mirror of
https://github.com/remsky/Kokoro-FastAPI.git
synced 2025-08-05 16:48:53 +00:00
Merge branch 'remsky:master' into master
This commit is contained in:
commit
0241423375
19 changed files with 512 additions and 195 deletions
|
@ -13,7 +13,7 @@
|
||||||
[](https://huggingface.co/hexgrad/Kokoro-82M/commit/9901c2b79161b6e898b7ea857ae5298f47b8b0d6)
|
[](https://huggingface.co/hexgrad/Kokoro-82M/commit/9901c2b79161b6e898b7ea857ae5298f47b8b0d6)
|
||||||
|
|
||||||
Dockerized FastAPI wrapper for [Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M) text-to-speech model
|
Dockerized FastAPI wrapper for [Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M) text-to-speech model
|
||||||
- Multi-language support (English, Japanese, Korean, Chinese, _Vietnamese soon_)
|
- Multi-language support (English, Japanese, Chinese, _Vietnamese soon_)
|
||||||
- OpenAI-compatible Speech endpoint, NVIDIA GPU accelerated or CPU inference with PyTorch
|
- OpenAI-compatible Speech endpoint, NVIDIA GPU accelerated or CPU inference with PyTorch
|
||||||
- ONNX support coming soon, see v0.1.5 and earlier for legacy ONNX support in the interim
|
- ONNX support coming soon, see v0.1.5 and earlier for legacy ONNX support in the interim
|
||||||
- Debug endpoints for monitoring system stats, integrated web UI on localhost:8880/web
|
- Debug endpoints for monitoring system stats, integrated web UI on localhost:8880/web
|
||||||
|
|
2
VERSION
2
VERSION
|
@ -1 +1 @@
|
||||||
0.3.0
|
0.2.4
|
|
@ -31,6 +31,7 @@ class Settings(BaseSettings):
|
||||||
|
|
||||||
# Audio Settings
|
# Audio Settings
|
||||||
sample_rate: int = 24000
|
sample_rate: int = 24000
|
||||||
|
default_volume_multiplier: float = 1.0
|
||||||
# Text Processing Settings
|
# Text Processing Settings
|
||||||
target_min_tokens: int = 175 # Target minimum tokens per chunk
|
target_min_tokens: int = 175 # Target minimum tokens per chunk
|
||||||
target_max_tokens: int = 250 # Target maximum tokens per chunk
|
target_max_tokens: int = 250 # Target maximum tokens per chunk
|
||||||
|
|
|
@ -300,7 +300,7 @@ async def get_web_file_path(filename: str) -> str:
|
||||||
)
|
)
|
||||||
|
|
||||||
# Construct web directory path relative to project root
|
# Construct web directory path relative to project root
|
||||||
web_dir = os.path.join("/app", settings.web_player_path)
|
web_dir = os.path.join(root_dir, settings.web_player_path)
|
||||||
|
|
||||||
# Search in web directory
|
# Search in web directory
|
||||||
search_paths = [web_dir]
|
search_paths = [web_dir]
|
||||||
|
|
|
@ -141,6 +141,8 @@ Model files not found! You need to download the Kokoro V1 model:
|
||||||
|
|
||||||
try:
|
try:
|
||||||
async for chunk in self._backend.generate(*args, **kwargs):
|
async for chunk in self._backend.generate(*args, **kwargs):
|
||||||
|
if settings.default_volume_multiplier != 1.0:
|
||||||
|
chunk.audio *= settings.default_volume_multiplier
|
||||||
yield chunk
|
yield chunk
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise RuntimeError(f"Generation failed: {e}")
|
raise RuntimeError(f"Generation failed: {e}")
|
||||||
|
|
|
@ -319,6 +319,7 @@ async def create_captioned_speech(
|
||||||
writer=writer,
|
writer=writer,
|
||||||
speed=request.speed,
|
speed=request.speed,
|
||||||
return_timestamps=request.return_timestamps,
|
return_timestamps=request.return_timestamps,
|
||||||
|
volume_multiplier=request.volume_multiplier,
|
||||||
normalization_options=request.normalization_options,
|
normalization_options=request.normalization_options,
|
||||||
lang_code=request.lang_code,
|
lang_code=request.lang_code,
|
||||||
)
|
)
|
||||||
|
|
|
@ -152,6 +152,7 @@ async def stream_audio_chunks(
|
||||||
speed=request.speed,
|
speed=request.speed,
|
||||||
output_format=request.response_format,
|
output_format=request.response_format,
|
||||||
lang_code=request.lang_code,
|
lang_code=request.lang_code,
|
||||||
|
volume_multiplier=request.volume_multiplier,
|
||||||
normalization_options=request.normalization_options,
|
normalization_options=request.normalization_options,
|
||||||
return_timestamps=unique_properties["return_timestamps"],
|
return_timestamps=unique_properties["return_timestamps"],
|
||||||
):
|
):
|
||||||
|
@ -300,6 +301,7 @@ async def create_speech(
|
||||||
voice=voice_name,
|
voice=voice_name,
|
||||||
writer=writer,
|
writer=writer,
|
||||||
speed=request.speed,
|
speed=request.speed,
|
||||||
|
volume_multiplier=request.volume_multiplier,
|
||||||
normalization_options=request.normalization_options,
|
normalization_options=request.normalization_options,
|
||||||
lang_code=request.lang_code,
|
lang_code=request.lang_code,
|
||||||
)
|
)
|
||||||
|
|
|
@ -80,12 +80,12 @@ class AudioNormalizer:
|
||||||
non_silent_index_start, non_silent_index_end = None, None
|
non_silent_index_start, non_silent_index_end = None, None
|
||||||
|
|
||||||
for X in range(0, len(audio_data)):
|
for X in range(0, len(audio_data)):
|
||||||
if audio_data[X] > amplitude_threshold:
|
if abs(audio_data[X]) > amplitude_threshold:
|
||||||
non_silent_index_start = X
|
non_silent_index_start = X
|
||||||
break
|
break
|
||||||
|
|
||||||
for X in range(len(audio_data) - 1, -1, -1):
|
for X in range(len(audio_data) - 1, -1, -1):
|
||||||
if audio_data[X] > amplitude_threshold:
|
if abs(audio_data[X]) > amplitude_threshold:
|
||||||
non_silent_index_end = X
|
non_silent_index_end = X
|
||||||
break
|
break
|
||||||
|
|
||||||
|
|
|
@ -32,19 +32,29 @@ class StreamingAudioWriter:
|
||||||
if self.format in ["wav", "flac", "mp3", "pcm", "aac", "opus"]:
|
if self.format in ["wav", "flac", "mp3", "pcm", "aac", "opus"]:
|
||||||
if self.format != "pcm":
|
if self.format != "pcm":
|
||||||
self.output_buffer = BytesIO()
|
self.output_buffer = BytesIO()
|
||||||
|
container_options = {}
|
||||||
|
# Try disabling Xing VBR header for MP3 to fix iOS timeline reading issues
|
||||||
|
if self.format == 'mp3':
|
||||||
|
# Disable Xing VBR header
|
||||||
|
container_options = {'write_xing': '0'}
|
||||||
|
logger.debug("Disabling Xing VBR header for MP3 encoding.")
|
||||||
|
|
||||||
self.container = av.open(
|
self.container = av.open(
|
||||||
self.output_buffer,
|
self.output_buffer,
|
||||||
mode="w",
|
mode="w",
|
||||||
format=self.format if self.format != "aac" else "adts",
|
format=self.format if self.format != "aac" else "adts",
|
||||||
|
options=container_options # Pass options here
|
||||||
)
|
)
|
||||||
self.stream = self.container.add_stream(
|
self.stream = self.container.add_stream(
|
||||||
codec_map[self.format],
|
codec_map[self.format],
|
||||||
sample_rate=self.sample_rate,
|
rate=self.sample_rate,
|
||||||
layout="mono" if self.channels == 1 else "stereo",
|
layout="mono" if self.channels == 1 else "stereo",
|
||||||
)
|
)
|
||||||
|
# Set bit_rate only for codecs where it's applicable and useful
|
||||||
|
if self.format in ['mp3', 'aac', 'opus']:
|
||||||
self.stream.bit_rate = 128000
|
self.stream.bit_rate = 128000
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported format: {format}")
|
raise ValueError(f"Unsupported format: {self.format}") # Use self.format here
|
||||||
|
|
||||||
def close(self):
|
def close(self):
|
||||||
if hasattr(self, "container"):
|
if hasattr(self, "container"):
|
||||||
|
@ -65,12 +75,18 @@ class StreamingAudioWriter:
|
||||||
|
|
||||||
if finalize:
|
if finalize:
|
||||||
if self.format != "pcm":
|
if self.format != "pcm":
|
||||||
|
# Flush stream encoder
|
||||||
packets = self.stream.encode(None)
|
packets = self.stream.encode(None)
|
||||||
for packet in packets:
|
for packet in packets:
|
||||||
self.container.mux(packet)
|
self.container.mux(packet)
|
||||||
|
|
||||||
|
# Closing the container handles writing the trailer and finalizing the file.
|
||||||
|
# No explicit flush method is available or needed here.
|
||||||
|
logger.debug("Muxed final packets.")
|
||||||
|
|
||||||
|
# Get the final bytes from the buffer *before* closing it
|
||||||
data = self.output_buffer.getvalue()
|
data = self.output_buffer.getvalue()
|
||||||
self.close()
|
self.close() # Close container and buffer
|
||||||
return data
|
return data
|
||||||
|
|
||||||
if audio_data is None or len(audio_data) == 0:
|
if audio_data is None or len(audio_data) == 0:
|
||||||
|
|
|
@ -11,7 +11,7 @@ from typing import List, Optional, Union
|
||||||
|
|
||||||
import inflect
|
import inflect
|
||||||
from numpy import number
|
from numpy import number
|
||||||
from text_to_num import text2num
|
# from text_to_num import text2num
|
||||||
from torch import mul
|
from torch import mul
|
||||||
|
|
||||||
from ...structures.schemas import NormalizationOptions
|
from ...structures.schemas import NormalizationOptions
|
||||||
|
@ -134,6 +134,23 @@ VALID_UNITS = {
|
||||||
"px": "pixel", # CSS units
|
"px": "pixel", # CSS units
|
||||||
}
|
}
|
||||||
|
|
||||||
|
SYMBOL_REPLACEMENTS = {
|
||||||
|
'~': ' ',
|
||||||
|
'@': ' at ',
|
||||||
|
'#': ' number ',
|
||||||
|
'$': ' dollar ',
|
||||||
|
'%': ' percent ',
|
||||||
|
'^': ' ',
|
||||||
|
'&': ' and ',
|
||||||
|
'*': ' ',
|
||||||
|
'_': ' ',
|
||||||
|
'|': ' ',
|
||||||
|
'\\': ' ',
|
||||||
|
'/': ' slash ',
|
||||||
|
'=': ' equals ',
|
||||||
|
'+': ' plus ',
|
||||||
|
}
|
||||||
|
|
||||||
MONEY_UNITS = {"$": ("dollar", "cent"), "£": ("pound", "pence"), "€": ("euro", "cent")}
|
MONEY_UNITS = {"$": ("dollar", "cent"), "£": ("pound", "pence"), "€": ("euro", "cent")}
|
||||||
|
|
||||||
# Pre-compiled regex patterns for performance
|
# Pre-compiled regex patterns for performance
|
||||||
|
@ -391,6 +408,7 @@ def handle_time(t: re.Match[str]) -> str:
|
||||||
|
|
||||||
def normalize_text(text: str, normalization_options: NormalizationOptions) -> str:
|
def normalize_text(text: str, normalization_options: NormalizationOptions) -> str:
|
||||||
"""Normalize text for TTS processing"""
|
"""Normalize text for TTS processing"""
|
||||||
|
|
||||||
# Handle email addresses first if enabled
|
# Handle email addresses first if enabled
|
||||||
if normalization_options.email_normalization:
|
if normalization_options.email_normalization:
|
||||||
text = EMAIL_PATTERN.sub(handle_email, text)
|
text = EMAIL_PATTERN.sub(handle_email, text)
|
||||||
|
@ -415,7 +433,7 @@ def normalize_text(text: str, normalization_options: NormalizationOptions) -> st
|
||||||
text,
|
text,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Replace quotes and brackets
|
# Replace quotes and brackets (additional cleanup)
|
||||||
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
|
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
|
||||||
text = text.replace("«", chr(8220)).replace("»", chr(8221))
|
text = text.replace("«", chr(8220)).replace("»", chr(8221))
|
||||||
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
|
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
|
||||||
|
@ -435,6 +453,11 @@ def normalize_text(text: str, normalization_options: NormalizationOptions) -> st
|
||||||
text = re.sub(r" +", " ", text)
|
text = re.sub(r" +", " ", text)
|
||||||
text = re.sub(r"(?<=\n) +(?=\n)", "", text)
|
text = re.sub(r"(?<=\n) +(?=\n)", "", text)
|
||||||
|
|
||||||
|
# Handle special characters that might cause audio artifacts first
|
||||||
|
# Replace newlines with spaces (or pauses if needed)
|
||||||
|
text = text.replace('\n', ' ')
|
||||||
|
text = text.replace('\r', ' ')
|
||||||
|
|
||||||
# Handle titles and abbreviations
|
# Handle titles and abbreviations
|
||||||
text = re.sub(r"\bD[Rr]\.(?= [A-Z])", "Doctor", text)
|
text = re.sub(r"\bD[Rr]\.(?= [A-Z])", "Doctor", text)
|
||||||
text = re.sub(r"\b(?:Mr\.|MR\.(?= [A-Z]))", "Mister", text)
|
text = re.sub(r"\b(?:Mr\.|MR\.(?= [A-Z]))", "Mister", text)
|
||||||
|
@ -445,7 +468,7 @@ def normalize_text(text: str, normalization_options: NormalizationOptions) -> st
|
||||||
# Handle common words
|
# Handle common words
|
||||||
text = re.sub(r"(?i)\b(y)eah?\b", r"\1e'a", text)
|
text = re.sub(r"(?i)\b(y)eah?\b", r"\1e'a", text)
|
||||||
|
|
||||||
# Handle numbers and money
|
# Handle numbers and money BEFORE replacing special characters
|
||||||
text = re.sub(r"(?<=\d),(?=\d)", "", text)
|
text = re.sub(r"(?<=\d),(?=\d)", "", text)
|
||||||
|
|
||||||
text = MONEY_PATTERN.sub(
|
text = MONEY_PATTERN.sub(
|
||||||
|
@ -457,6 +480,11 @@ def normalize_text(text: str, normalization_options: NormalizationOptions) -> st
|
||||||
|
|
||||||
text = re.sub(r"\d*\.\d+", handle_decimal, text)
|
text = re.sub(r"\d*\.\d+", handle_decimal, text)
|
||||||
|
|
||||||
|
# Handle other problematic symbols AFTER money/number processing
|
||||||
|
if normalization_options.replace_remaining_symbols:
|
||||||
|
for symbol, replacement in SYMBOL_REPLACEMENTS.items():
|
||||||
|
text = text.replace(symbol, replacement)
|
||||||
|
|
||||||
# Handle various formatting
|
# Handle various formatting
|
||||||
text = re.sub(r"(?<=\d)-(?=\d)", " to ", text)
|
text = re.sub(r"(?<=\d)-(?=\d)", " to ", text)
|
||||||
text = re.sub(r"(?<=\d)S", " S", text)
|
text = re.sub(r"(?<=\d)S", " S", text)
|
||||||
|
@ -467,4 +495,6 @@ def normalize_text(text: str, normalization_options: NormalizationOptions) -> st
|
||||||
)
|
)
|
||||||
text = re.sub(r"(?i)(?<=[A-Z])\.(?=[A-Z])", "-", text)
|
text = re.sub(r"(?i)(?<=[A-Z])\.(?=[A-Z])", "-", text)
|
||||||
|
|
||||||
|
text = re.sub(r"\s{2,}", " ", text)
|
||||||
|
|
||||||
return text.strip()
|
return text.strip()
|
||||||
|
|
|
@ -4,6 +4,7 @@ from abc import ABC, abstractmethod
|
||||||
import phonemizer
|
import phonemizer
|
||||||
|
|
||||||
from .normalizer import normalize_text
|
from .normalizer import normalize_text
|
||||||
|
from ...structures.schemas import NormalizationOptions
|
||||||
|
|
||||||
phonemizers = {}
|
phonemizers = {}
|
||||||
|
|
||||||
|
@ -75,7 +76,7 @@ def create_phonemizer(language: str = "a") -> PhonemizerBackend:
|
||||||
Phonemizer backend instance
|
Phonemizer backend instance
|
||||||
"""
|
"""
|
||||||
# Map language codes to espeak language codes
|
# Map language codes to espeak language codes
|
||||||
lang_map = {"a": "en-us", "b": "en-gb"}
|
lang_map = {"a": "en-us", "b": "en-gb", "z": "z"}
|
||||||
|
|
||||||
if language not in lang_map:
|
if language not in lang_map:
|
||||||
raise ValueError(f"Unsupported language code: {language}")
|
raise ValueError(f"Unsupported language code: {language}")
|
||||||
|
@ -83,20 +84,24 @@ def create_phonemizer(language: str = "a") -> PhonemizerBackend:
|
||||||
return EspeakBackend(lang_map[language])
|
return EspeakBackend(lang_map[language])
|
||||||
|
|
||||||
|
|
||||||
def phonemize(text: str, language: str = "a", normalize: bool = True) -> str:
|
def phonemize(text: str, language: str = "a") -> str:
|
||||||
"""Convert text to phonemes
|
"""Convert text to phonemes
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
text: Text to convert to phonemes
|
text: Text to convert to phonemes
|
||||||
language: Language code ('a' for US English, 'b' for British English)
|
language: Language code ('a' for US English, 'b' for British English)
|
||||||
normalize: Whether to normalize text before phonemization
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Phonemized text
|
Phonemized text
|
||||||
"""
|
"""
|
||||||
global phonemizers
|
global phonemizers
|
||||||
if normalize:
|
|
||||||
text = normalize_text(text)
|
# Strip input text first to remove problematic leading/trailing spaces
|
||||||
|
text = text.strip()
|
||||||
|
|
||||||
if language not in phonemizers:
|
if language not in phonemizers:
|
||||||
phonemizers[language] = create_phonemizer(language)
|
phonemizers[language] = create_phonemizer(language)
|
||||||
return phonemizers[language].phonemize(text)
|
|
||||||
|
result = phonemizers[language].phonemize(text)
|
||||||
|
# Final strip to ensure no leading/trailing spaces in phonemes
|
||||||
|
return result.strip()
|
||||||
|
|
|
@ -2,7 +2,7 @@
|
||||||
|
|
||||||
import re
|
import re
|
||||||
import time
|
import time
|
||||||
from typing import AsyncGenerator, Dict, List, Tuple
|
from typing import AsyncGenerator, Dict, List, Tuple, Optional
|
||||||
|
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
|
|
||||||
|
@ -13,7 +13,11 @@ from .phonemizer import phonemize
|
||||||
from .vocabulary import tokenize
|
from .vocabulary import tokenize
|
||||||
|
|
||||||
# Pre-compiled regex patterns for performance
|
# Pre-compiled regex patterns for performance
|
||||||
CUSTOM_PHONEMES = re.compile(r"(\[([^\]]|\n)*?\])(\(\/([^\/)]|\n)*?\/\))")
|
# Updated regex to be more strict and avoid matching isolated brackets
|
||||||
|
# Only matches complete patterns like [word](/ipa/) and prevents catastrophic backtracking
|
||||||
|
CUSTOM_PHONEMES = re.compile(r"(\[[^\[\]]*?\])(\(\/[^\/\(\)]*?\/\))")
|
||||||
|
# Pattern to find pause tags like [pause:0.5s]
|
||||||
|
PAUSE_TAG_PATTERN = re.compile(r"\[pause:(\d+(?:\.\d+)?)s\]", re.IGNORECASE)
|
||||||
|
|
||||||
|
|
||||||
def process_text_chunk(
|
def process_text_chunk(
|
||||||
|
@ -31,6 +35,12 @@ def process_text_chunk(
|
||||||
"""
|
"""
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
|
# Strip input text to remove any leading/trailing spaces that could cause artifacts
|
||||||
|
text = text.strip()
|
||||||
|
|
||||||
|
if not text:
|
||||||
|
return []
|
||||||
|
|
||||||
if skip_phonemize:
|
if skip_phonemize:
|
||||||
# Input is already phonemes, just tokenize
|
# Input is already phonemes, just tokenize
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
|
@ -42,7 +52,9 @@ def process_text_chunk(
|
||||||
t1 = time.time()
|
t1 = time.time()
|
||||||
|
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
phonemes = phonemize(text, language, normalize=False) # Already normalized
|
phonemes = phonemize(text, language)
|
||||||
|
# Strip phonemes result to ensure no extra spaces
|
||||||
|
phonemes = phonemes.strip()
|
||||||
t1 = time.time()
|
t1 = time.time()
|
||||||
|
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
|
@ -88,9 +100,15 @@ def process_text(text: str, language: str = "a") -> List[int]:
|
||||||
|
|
||||||
|
|
||||||
def get_sentence_info(
|
def get_sentence_info(
|
||||||
text: str, custom_phenomes_list: Dict[str, str]
|
text: str, custom_phenomes_list: Dict[str, str], lang_code: str = "a"
|
||||||
) -> List[Tuple[str, List[int], int]]:
|
) -> List[Tuple[str, List[int], int]]:
|
||||||
"""Process all sentences and return info."""
|
"""Process all sentences and return info"""
|
||||||
|
# Detect Chinese text
|
||||||
|
is_chinese = lang_code.startswith("z") or re.search(r"[\u4e00-\u9fff]", text)
|
||||||
|
if is_chinese:
|
||||||
|
# Split using Chinese punctuation
|
||||||
|
sentences = re.split(r"([,。!?;])+", text)
|
||||||
|
else:
|
||||||
sentences = re.split(r"([.!?;:])(?=\s|$)", text)
|
sentences = re.split(r"([.!?;:])(?=\s|$)", text)
|
||||||
phoneme_length, min_value = len(custom_phenomes_list), 0
|
phoneme_length, min_value = len(custom_phenomes_list), 0
|
||||||
|
|
||||||
|
@ -104,16 +122,16 @@ def get_sentence_info(
|
||||||
current_id, custom_phenomes_list.pop(current_id)
|
current_id, custom_phenomes_list.pop(current_id)
|
||||||
)
|
)
|
||||||
min_value += 1
|
min_value += 1
|
||||||
|
|
||||||
punct = sentences[i + 1] if i + 1 < len(sentences) else ""
|
punct = sentences[i + 1] if i + 1 < len(sentences) else ""
|
||||||
|
|
||||||
if not sentence:
|
if not sentence:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
full = sentence + punct
|
full = sentence + punct
|
||||||
|
# Strip the full sentence to remove any leading/trailing spaces before processing
|
||||||
|
full = full.strip()
|
||||||
|
if not full: # Skip if empty after stripping
|
||||||
|
continue
|
||||||
tokens = process_text_chunk(full)
|
tokens = process_text_chunk(full)
|
||||||
results.append((full, tokens, len(tokens)))
|
results.append((full, tokens, len(tokens)))
|
||||||
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
@ -128,50 +146,72 @@ async def smart_split(
|
||||||
max_tokens: int = settings.absolute_max_tokens,
|
max_tokens: int = settings.absolute_max_tokens,
|
||||||
lang_code: str = "a",
|
lang_code: str = "a",
|
||||||
normalization_options: NormalizationOptions = NormalizationOptions(),
|
normalization_options: NormalizationOptions = NormalizationOptions(),
|
||||||
) -> AsyncGenerator[Tuple[str, List[int]], None]:
|
) -> AsyncGenerator[Tuple[str, List[int], Optional[float]], None]:
|
||||||
"""Build optimal chunks targeting 300-400 tokens, never exceeding max_tokens."""
|
"""Build optimal chunks targeting 300-400 tokens, never exceeding max_tokens.
|
||||||
|
|
||||||
|
Yields:
|
||||||
|
Tuple of (text_chunk, tokens, pause_duration_s).
|
||||||
|
If pause_duration_s is not None, it's a pause chunk with empty text/tokens.
|
||||||
|
Otherwise, it's a text chunk containing the original text.
|
||||||
|
"""
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
chunk_count = 0
|
chunk_count = 0
|
||||||
logger.info(f"Starting smart split for {len(text)} chars")
|
logger.info(f"Starting smart split for {len(text)} chars")
|
||||||
|
|
||||||
|
# --- Step 1: Split by Pause Tags FIRST ---
|
||||||
|
# This operates on the raw input text
|
||||||
|
parts = PAUSE_TAG_PATTERN.split(text)
|
||||||
|
logger.debug(f"Split raw text into {len(parts)} parts by pause tags.")
|
||||||
|
|
||||||
|
part_idx = 0
|
||||||
|
while part_idx < len(parts):
|
||||||
|
text_part_raw = parts[part_idx] # This part is raw text
|
||||||
|
part_idx += 1
|
||||||
|
|
||||||
|
# --- Process Text Part ---
|
||||||
|
if text_part_raw and text_part_raw.strip(): # Only process if the part is not empty string
|
||||||
|
# Strip leading and trailing spaces to prevent pause tag splitting artifacts
|
||||||
|
text_part_raw = text_part_raw.strip()
|
||||||
|
|
||||||
|
# Apply the original smart_split logic to this text part
|
||||||
custom_phoneme_list = {}
|
custom_phoneme_list = {}
|
||||||
|
|
||||||
# Normalize text
|
# Normalize text (original logic)
|
||||||
|
processed_text = text_part_raw
|
||||||
if settings.advanced_text_normalization and normalization_options.normalize:
|
if settings.advanced_text_normalization and normalization_options.normalize:
|
||||||
print(lang_code)
|
|
||||||
if lang_code in ["a", "b", "en-us", "en-gb"]:
|
if lang_code in ["a", "b", "en-us", "en-gb"]:
|
||||||
text = CUSTOM_PHONEMES.sub(
|
processed_text = CUSTOM_PHONEMES.sub(
|
||||||
lambda s: handle_custom_phonemes(s, custom_phoneme_list), text
|
lambda s: handle_custom_phonemes(s, custom_phoneme_list), processed_text
|
||||||
)
|
)
|
||||||
text = normalize_text(text, normalization_options)
|
processed_text = normalize_text(processed_text, normalization_options)
|
||||||
else:
|
else:
|
||||||
logger.info(
|
logger.info(
|
||||||
"Skipping text normalization as it is only supported for english"
|
"Skipping text normalization as it is only supported for english"
|
||||||
)
|
)
|
||||||
|
|
||||||
# Process all sentences
|
# Process all sentences (original logic)
|
||||||
sentences = get_sentence_info(text, custom_phoneme_list)
|
sentences = get_sentence_info(processed_text, custom_phoneme_list, lang_code=lang_code)
|
||||||
|
|
||||||
current_chunk = []
|
current_chunk = []
|
||||||
current_tokens = []
|
current_tokens = []
|
||||||
current_count = 0
|
current_count = 0
|
||||||
|
|
||||||
for sentence, tokens, count in sentences:
|
for sentence, tokens, count in sentences:
|
||||||
# Handle sentences that exceed max tokens
|
# Handle sentences that exceed max tokens (original logic)
|
||||||
if count > max_tokens:
|
if count > max_tokens:
|
||||||
# Yield current chunk if any
|
# Yield current chunk if any
|
||||||
if current_chunk:
|
if current_chunk:
|
||||||
chunk_text = " ".join(current_chunk)
|
chunk_text = " ".join(current_chunk).strip()
|
||||||
chunk_count += 1
|
chunk_count += 1
|
||||||
logger.debug(
|
logger.debug(
|
||||||
f"Yielding chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(text) > 50 else ''}' ({current_count} tokens)"
|
f"Yielding chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(processed_text) > 50 else ''}' ({current_count} tokens)"
|
||||||
)
|
)
|
||||||
yield chunk_text, current_tokens
|
yield chunk_text, current_tokens, None
|
||||||
current_chunk = []
|
current_chunk = []
|
||||||
current_tokens = []
|
current_tokens = []
|
||||||
current_count = 0
|
current_count = 0
|
||||||
|
|
||||||
# Split long sentence on commas
|
# Split long sentence on commas (original logic)
|
||||||
clauses = re.split(r"([,])", sentence)
|
clauses = re.split(r"([,])", sentence)
|
||||||
clause_chunk = []
|
clause_chunk = []
|
||||||
clause_tokens = []
|
clause_tokens = []
|
||||||
|
@ -200,38 +240,38 @@ async def smart_split(
|
||||||
else:
|
else:
|
||||||
# Yield clause chunk if we have one
|
# Yield clause chunk if we have one
|
||||||
if clause_chunk:
|
if clause_chunk:
|
||||||
chunk_text = " ".join(clause_chunk)
|
chunk_text = " ".join(clause_chunk).strip()
|
||||||
chunk_count += 1
|
chunk_count += 1
|
||||||
logger.debug(
|
logger.debug(
|
||||||
f"Yielding clause chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(text) > 50 else ''}' ({clause_count} tokens)"
|
f"Yielding clause chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(processed_text) > 50 else ''}' ({clause_count} tokens)"
|
||||||
)
|
)
|
||||||
yield chunk_text, clause_tokens
|
yield chunk_text, clause_tokens, None
|
||||||
clause_chunk = [full_clause]
|
clause_chunk = [full_clause]
|
||||||
clause_tokens = tokens
|
clause_tokens = tokens
|
||||||
clause_count = count
|
clause_count = count
|
||||||
|
|
||||||
# Don't forget last clause chunk
|
# Don't forget last clause chunk
|
||||||
if clause_chunk:
|
if clause_chunk:
|
||||||
chunk_text = " ".join(clause_chunk)
|
chunk_text = " ".join(clause_chunk).strip()
|
||||||
chunk_count += 1
|
chunk_count += 1
|
||||||
logger.debug(
|
logger.debug(
|
||||||
f"Yielding final clause chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(text) > 50 else ''}' ({clause_count} tokens)"
|
f"Yielding final clause chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(processed_text) > 50 else ''}' ({clause_count} tokens)"
|
||||||
)
|
)
|
||||||
yield chunk_text, clause_tokens
|
yield chunk_text, clause_tokens, None
|
||||||
|
|
||||||
# Regular sentence handling
|
# Regular sentence handling (original logic)
|
||||||
elif (
|
elif (
|
||||||
current_count >= settings.target_min_tokens
|
current_count >= settings.target_min_tokens
|
||||||
and current_count + count > settings.target_max_tokens
|
and current_count + count > settings.target_max_tokens
|
||||||
):
|
):
|
||||||
# If we have a good sized chunk and adding next sentence exceeds target,
|
# If we have a good sized chunk and adding next sentence exceeds target,
|
||||||
# yield current chunk and start new one
|
# yield current chunk and start new one
|
||||||
chunk_text = " ".join(current_chunk)
|
chunk_text = " ".join(current_chunk).strip()
|
||||||
chunk_count += 1
|
chunk_count += 1
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Yielding chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(text) > 50 else ''}' ({current_count} tokens)"
|
f"Yielding chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(processed_text) > 50 else ''}' ({current_count} tokens)"
|
||||||
)
|
)
|
||||||
yield chunk_text, current_tokens
|
yield chunk_text, current_tokens, None
|
||||||
current_chunk = [sentence]
|
current_chunk = [sentence]
|
||||||
current_tokens = tokens
|
current_tokens = tokens
|
||||||
current_count = count
|
current_count = count
|
||||||
|
@ -251,26 +291,44 @@ async def smart_split(
|
||||||
else:
|
else:
|
||||||
# Yield current chunk and start new one
|
# Yield current chunk and start new one
|
||||||
if current_chunk:
|
if current_chunk:
|
||||||
chunk_text = " ".join(current_chunk)
|
chunk_text = " ".join(current_chunk).strip()
|
||||||
chunk_count += 1
|
chunk_count += 1
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Yielding chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(text) > 50 else ''}' ({current_count} tokens)"
|
f"Yielding chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(processed_text) > 50 else ''}' ({current_count} tokens)"
|
||||||
)
|
)
|
||||||
yield chunk_text, current_tokens
|
yield chunk_text, current_tokens, None
|
||||||
current_chunk = [sentence]
|
current_chunk = [sentence]
|
||||||
current_tokens = tokens
|
current_tokens = tokens
|
||||||
current_count = count
|
current_count = count
|
||||||
|
|
||||||
# Don't forget the last chunk
|
# Don't forget the last chunk for this text part
|
||||||
if current_chunk:
|
if current_chunk:
|
||||||
chunk_text = " ".join(current_chunk)
|
chunk_text = " ".join(current_chunk).strip()
|
||||||
chunk_count += 1
|
chunk_count += 1
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Yielding final chunk {chunk_count}: '{chunk_text[:50]}{'...' if len(text) > 50 else ''}' ({current_count} tokens)"
|
f"Yielding final chunk {chunk_count} for part: '{chunk_text[:50]}{'...' if len(processed_text) > 50 else ''}' ({current_count} tokens)"
|
||||||
)
|
)
|
||||||
yield chunk_text, current_tokens
|
yield chunk_text, current_tokens, None
|
||||||
|
|
||||||
|
# --- Handle Pause Part ---
|
||||||
|
# Check if the next part is a pause duration string
|
||||||
|
if part_idx < len(parts):
|
||||||
|
duration_str = parts[part_idx]
|
||||||
|
# Check if it looks like a valid number string captured by the regex group
|
||||||
|
if re.fullmatch(r"\d+(?:\.\d+)?", duration_str):
|
||||||
|
part_idx += 1 # Consume the duration string as it's been processed
|
||||||
|
try:
|
||||||
|
duration = float(duration_str)
|
||||||
|
if duration > 0:
|
||||||
|
chunk_count += 1
|
||||||
|
logger.info(f"Yielding pause chunk {chunk_count}: {duration}s")
|
||||||
|
yield "", [], duration # Yield pause chunk
|
||||||
|
except (ValueError, TypeError):
|
||||||
|
# This case should be rare if re.fullmatch passed, but handle anyway
|
||||||
|
logger.warning(f"Could not parse valid-looking pause duration: {duration_str}")
|
||||||
|
|
||||||
|
# --- End of parts loop ---
|
||||||
total_time = time.time() - start_time
|
total_time = time.time() - start_time
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Split completed in {total_time * 1000:.2f}ms, produced {chunk_count} chunks"
|
f"Split completed in {total_time * 1000:.2f}ms, produced {chunk_count} chunks (including pauses)"
|
||||||
)
|
)
|
||||||
|
|
|
@ -23,6 +23,8 @@ def tokenize(phonemes: str) -> list[int]:
|
||||||
Returns:
|
Returns:
|
||||||
List of token IDs
|
List of token IDs
|
||||||
"""
|
"""
|
||||||
|
# Strip phonemes to remove leading/trailing spaces that could cause artifacts
|
||||||
|
phonemes = phonemes.strip()
|
||||||
return [i for i in map(VOCAB.get, phonemes) if i is not None]
|
return [i for i in map(VOCAB.get, phonemes) if i is not None]
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -55,6 +55,7 @@ class TTSService:
|
||||||
output_format: Optional[str] = None,
|
output_format: Optional[str] = None,
|
||||||
is_first: bool = False,
|
is_first: bool = False,
|
||||||
is_last: bool = False,
|
is_last: bool = False,
|
||||||
|
volume_multiplier: Optional[float] = 1.0,
|
||||||
normalizer: Optional[AudioNormalizer] = None,
|
normalizer: Optional[AudioNormalizer] = None,
|
||||||
lang_code: Optional[str] = None,
|
lang_code: Optional[str] = None,
|
||||||
return_timestamps: Optional[bool] = False,
|
return_timestamps: Optional[bool] = False,
|
||||||
|
@ -100,6 +101,7 @@ class TTSService:
|
||||||
lang_code=lang_code,
|
lang_code=lang_code,
|
||||||
return_timestamps=return_timestamps,
|
return_timestamps=return_timestamps,
|
||||||
):
|
):
|
||||||
|
chunk_data.audio*=volume_multiplier
|
||||||
# For streaming, convert to bytes
|
# For streaming, convert to bytes
|
||||||
if output_format:
|
if output_format:
|
||||||
try:
|
try:
|
||||||
|
@ -141,6 +143,8 @@ class TTSService:
|
||||||
logger.error("Model generated empty audio chunk")
|
logger.error("Model generated empty audio chunk")
|
||||||
return
|
return
|
||||||
|
|
||||||
|
chunk_data.audio*=volume_multiplier
|
||||||
|
|
||||||
# For streaming, convert to bytes
|
# For streaming, convert to bytes
|
||||||
if output_format:
|
if output_format:
|
||||||
try:
|
try:
|
||||||
|
@ -259,6 +263,7 @@ class TTSService:
|
||||||
speed: float = 1.0,
|
speed: float = 1.0,
|
||||||
output_format: str = "wav",
|
output_format: str = "wav",
|
||||||
lang_code: Optional[str] = None,
|
lang_code: Optional[str] = None,
|
||||||
|
volume_multiplier: Optional[float] = 1.0,
|
||||||
normalization_options: Optional[NormalizationOptions] = NormalizationOptions(),
|
normalization_options: Optional[NormalizationOptions] = NormalizationOptions(),
|
||||||
return_timestamps: Optional[bool] = False,
|
return_timestamps: Optional[bool] = False,
|
||||||
) -> AsyncGenerator[AudioChunk, None]:
|
) -> AsyncGenerator[AudioChunk, None]:
|
||||||
|
@ -280,12 +285,46 @@ class TTSService:
|
||||||
f"Using lang_code '{pipeline_lang_code}' for voice '{voice_name}' in audio stream"
|
f"Using lang_code '{pipeline_lang_code}' for voice '{voice_name}' in audio stream"
|
||||||
)
|
)
|
||||||
|
|
||||||
# Process text in chunks with smart splitting
|
# Process text in chunks with smart splitting, handling pause tags
|
||||||
async for chunk_text, tokens in smart_split(
|
async for chunk_text, tokens, pause_duration_s in smart_split(
|
||||||
text,
|
text,
|
||||||
lang_code=pipeline_lang_code,
|
lang_code=pipeline_lang_code,
|
||||||
normalization_options=normalization_options,
|
normalization_options=normalization_options,
|
||||||
):
|
):
|
||||||
|
if pause_duration_s is not None and pause_duration_s > 0:
|
||||||
|
# --- Handle Pause Chunk ---
|
||||||
|
try:
|
||||||
|
logger.debug(f"Generating {pause_duration_s}s silence chunk")
|
||||||
|
silence_samples = int(pause_duration_s * 24000) # 24kHz sample rate
|
||||||
|
# Create proper silence as int16 zeros to avoid normalization artifacts
|
||||||
|
silence_audio = np.zeros(silence_samples, dtype=np.int16)
|
||||||
|
pause_chunk = AudioChunk(audio=silence_audio, word_timestamps=[]) # Empty timestamps for silence
|
||||||
|
|
||||||
|
# Format and yield the silence chunk
|
||||||
|
if output_format:
|
||||||
|
formatted_pause_chunk = await AudioService.convert_audio(
|
||||||
|
pause_chunk, output_format, writer, speed=speed, chunk_text="",
|
||||||
|
is_last_chunk=False, trim_audio=False, normalizer=stream_normalizer,
|
||||||
|
|
||||||
|
)
|
||||||
|
if formatted_pause_chunk.output:
|
||||||
|
yield formatted_pause_chunk
|
||||||
|
else: # Raw audio mode
|
||||||
|
# For raw audio mode, silence is already in the correct format (int16)
|
||||||
|
# Skip normalization to avoid any potential artifacts
|
||||||
|
if len(pause_chunk.audio) > 0:
|
||||||
|
yield pause_chunk
|
||||||
|
|
||||||
|
# Update offset based on silence duration
|
||||||
|
current_offset += pause_duration_s
|
||||||
|
chunk_index += 1 # Count pause as a yielded chunk
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to process pause chunk: {str(e)}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
elif tokens or chunk_text.strip(): # Process if there are tokens OR non-whitespace text
|
||||||
|
# --- Handle Text Chunk ---
|
||||||
try:
|
try:
|
||||||
# Process audio for chunk
|
# Process audio for chunk
|
||||||
async for chunk_data in self._process_chunk(
|
async for chunk_data in self._process_chunk(
|
||||||
|
@ -297,6 +336,7 @@ class TTSService:
|
||||||
writer,
|
writer,
|
||||||
output_format,
|
output_format,
|
||||||
is_first=(chunk_index == 0),
|
is_first=(chunk_index == 0),
|
||||||
|
volume_multiplier=volume_multiplier,
|
||||||
is_last=False, # We'll update the last chunk later
|
is_last=False, # We'll update the last chunk later
|
||||||
normalizer=stream_normalizer,
|
normalizer=stream_normalizer,
|
||||||
lang_code=pipeline_lang_code, # Pass lang_code
|
lang_code=pipeline_lang_code, # Pass lang_code
|
||||||
|
@ -307,16 +347,23 @@ class TTSService:
|
||||||
timestamp.start_time += current_offset
|
timestamp.start_time += current_offset
|
||||||
timestamp.end_time += current_offset
|
timestamp.end_time += current_offset
|
||||||
|
|
||||||
current_offset += len(chunk_data.audio) / 24000
|
# Update offset based on the actual duration of the generated audio chunk
|
||||||
|
chunk_duration = 0
|
||||||
|
if chunk_data.audio is not None and len(chunk_data.audio) > 0:
|
||||||
|
chunk_duration = len(chunk_data.audio) / 24000
|
||||||
|
current_offset += chunk_duration
|
||||||
|
|
||||||
|
# Yield the processed chunk (either formatted or raw)
|
||||||
if chunk_data.output is not None:
|
if chunk_data.output is not None:
|
||||||
yield chunk_data
|
yield chunk_data
|
||||||
|
elif chunk_data.audio is not None and len(chunk_data.audio) > 0:
|
||||||
|
yield chunk_data
|
||||||
else:
|
else:
|
||||||
logger.warning(
|
logger.warning(
|
||||||
f"No audio generated for chunk: '{chunk_text[:100]}...'"
|
f"No audio generated for chunk: '{chunk_text[:100]}...'"
|
||||||
)
|
)
|
||||||
chunk_index += 1
|
|
||||||
|
chunk_index += 1 # Increment chunk index after processing text
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(
|
logger.error(
|
||||||
f"Failed to process audio for chunk: '{chunk_text[:100]}...'. Error: {str(e)}"
|
f"Failed to process audio for chunk: '{chunk_text[:100]}...'. Error: {str(e)}"
|
||||||
|
@ -337,6 +384,7 @@ class TTSService:
|
||||||
output_format,
|
output_format,
|
||||||
is_first=False,
|
is_first=False,
|
||||||
is_last=True, # Signal this is the last chunk
|
is_last=True, # Signal this is the last chunk
|
||||||
|
volume_multiplier=volume_multiplier,
|
||||||
normalizer=stream_normalizer,
|
normalizer=stream_normalizer,
|
||||||
lang_code=pipeline_lang_code, # Pass lang_code
|
lang_code=pipeline_lang_code, # Pass lang_code
|
||||||
):
|
):
|
||||||
|
@ -356,6 +404,7 @@ class TTSService:
|
||||||
writer: StreamingAudioWriter,
|
writer: StreamingAudioWriter,
|
||||||
speed: float = 1.0,
|
speed: float = 1.0,
|
||||||
return_timestamps: bool = False,
|
return_timestamps: bool = False,
|
||||||
|
volume_multiplier: Optional[float] = 1.0,
|
||||||
normalization_options: Optional[NormalizationOptions] = NormalizationOptions(),
|
normalization_options: Optional[NormalizationOptions] = NormalizationOptions(),
|
||||||
lang_code: Optional[str] = None,
|
lang_code: Optional[str] = None,
|
||||||
) -> AudioChunk:
|
) -> AudioChunk:
|
||||||
|
@ -368,6 +417,7 @@ class TTSService:
|
||||||
voice,
|
voice,
|
||||||
writer,
|
writer,
|
||||||
speed=speed,
|
speed=speed,
|
||||||
|
volume_multiplier=volume_multiplier,
|
||||||
normalization_options=normalization_options,
|
normalization_options=normalization_options,
|
||||||
return_timestamps=return_timestamps,
|
return_timestamps=return_timestamps,
|
||||||
lang_code=lang_code,
|
lang_code=lang_code,
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
from email.policy import default
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from typing import List, Literal, Optional, Union
|
from typing import List, Literal, Optional, Union
|
||||||
|
|
||||||
|
@ -66,6 +67,10 @@ class NormalizationOptions(BaseModel):
|
||||||
default=True,
|
default=True,
|
||||||
description="Changes phone numbers so they can be properly pronouced by kokoro",
|
description="Changes phone numbers so they can be properly pronouced by kokoro",
|
||||||
)
|
)
|
||||||
|
replace_remaining_symbols: bool = Field(
|
||||||
|
default=True,
|
||||||
|
description="Replaces the remaining symbols after normalization with their words"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class OpenAISpeechRequest(BaseModel):
|
class OpenAISpeechRequest(BaseModel):
|
||||||
|
@ -108,6 +113,10 @@ class OpenAISpeechRequest(BaseModel):
|
||||||
default=None,
|
default=None,
|
||||||
description="Optional language code to use for text processing. If not provided, will use first letter of voice name.",
|
description="Optional language code to use for text processing. If not provided, will use first letter of voice name.",
|
||||||
)
|
)
|
||||||
|
volume_multiplier: Optional[float] = Field(
|
||||||
|
default = 1.0,
|
||||||
|
description="A volume multiplier to multiply the output audio by."
|
||||||
|
)
|
||||||
normalization_options: Optional[NormalizationOptions] = Field(
|
normalization_options: Optional[NormalizationOptions] = Field(
|
||||||
default=NormalizationOptions(),
|
default=NormalizationOptions(),
|
||||||
description="Options for the normalization system",
|
description="Options for the normalization system",
|
||||||
|
@ -152,6 +161,10 @@ class CaptionedSpeechRequest(BaseModel):
|
||||||
default=None,
|
default=None,
|
||||||
description="Optional language code to use for text processing. If not provided, will use first letter of voice name.",
|
description="Optional language code to use for text processing. If not provided, will use first letter of voice name.",
|
||||||
)
|
)
|
||||||
|
volume_multiplier: Optional[float] = Field(
|
||||||
|
default = 1.0,
|
||||||
|
description="A volume multiplier to multiply the output audio by."
|
||||||
|
)
|
||||||
normalization_options: Optional[NormalizationOptions] = Field(
|
normalization_options: Optional[NormalizationOptions] = Field(
|
||||||
default=NormalizationOptions(),
|
default=NormalizationOptions(),
|
||||||
description="Options for the normalization system",
|
description="Options for the normalization system",
|
||||||
|
|
|
@ -175,6 +175,13 @@ def test_money():
|
||||||
== "The plant cost two hundred thousand dollars and eighty cents."
|
== "The plant cost two hundred thousand dollars and eighty cents."
|
||||||
)
|
)
|
||||||
|
|
||||||
|
assert (
|
||||||
|
normalize_text(
|
||||||
|
"Your shopping spree cost $674.03!", normalization_options=NormalizationOptions()
|
||||||
|
)
|
||||||
|
== "Your shopping spree cost six hundred and seventy-four dollars and three cents!"
|
||||||
|
)
|
||||||
|
|
||||||
assert (
|
assert (
|
||||||
normalize_text(
|
normalize_text(
|
||||||
"€30.2 is in euros", normalization_options=NormalizationOptions()
|
"€30.2 is in euros", normalization_options=NormalizationOptions()
|
||||||
|
@ -315,3 +322,12 @@ def test_non_url_text():
|
||||||
normalize_text("It costs $50.", normalization_options=NormalizationOptions())
|
normalize_text("It costs $50.", normalization_options=NormalizationOptions())
|
||||||
== "It costs fifty dollars."
|
== "It costs fifty dollars."
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def test_remaining_symbol():
|
||||||
|
"""Test that remaining symbols are replaced"""
|
||||||
|
assert (
|
||||||
|
normalize_text(
|
||||||
|
"I love buying products @ good store here & @ other store", normalization_options=NormalizationOptions()
|
||||||
|
)
|
||||||
|
== "I love buying products at good store here and at other store"
|
||||||
|
)
|
||||||
|
|
|
@ -67,7 +67,7 @@ async def test_smart_split_short_text():
|
||||||
"""Test smart splitting with text under max tokens."""
|
"""Test smart splitting with text under max tokens."""
|
||||||
text = "This is a short test sentence."
|
text = "This is a short test sentence."
|
||||||
chunks = []
|
chunks = []
|
||||||
async for chunk_text, chunk_tokens in smart_split(text):
|
async for chunk_text, chunk_tokens, _ in smart_split(text):
|
||||||
chunks.append((chunk_text, chunk_tokens))
|
chunks.append((chunk_text, chunk_tokens))
|
||||||
|
|
||||||
assert len(chunks) == 1
|
assert len(chunks) == 1
|
||||||
|
@ -82,7 +82,7 @@ async def test_smart_split_long_text():
|
||||||
text = ". ".join(["This is test sentence number " + str(i) for i in range(20)])
|
text = ". ".join(["This is test sentence number " + str(i) for i in range(20)])
|
||||||
|
|
||||||
chunks = []
|
chunks = []
|
||||||
async for chunk_text, chunk_tokens in smart_split(text):
|
async for chunk_text, chunk_tokens, _ in smart_split(text):
|
||||||
chunks.append((chunk_text, chunk_tokens))
|
chunks.append((chunk_text, chunk_tokens))
|
||||||
|
|
||||||
assert len(chunks) > 1
|
assert len(chunks) > 1
|
||||||
|
@ -98,8 +98,127 @@ async def test_smart_split_with_punctuation():
|
||||||
text = "First sentence! Second sentence? Third sentence; Fourth sentence: Fifth sentence."
|
text = "First sentence! Second sentence? Third sentence; Fourth sentence: Fifth sentence."
|
||||||
|
|
||||||
chunks = []
|
chunks = []
|
||||||
async for chunk_text, chunk_tokens in smart_split(text):
|
async for chunk_text, chunk_tokens, _ in smart_split(text):
|
||||||
chunks.append(chunk_text)
|
chunks.append(chunk_text)
|
||||||
|
|
||||||
# Verify punctuation is preserved
|
# Verify punctuation is preserved
|
||||||
assert all(any(p in chunk for p in "!?;:.") for chunk in chunks)
|
assert all(any(p in chunk for p in "!?;:.") for chunk in chunks)
|
||||||
|
|
||||||
|
|
||||||
|
def test_process_text_chunk_chinese_phonemes():
|
||||||
|
"""Test processing with Chinese pinyin phonemes."""
|
||||||
|
pinyin = "nǐ hǎo lì" # Example pinyin sequence with tones
|
||||||
|
tokens = process_text_chunk(pinyin, skip_phonemize=True, language="z")
|
||||||
|
assert isinstance(tokens, list)
|
||||||
|
assert len(tokens) > 0
|
||||||
|
|
||||||
|
|
||||||
|
def test_get_sentence_info_chinese():
|
||||||
|
"""Test Chinese sentence splitting and info extraction."""
|
||||||
|
text = "这是一个句子。这是第二个句子!第三个问题?"
|
||||||
|
results = get_sentence_info(text, {}, lang_code="z")
|
||||||
|
|
||||||
|
assert len(results) == 3
|
||||||
|
for sentence, tokens, count in results:
|
||||||
|
assert isinstance(sentence, str)
|
||||||
|
assert isinstance(tokens, list)
|
||||||
|
assert isinstance(count, int)
|
||||||
|
assert count == len(tokens)
|
||||||
|
assert count > 0
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_smart_split_chinese_short():
|
||||||
|
"""Test Chinese smart splitting with short text."""
|
||||||
|
text = "这是一句话。"
|
||||||
|
chunks = []
|
||||||
|
async for chunk_text, chunk_tokens, _ in smart_split(text, lang_code="z"):
|
||||||
|
chunks.append((chunk_text, chunk_tokens))
|
||||||
|
|
||||||
|
assert len(chunks) == 1
|
||||||
|
assert isinstance(chunks[0][0], str)
|
||||||
|
assert isinstance(chunks[0][1], list)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_smart_split_chinese_long():
|
||||||
|
"""Test Chinese smart splitting with longer text."""
|
||||||
|
text = "。".join([f"测试句子 {i}" for i in range(20)])
|
||||||
|
|
||||||
|
chunks = []
|
||||||
|
async for chunk_text, chunk_tokens, _ in smart_split(text, lang_code="z"):
|
||||||
|
chunks.append((chunk_text, chunk_tokens))
|
||||||
|
|
||||||
|
assert len(chunks) > 1
|
||||||
|
for chunk_text, chunk_tokens in chunks:
|
||||||
|
assert isinstance(chunk_text, str)
|
||||||
|
assert isinstance(chunk_tokens, list)
|
||||||
|
assert len(chunk_tokens) > 0
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_smart_split_chinese_punctuation():
|
||||||
|
"""Test Chinese smart splitting with punctuation preservation."""
|
||||||
|
text = "第一句!第二问?第三句;第四句:第五句。"
|
||||||
|
|
||||||
|
chunks = []
|
||||||
|
async for chunk_text, _, _ in smart_split(text, lang_code="z"):
|
||||||
|
chunks.append(chunk_text)
|
||||||
|
|
||||||
|
# Verify Chinese punctuation is preserved
|
||||||
|
assert all(any(p in chunk for p in "!?;:。") for chunk in chunks)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_smart_split_with_pause():
|
||||||
|
"""Test smart splitting with pause tags."""
|
||||||
|
text = "Hello world [pause:2.5s] How are you?"
|
||||||
|
|
||||||
|
chunks = []
|
||||||
|
async for chunk_text, chunk_tokens, pause_duration in smart_split(text):
|
||||||
|
chunks.append((chunk_text, chunk_tokens, pause_duration))
|
||||||
|
|
||||||
|
# Should have 3 chunks: text, pause, text
|
||||||
|
assert len(chunks) == 3
|
||||||
|
|
||||||
|
# First chunk: text
|
||||||
|
assert chunks[0][2] is None # No pause
|
||||||
|
assert "Hello world" in chunks[0][0]
|
||||||
|
assert len(chunks[0][1]) > 0
|
||||||
|
|
||||||
|
# Second chunk: pause
|
||||||
|
assert chunks[1][2] == 2.5 # 2.5 second pause
|
||||||
|
assert chunks[1][0] == "" # Empty text
|
||||||
|
assert len(chunks[1][1]) == 0 # No tokens
|
||||||
|
|
||||||
|
# Third chunk: text
|
||||||
|
assert chunks[2][2] is None # No pause
|
||||||
|
assert "How are you?" in chunks[2][0]
|
||||||
|
assert len(chunks[2][1]) > 0
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_smart_split_with_two_pause():
|
||||||
|
"""Test smart splitting with two pause tags."""
|
||||||
|
text = "[pause:0.5s][pause:1.67s]0.5"
|
||||||
|
|
||||||
|
chunks = []
|
||||||
|
async for chunk_text, chunk_tokens, pause_duration in smart_split(text):
|
||||||
|
chunks.append((chunk_text, chunk_tokens, pause_duration))
|
||||||
|
|
||||||
|
# Should have 3 chunks: pause, pause, text
|
||||||
|
assert len(chunks) == 3
|
||||||
|
|
||||||
|
# First chunk: pause
|
||||||
|
assert chunks[0][2] == 0.5 # 0.5 second pause
|
||||||
|
assert chunks[0][0] == "" # Empty text
|
||||||
|
assert len(chunks[0][1]) == 0
|
||||||
|
|
||||||
|
# Second chunk: pause
|
||||||
|
assert chunks[1][2] == 1.67 # 1.67 second pause
|
||||||
|
assert chunks[1][0] == "" # Empty text
|
||||||
|
assert len(chunks[1][1]) == 0 # No tokens
|
||||||
|
|
||||||
|
# Third chunk: text
|
||||||
|
assert chunks[2][2] is None # No pause
|
||||||
|
assert "zero point five" in chunks[2][0]
|
||||||
|
assert len(chunks[2][1]) > 0
|
|
@ -3,6 +3,7 @@ from unittest.mock import AsyncMock, MagicMock, patch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
|
import os
|
||||||
|
|
||||||
from api.src.services.tts_service import TTSService
|
from api.src.services.tts_service import TTSService
|
||||||
|
|
||||||
|
@ -102,7 +103,10 @@ async def test_get_voice_path_combined():
|
||||||
service = await TTSService.create("test_output")
|
service = await TTSService.create("test_output")
|
||||||
name, path = await service._get_voices_path("voice1+voice2")
|
name, path = await service._get_voices_path("voice1+voice2")
|
||||||
assert name == "voice1+voice2"
|
assert name == "voice1+voice2"
|
||||||
assert path.endswith("voice1+voice2.pt")
|
# Verify the path points to a temporary file with expected format
|
||||||
|
assert path.startswith("/tmp/")
|
||||||
|
assert "voice1+voice2" in path
|
||||||
|
assert path.endswith(".pt")
|
||||||
mock_save.assert_called_once()
|
mock_save.assert_called_once()
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -3,9 +3,7 @@ import json
|
||||||
|
|
||||||
import requests
|
import requests
|
||||||
|
|
||||||
text = """the administration has offered up a platter of repression for more than a year and is still slated to lose $400 million.
|
text = """奶酪芝士很浓郁!臭豆腐芝士有争议?陈年奶酪价格昂贵。"""
|
||||||
|
|
||||||
Columbia is the largest private landowner in New York City and boasts an endowment of $14.8 billion;"""
|
|
||||||
|
|
||||||
|
|
||||||
Type = "wav"
|
Type = "wav"
|
||||||
|
@ -15,7 +13,7 @@ response = requests.post(
|
||||||
json={
|
json={
|
||||||
"model": "kokoro",
|
"model": "kokoro",
|
||||||
"input": text,
|
"input": text,
|
||||||
"voice": "af_heart+af_sky",
|
"voice": "zf_xiaobei",
|
||||||
"speed": 1.0,
|
"speed": 1.0,
|
||||||
"response_format": Type,
|
"response_format": Type,
|
||||||
"stream": False,
|
"stream": False,
|
||||||
|
|
Loading…
Add table
Reference in a new issue