filepath) in enumerate(audio_files.items()):
samples, sample_rate, chars = analyze_audio(filepath)
all_chars[label] = chars
# Plot waveform spanning both columns
ax = plt.subplot(gs[i, :])
time = np.arange(len(samples)) / sample_rate
plt.plot(time, samples / chars['max_amplitude'], linewidth=0.5, color="#ff2a6d")
ax.set_xlabel("Time (seconds)")
ax.set_ylabel("Normalized Amplitude")
ax.set_ylim(-1.1, 1.1)
setup_plot(fig, ax, f"Waveform: {label}")
# Colors for voices
colors = ["#ff2a6d", "#05d9e8", "#d1f7ff"]
# Create two subplots for metrics with similar scales
# Left subplot: Brightness and Volume
ax1 = plt.subplot(gs[num_files, 0])
metrics1 = [
('Brightness', [chars['spectral_centroid']/1000 for chars in all_chars.values()], 'kHz'),
('Volume', [chars['rms']*100 for chars in all_chars.values()], 'RMS×100')
]
# Right subplot: Voice Pitch and Texture
ax2 = plt.subplot(gs[num_files, 1])
metrics2 = [
('Voice Pitch', [min(chars['dominant_frequencies']) for chars in all_chars.values()], 'Hz'),
('Texture', [chars['zero_crossing_rate']*1000 for chars in all_chars.values()], 'ZCR×1000')
]
def plot_grouped_bars(ax, metrics, show_legend=True):
n_groups = len(metrics)
n_voices = len(audio_files)
bar_width = 0.25
indices = np.arange(n_groups)
# Get max value for y-axis scaling
max_val = max(max(m[1]) for m in metrics)
for i, (voice, color) in enumerate(zip(audio_files.keys(), colors)):
values = [m[1][i] for m in metrics]
offset = (i - n_voices/2 + 0.5) * bar_width
bars = ax.bar(indices + offset, values, bar_width,
label=voice, color=color, alpha=0.8)
# Add value labels on top of bars
for bar in bars:
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height,
f'{height:.1f}',
ha='center', va='bottom', color='white',
fontsize=10)
ax.set_xticks(indices)
ax.set_xticklabels([f"{m[0]}\n({m[2]})" for m in metrics])
# Set y-axis limits with some padding
ax.set_ylim(0, max_val * 1.2)
if show_legend:
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left',
facecolor="#1a1a2e", edgecolor="#ffffff")
# Plot both subplots
plot_grouped_bars(ax1, metrics1, show_legend=True)
plot_grouped_bars(ax2, metrics2, show_legend=False)
# Style both subplots
setup_plot(fig, ax1, 'Brightness and Volume')
setup_plot(fig, ax2, 'Voice Pitch and Texture')
# Add y-axis labels
ax1.set_ylabel('Value')
ax2.set_ylabel('Value')
# Adjust the figure size to accommodate the legend
fig.set_size_inches(15, 15)
# Add padding around the entire figure
plt.subplots_adjust(right=0.85, top=0.95, bottom=0.05, left=0.1)
plt.savefig(os.path.join(output_dir, "analysis_comparison.png"), dpi=300)
print(f"Saved analysis comparison to {output_dir}/analysis_comparison.png")
# Print detailed comparative analysis
print("\nDetailed Voice Analysis:")
for label, chars in all_chars.items():
print(f"\n{label}:")
print(f" Max Amplitude: {chars['max_amplitude']:.2f}")
print(f" RMS (loudness): {chars['rms']:.2f}")
print(f" Duration: {chars['duration']:.2f}s")
print(f" Zero Crossing Rate: {chars['zero_crossing_rate']:.3f}")
print(f" Spectral Centroid: {chars['spectral_centroid']:.0f}Hz")
print(f" Dominant Frequencies: {', '.join(f'{f:.0f}Hz' for f in chars['dominant_frequencies'])}")
def main():
parser = argparse.ArgumentParser(description="Kokoro Voice Analysis Demo")
parser.add_argument("--voices", nargs="+", type=str, help="Voices to combine")
parser.add_argument("--text", type=str, default="Hello! This is a test of combined voices.", help="Text to speak")
parser.add_argument("--url", default="http://localhost:8880", help="API base URL")
parser.add_argument("--output-dir", default="examples/output", help="Output directory for audio files")
args = parser.parse_args()
if not args.voices:
print("No voices provided, using default test voices")
args.voices = ["af_bella", "af_nicole"]
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
# Dictionary to store audio files for analysis
audio_files = {}
# Generate speech with individual voices
print("Generating speech with individual voices...")
for voice in args.voices:
output_file = os.path.join(args.output_dir, f"analysis_{voice}.wav")
if generate_speech(args.text, voice, args.url, output_file):
audio_files[voice] = output_file
# Generate speech with combined voice
print(f"\nCombining voices: {', '.join(args.voices)}")
combined_voice = submit_combine_voices(args.voices, args.url)
if combined_voice:
print(f"Successfully created combined voice: {combined_voice}")
output_file = os.path.join(args.output_dir, f"analysis_combined_{combined_voice}.wav")
if generate_speech(args.text, combined_voice, args.url, output_file):
audio_files["combined"] = output_file
# Generate comparison plots
plot_analysis(audio_files, args.output_dir)
else:
print("Failed to combine voices")
if __name__ == "__main__":
main()

View file

@ -1,33 +0,0 @@
#!/usr/bin/env python3
import argparse
from typing import List, Optional
import requests
def submit_combine_voices(voices: List[str], base_url: str = "http://localhost:8880") -> Optional[List[str]]:
try:
response = requests.post(f"{base_url}/v1/audio/voices/combine", json=voices)
if response.status_code != 200:
print(f"Error submitting request: {response.text}")
return None
return response.json()["voices"]
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
return None
def main():
parser = argparse.ArgumentParser(description="Kokoro TTS CLI")
parser.add_argument("--voices", nargs="+", type=str, help="Voices to combine")
parser.add_argument("--url", default="http://localhost:8880", help="API base URL")
args = parser.parse_args()
success = submit_combine_voices(args.voices, args.url)
if success:
for voice in success:
print(f" {voice}")
if __name__ == "__main__":
main()