2025-01-20 22:42:29 -07:00
|
|
|
"""TTS service using model and voice managers."""
|
|
|
|
|
2025-02-09 18:32:17 -07:00
|
|
|
import asyncio
|
2025-02-03 03:33:12 -07:00
|
|
|
import os
|
|
|
|
import tempfile
|
2025-02-09 18:32:17 -07:00
|
|
|
import time
|
|
|
|
from typing import AsyncGenerator, List, Optional, Tuple, Union
|
2025-01-20 22:42:29 -07:00
|
|
|
|
2025-01-13 20:15:46 -07:00
|
|
|
import numpy as np
|
2025-01-21 21:44:21 -07:00
|
|
|
import torch
|
2025-02-09 18:32:17 -07:00
|
|
|
from kokoro import KPipeline
|
2025-01-03 00:53:41 -07:00
|
|
|
from loguru import logger
|
|
|
|
|
2025-01-09 18:41:44 -07:00
|
|
|
from ..core.config import settings
|
2025-02-09 18:32:17 -07:00
|
|
|
from ..inference.kokoro_v1 import KokoroV1
|
2025-01-20 22:42:29 -07:00
|
|
|
from ..inference.model_manager import get_manager as get_model_manager
|
|
|
|
from ..inference.voice_manager import get_manager as get_voice_manager
|
2025-01-13 20:15:46 -07:00
|
|
|
from .audio import AudioNormalizer, AudioService
|
2025-01-30 04:44:04 -07:00
|
|
|
from .text_processing import tokenize
|
2025-02-09 18:32:17 -07:00
|
|
|
from .text_processing.text_processor import process_text_chunk, smart_split
|
2025-02-03 03:33:12 -07:00
|
|
|
|
2025-01-22 02:33:29 -07:00
|
|
|
|
2025-01-03 00:53:41 -07:00
|
|
|
class TTSService:
|
2025-01-20 22:42:29 -07:00
|
|
|
"""Text-to-speech service."""
|
|
|
|
|
2025-01-22 02:33:29 -07:00
|
|
|
# Limit concurrent chunk processing
|
|
|
|
_chunk_semaphore = asyncio.Semaphore(4)
|
|
|
|
|
2025-01-03 00:53:41 -07:00
|
|
|
def __init__(self, output_dir: str = None):
|
2025-01-25 05:25:13 -07:00
|
|
|
"""Initialize service."""
|
2025-01-03 00:53:41 -07:00
|
|
|
self.output_dir = output_dir
|
2025-01-22 02:33:29 -07:00
|
|
|
self.model_manager = None
|
|
|
|
self._voice_manager = None
|
2025-01-03 00:53:41 -07:00
|
|
|
|
2025-01-22 02:33:29 -07:00
|
|
|
@classmethod
|
2025-02-09 18:32:17 -07:00
|
|
|
async def create(cls, output_dir: str = None) -> "TTSService":
|
2025-01-25 05:25:13 -07:00
|
|
|
"""Create and initialize TTSService instance."""
|
2025-01-22 02:33:29 -07:00
|
|
|
service = cls(output_dir)
|
|
|
|
service.model_manager = await get_model_manager()
|
|
|
|
service._voice_manager = await get_voice_manager()
|
|
|
|
return service
|
2025-01-20 22:42:29 -07:00
|
|
|
|
2025-01-25 05:25:13 -07:00
|
|
|
async def _process_chunk(
|
|
|
|
self,
|
2025-02-03 03:33:12 -07:00
|
|
|
chunk_text: str,
|
2025-01-27 20:23:42 -07:00
|
|
|
tokens: List[int],
|
2025-02-03 03:33:12 -07:00
|
|
|
voice_name: str,
|
|
|
|
voice_path: str,
|
2025-01-25 05:25:13 -07:00
|
|
|
speed: float,
|
|
|
|
output_format: Optional[str] = None,
|
|
|
|
is_first: bool = False,
|
|
|
|
is_last: bool = False,
|
|
|
|
normalizer: Optional[AudioNormalizer] = None,
|
2025-02-08 01:29:15 -07:00
|
|
|
lang_code: Optional[str] = None,
|
2025-02-03 03:33:12 -07:00
|
|
|
) -> AsyncGenerator[Union[np.ndarray, bytes], None]:
|
2025-01-27 20:23:42 -07:00
|
|
|
"""Process tokens into audio."""
|
2025-01-25 05:25:13 -07:00
|
|
|
async with self._chunk_semaphore:
|
|
|
|
try:
|
2025-01-27 20:23:42 -07:00
|
|
|
# Handle stream finalization
|
|
|
|
if is_last:
|
2025-01-30 05:47:28 -07:00
|
|
|
# Skip format conversion for raw audio mode
|
|
|
|
if not output_format:
|
2025-02-03 03:33:12 -07:00
|
|
|
yield np.array([], dtype=np.float32)
|
|
|
|
return
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-03 03:33:12 -07:00
|
|
|
result = await AudioService.convert_audio(
|
2025-01-27 20:23:42 -07:00
|
|
|
np.array([0], dtype=np.float32), # Dummy data for type checking
|
|
|
|
24000,
|
|
|
|
output_format,
|
|
|
|
is_first_chunk=False,
|
|
|
|
normalizer=normalizer,
|
2025-02-09 18:32:17 -07:00
|
|
|
is_last_chunk=True,
|
2025-01-27 20:23:42 -07:00
|
|
|
)
|
2025-02-03 03:33:12 -07:00
|
|
|
yield result
|
|
|
|
return
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-01-27 20:23:42 -07:00
|
|
|
# Skip empty chunks
|
2025-02-03 03:33:12 -07:00
|
|
|
if not tokens and not chunk_text:
|
|
|
|
return
|
|
|
|
|
|
|
|
# Get backend
|
|
|
|
backend = self.model_manager.get_backend()
|
2025-01-27 20:23:42 -07:00
|
|
|
|
2025-01-25 05:25:13 -07:00
|
|
|
# Generate audio using pre-warmed model
|
2025-02-03 03:33:12 -07:00
|
|
|
if isinstance(backend, KokoroV1):
|
2025-02-08 01:29:15 -07:00
|
|
|
# For Kokoro V1, pass text and voice info with lang_code
|
2025-02-03 03:33:12 -07:00
|
|
|
async for chunk_audio in self.model_manager.generate(
|
|
|
|
chunk_text,
|
|
|
|
(voice_name, voice_path),
|
2025-02-08 01:29:15 -07:00
|
|
|
speed=speed,
|
2025-02-09 18:32:17 -07:00
|
|
|
lang_code=lang_code,
|
2025-02-03 03:33:12 -07:00
|
|
|
):
|
|
|
|
# For streaming, convert to bytes
|
|
|
|
if output_format:
|
|
|
|
try:
|
|
|
|
converted = await AudioService.convert_audio(
|
|
|
|
chunk_audio,
|
|
|
|
24000,
|
|
|
|
output_format,
|
|
|
|
is_first_chunk=is_first,
|
|
|
|
normalizer=normalizer,
|
2025-02-09 18:32:17 -07:00
|
|
|
is_last_chunk=is_last,
|
2025-02-03 03:33:12 -07:00
|
|
|
)
|
|
|
|
yield converted
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"Failed to convert audio: {str(e)}")
|
|
|
|
else:
|
|
|
|
yield chunk_audio
|
|
|
|
else:
|
|
|
|
# For legacy backends, load voice tensor
|
2025-02-09 18:32:17 -07:00
|
|
|
voice_tensor = await self._voice_manager.load_voice(
|
|
|
|
voice_name, device=backend.device
|
|
|
|
)
|
2025-02-03 03:33:12 -07:00
|
|
|
chunk_audio = await self.model_manager.generate(
|
2025-02-09 18:32:17 -07:00
|
|
|
tokens, voice_tensor, speed=speed
|
2025-02-03 03:33:12 -07:00
|
|
|
)
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-03 03:33:12 -07:00
|
|
|
if chunk_audio is None:
|
|
|
|
logger.error("Model generated None for audio chunk")
|
|
|
|
return
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-03 03:33:12 -07:00
|
|
|
if len(chunk_audio) == 0:
|
|
|
|
logger.error("Model generated empty audio chunk")
|
|
|
|
return
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-03 03:33:12 -07:00
|
|
|
# For streaming, convert to bytes
|
|
|
|
if output_format:
|
|
|
|
try:
|
|
|
|
converted = await AudioService.convert_audio(
|
|
|
|
chunk_audio,
|
|
|
|
24000,
|
|
|
|
output_format,
|
|
|
|
is_first_chunk=is_first,
|
|
|
|
normalizer=normalizer,
|
2025-02-09 18:32:17 -07:00
|
|
|
is_last_chunk=is_last,
|
2025-02-03 03:33:12 -07:00
|
|
|
)
|
|
|
|
yield converted
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"Failed to convert audio: {str(e)}")
|
|
|
|
else:
|
|
|
|
yield chunk_audio
|
2025-01-25 05:25:13 -07:00
|
|
|
except Exception as e:
|
2025-01-27 20:23:42 -07:00
|
|
|
logger.error(f"Failed to process tokens: {str(e)}")
|
2025-02-03 03:33:12 -07:00
|
|
|
|
|
|
|
async def _get_voice_path(self, voice: str) -> Tuple[str, str]:
|
|
|
|
"""Get voice path, handling combined voices.
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-03 03:33:12 -07:00
|
|
|
Args:
|
|
|
|
voice: Voice name or combined voice names (e.g., 'af_jadzia+af_jessica')
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-03 03:33:12 -07:00
|
|
|
Returns:
|
|
|
|
Tuple of (voice name to use, voice path to use)
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-03 03:33:12 -07:00
|
|
|
Raises:
|
|
|
|
RuntimeError: If voice not found
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
# Check if it's a combined voice
|
|
|
|
if "+" in voice:
|
2025-02-04 19:41:41 -07:00
|
|
|
# Split on + but preserve any parentheses
|
|
|
|
voice_parts = []
|
|
|
|
weights = []
|
|
|
|
for part in voice.split("+"):
|
|
|
|
part = part.strip()
|
|
|
|
if not part:
|
|
|
|
continue
|
|
|
|
# Extract voice name and weight if present
|
|
|
|
if "(" in part and ")" in part:
|
|
|
|
voice_name = part.split("(")[0].strip()
|
|
|
|
weight = float(part.split("(")[1].split(")")[0])
|
|
|
|
else:
|
|
|
|
voice_name = part
|
|
|
|
weight = 1.0
|
|
|
|
voice_parts.append(voice_name)
|
|
|
|
weights.append(weight)
|
|
|
|
|
|
|
|
if len(voice_parts) < 2:
|
2025-02-03 03:33:12 -07:00
|
|
|
raise RuntimeError(f"Invalid combined voice name: {voice}")
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-04 19:41:41 -07:00
|
|
|
# Normalize weights to sum to 1
|
|
|
|
total_weight = sum(weights)
|
2025-02-09 18:32:17 -07:00
|
|
|
weights = [w / total_weight for w in weights]
|
|
|
|
|
2025-02-03 03:33:12 -07:00
|
|
|
# Load and combine voices
|
|
|
|
voice_tensors = []
|
2025-02-04 19:41:41 -07:00
|
|
|
for v, w in zip(voice_parts, weights):
|
2025-02-04 03:37:56 -07:00
|
|
|
path = await self._voice_manager.get_voice_path(v)
|
2025-02-03 03:33:12 -07:00
|
|
|
if not path:
|
|
|
|
raise RuntimeError(f"Voice not found: {v}")
|
|
|
|
logger.debug(f"Loading voice tensor from: {path}")
|
|
|
|
voice_tensor = torch.load(path, map_location="cpu")
|
2025-02-04 19:41:41 -07:00
|
|
|
voice_tensors.append(voice_tensor * w)
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-04 19:41:41 -07:00
|
|
|
# Sum the weighted voice tensors
|
2025-02-09 18:32:17 -07:00
|
|
|
logger.debug(
|
|
|
|
f"Combining {len(voice_tensors)} voice tensors with weights {weights}"
|
|
|
|
)
|
2025-02-04 19:41:41 -07:00
|
|
|
combined = torch.sum(torch.stack(voice_tensors), dim=0)
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-03 03:33:12 -07:00
|
|
|
# Save combined tensor
|
|
|
|
temp_dir = tempfile.gettempdir()
|
|
|
|
combined_path = os.path.join(temp_dir, f"{voice}.pt")
|
|
|
|
logger.debug(f"Saving combined voice to: {combined_path}")
|
|
|
|
torch.save(combined, combined_path)
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-03 03:33:12 -07:00
|
|
|
return voice, combined_path
|
|
|
|
else:
|
|
|
|
# Single voice
|
2025-02-04 03:37:56 -07:00
|
|
|
path = await self._voice_manager.get_voice_path(voice)
|
2025-02-03 03:33:12 -07:00
|
|
|
if not path:
|
|
|
|
raise RuntimeError(f"Voice not found: {voice}")
|
|
|
|
logger.debug(f"Using single voice path: {path}")
|
|
|
|
return voice, path
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"Failed to get voice path: {e}")
|
|
|
|
raise
|
2025-01-03 00:53:41 -07:00
|
|
|
|
2025-01-04 17:54:54 -07:00
|
|
|
async def generate_audio_stream(
|
2025-01-09 18:41:44 -07:00
|
|
|
self,
|
|
|
|
text: str,
|
|
|
|
voice: str,
|
2025-01-20 22:42:29 -07:00
|
|
|
speed: float = 1.0,
|
2025-01-09 18:41:44 -07:00
|
|
|
output_format: str = "wav",
|
2025-02-08 01:29:15 -07:00
|
|
|
lang_code: Optional[str] = None,
|
2025-01-25 05:25:13 -07:00
|
|
|
) -> AsyncGenerator[bytes, None]:
|
|
|
|
"""Generate and stream audio chunks."""
|
2025-01-22 02:33:29 -07:00
|
|
|
stream_normalizer = AudioNormalizer()
|
2025-01-27 20:23:42 -07:00
|
|
|
chunk_index = 0
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-01-04 17:54:54 -07:00
|
|
|
try:
|
2025-02-03 03:33:12 -07:00
|
|
|
# Get backend
|
2025-01-22 02:33:29 -07:00
|
|
|
backend = self.model_manager.get_backend()
|
2025-02-03 03:33:12 -07:00
|
|
|
|
|
|
|
# Get voice path, handling combined voices
|
|
|
|
voice_name, voice_path = await self._get_voice_path(voice)
|
|
|
|
logger.debug(f"Using voice path: {voice_path}")
|
2025-01-22 02:33:29 -07:00
|
|
|
|
2025-02-08 01:29:15 -07:00
|
|
|
# Use provided lang_code or determine from voice name
|
|
|
|
pipeline_lang_code = lang_code if lang_code else voice[:1].lower()
|
2025-02-09 18:32:17 -07:00
|
|
|
logger.info(
|
|
|
|
f"Using lang_code '{pipeline_lang_code}' for voice '{voice_name}' in audio stream"
|
|
|
|
)
|
2025-02-08 01:29:15 -07:00
|
|
|
|
2025-01-27 20:23:42 -07:00
|
|
|
# Process text in chunks with smart splitting
|
|
|
|
async for chunk_text, tokens in smart_split(text):
|
|
|
|
try:
|
|
|
|
# Process audio for chunk
|
2025-02-03 03:33:12 -07:00
|
|
|
async for result in self._process_chunk(
|
|
|
|
chunk_text, # Pass text for Kokoro V1
|
2025-02-09 18:32:17 -07:00
|
|
|
tokens, # Pass tokens for legacy backends
|
2025-02-03 03:33:12 -07:00
|
|
|
voice_name, # Pass voice name
|
|
|
|
voice_path, # Pass voice path
|
2025-01-25 05:25:13 -07:00
|
|
|
speed,
|
|
|
|
output_format,
|
2025-01-27 20:23:42 -07:00
|
|
|
is_first=(chunk_index == 0),
|
|
|
|
is_last=False, # We'll update the last chunk later
|
2025-02-08 01:29:15 -07:00
|
|
|
normalizer=stream_normalizer,
|
2025-02-09 18:32:17 -07:00
|
|
|
lang_code=pipeline_lang_code, # Pass lang_code
|
2025-02-03 03:33:12 -07:00
|
|
|
):
|
|
|
|
if result is not None:
|
|
|
|
yield result
|
|
|
|
chunk_index += 1
|
|
|
|
else:
|
2025-02-09 18:32:17 -07:00
|
|
|
logger.warning(
|
|
|
|
f"No audio generated for chunk: '{chunk_text[:100]}...'"
|
|
|
|
)
|
|
|
|
|
2025-01-27 20:23:42 -07:00
|
|
|
except Exception as e:
|
2025-02-09 18:32:17 -07:00
|
|
|
logger.error(
|
|
|
|
f"Failed to process audio for chunk: '{chunk_text[:100]}...'. Error: {str(e)}"
|
|
|
|
)
|
2025-01-27 20:23:42 -07:00
|
|
|
continue
|
|
|
|
|
|
|
|
# Only finalize if we successfully processed at least one chunk
|
|
|
|
if chunk_index > 0:
|
|
|
|
try:
|
|
|
|
# Empty tokens list to finalize audio
|
2025-02-03 03:33:12 -07:00
|
|
|
async for result in self._process_chunk(
|
|
|
|
"", # Empty text
|
|
|
|
[], # Empty tokens
|
|
|
|
voice_name,
|
|
|
|
voice_path,
|
2025-01-27 20:23:42 -07:00
|
|
|
speed,
|
|
|
|
output_format,
|
|
|
|
is_first=False,
|
2025-02-03 03:33:12 -07:00
|
|
|
is_last=True, # Signal this is the last chunk
|
2025-02-08 01:29:15 -07:00
|
|
|
normalizer=stream_normalizer,
|
2025-02-09 18:32:17 -07:00
|
|
|
lang_code=pipeline_lang_code, # Pass lang_code
|
2025-02-03 03:33:12 -07:00
|
|
|
):
|
|
|
|
if result is not None:
|
|
|
|
yield result
|
2025-01-27 20:23:42 -07:00
|
|
|
except Exception as e:
|
2025-02-03 03:33:12 -07:00
|
|
|
logger.error(f"Failed to finalize audio stream: {str(e)}")
|
2025-01-30 04:44:04 -07:00
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"Error in phoneme audio generation: {str(e)}")
|
|
|
|
raise
|
|
|
|
|
2025-01-25 05:25:13 -07:00
|
|
|
async def generate_audio(
|
2025-02-09 18:32:17 -07:00
|
|
|
self,
|
|
|
|
text: str,
|
|
|
|
voice: str,
|
|
|
|
speed: float = 1.0,
|
|
|
|
return_timestamps: bool = False,
|
|
|
|
lang_code: Optional[str] = None,
|
2025-02-04 19:41:41 -07:00
|
|
|
) -> Union[Tuple[np.ndarray, float], Tuple[np.ndarray, float, List[dict]]]:
|
2025-01-25 05:25:13 -07:00
|
|
|
"""Generate complete audio for text using streaming internally."""
|
|
|
|
start_time = time.time()
|
|
|
|
chunks = []
|
2025-02-04 19:41:41 -07:00
|
|
|
word_timestamps = []
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-01-25 05:25:13 -07:00
|
|
|
try:
|
2025-02-04 19:41:41 -07:00
|
|
|
# Get backend and voice path
|
|
|
|
backend = self.model_manager.get_backend()
|
|
|
|
voice_name, voice_path = await self._get_voice_path(voice)
|
2025-01-25 05:25:13 -07:00
|
|
|
|
2025-02-04 19:41:41 -07:00
|
|
|
if isinstance(backend, KokoroV1):
|
2025-02-08 01:29:15 -07:00
|
|
|
# Use provided lang_code or determine from voice name
|
|
|
|
pipeline_lang_code = lang_code if lang_code else voice[:1].lower()
|
2025-02-09 18:32:17 -07:00
|
|
|
logger.info(
|
|
|
|
f"Using lang_code '{pipeline_lang_code}' for voice '{voice_name}' in text chunking"
|
|
|
|
)
|
2025-02-08 01:29:15 -07:00
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
# Get pipelines from backend for proper device management
|
|
|
|
try:
|
|
|
|
# Initialize quiet pipeline for text chunking
|
|
|
|
text_chunks = []
|
|
|
|
current_offset = 0.0 # Track time offset for timestamps
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
logger.debug("Splitting text into chunks...")
|
|
|
|
# Use backend's pipeline management
|
|
|
|
for result in backend._get_pipeline(pipeline_lang_code)(text):
|
|
|
|
if result.graphemes and result.phonemes:
|
|
|
|
text_chunks.append((result.graphemes, result.phonemes))
|
|
|
|
logger.debug(f"Split text into {len(text_chunks)} chunks")
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
# Process each chunk
|
2025-02-09 18:32:17 -07:00
|
|
|
for chunk_idx, (chunk_text, chunk_phonemes) in enumerate(
|
|
|
|
text_chunks
|
|
|
|
):
|
|
|
|
logger.debug(
|
|
|
|
f"Processing chunk {chunk_idx + 1}/{len(text_chunks)}: '{chunk_text[:50]}...'"
|
|
|
|
)
|
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
# Use backend's pipeline for generation
|
|
|
|
for result in backend._get_pipeline(pipeline_lang_code)(
|
2025-02-09 18:32:17 -07:00
|
|
|
chunk_text, voice=voice_path, speed=speed
|
2025-02-08 20:36:50 -07:00
|
|
|
):
|
|
|
|
# Collect audio chunks
|
|
|
|
if result.audio is not None:
|
|
|
|
chunks.append(result.audio.numpy())
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
# Process timestamps for this chunk
|
2025-02-09 18:32:17 -07:00
|
|
|
if (
|
|
|
|
return_timestamps
|
|
|
|
and hasattr(result, "tokens")
|
|
|
|
and result.tokens
|
|
|
|
):
|
|
|
|
logger.debug(
|
|
|
|
f"Processing chunk timestamps with {len(result.tokens)} tokens"
|
|
|
|
)
|
2025-02-08 20:36:50 -07:00
|
|
|
if result.pred_dur is not None:
|
|
|
|
try:
|
|
|
|
# Join timestamps for this chunk's tokens
|
2025-02-09 18:32:17 -07:00
|
|
|
KPipeline.join_timestamps(
|
|
|
|
result.tokens, result.pred_dur
|
|
|
|
)
|
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
# Add timestamps with offset
|
|
|
|
for token in result.tokens:
|
2025-02-09 18:32:17 -07:00
|
|
|
if not all(
|
|
|
|
hasattr(token, attr)
|
|
|
|
for attr in [
|
|
|
|
"text",
|
|
|
|
"start_ts",
|
|
|
|
"end_ts",
|
|
|
|
]
|
|
|
|
):
|
2025-02-08 20:36:50 -07:00
|
|
|
continue
|
|
|
|
if not token.text or not token.text.strip():
|
|
|
|
continue
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
# Apply offset to timestamps
|
2025-02-09 18:32:17 -07:00
|
|
|
start_time = (
|
|
|
|
float(token.start_ts) + current_offset
|
|
|
|
)
|
|
|
|
end_time = (
|
|
|
|
float(token.end_ts) + current_offset
|
|
|
|
)
|
|
|
|
|
|
|
|
word_timestamps.append(
|
|
|
|
{
|
|
|
|
"word": str(token.text).strip(),
|
|
|
|
"start_time": start_time,
|
|
|
|
"end_time": end_time,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
logger.debug(
|
|
|
|
f"Added timestamp for word '{token.text}': {start_time:.3f}s - {end_time:.3f}s"
|
|
|
|
)
|
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
# Update offset for next chunk based on pred_dur
|
2025-02-09 18:32:17 -07:00
|
|
|
chunk_duration = (
|
|
|
|
float(result.pred_dur.sum()) / 80
|
|
|
|
) # Convert frames to seconds
|
|
|
|
current_offset = max(
|
|
|
|
current_offset + chunk_duration, end_time
|
|
|
|
)
|
|
|
|
logger.debug(
|
|
|
|
f"Updated time offset to {current_offset:.3f}s"
|
|
|
|
)
|
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
except Exception as e:
|
2025-02-09 18:32:17 -07:00
|
|
|
logger.error(
|
|
|
|
f"Failed to process timestamps for chunk: {e}"
|
|
|
|
)
|
|
|
|
logger.debug(
|
|
|
|
f"Processing timestamps with pred_dur shape: {result.pred_dur.shape}"
|
|
|
|
)
|
2025-02-04 19:41:41 -07:00
|
|
|
try:
|
|
|
|
# Join timestamps for this chunk's tokens
|
2025-02-09 18:32:17 -07:00
|
|
|
KPipeline.join_timestamps(
|
|
|
|
result.tokens, result.pred_dur
|
|
|
|
)
|
|
|
|
logger.debug(
|
|
|
|
"Successfully joined timestamps for chunk"
|
|
|
|
)
|
2025-02-08 20:36:50 -07:00
|
|
|
except Exception as e:
|
2025-02-09 18:32:17 -07:00
|
|
|
logger.error(
|
|
|
|
f"Failed to join timestamps for chunk: {e}"
|
|
|
|
)
|
2025-02-08 20:36:50 -07:00
|
|
|
continue
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
# Convert tokens to timestamps
|
|
|
|
for token in result.tokens:
|
|
|
|
try:
|
|
|
|
# Skip tokens without required attributes
|
2025-02-09 18:32:17 -07:00
|
|
|
if not all(
|
|
|
|
hasattr(token, attr)
|
|
|
|
for attr in ["text", "start_ts", "end_ts"]
|
|
|
|
):
|
|
|
|
logger.debug(
|
|
|
|
f"Skipping token missing attributes: {dir(token)}"
|
|
|
|
)
|
2025-02-08 20:36:50 -07:00
|
|
|
continue
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
# Get and validate text
|
2025-02-09 18:32:17 -07:00
|
|
|
text = (
|
|
|
|
str(token.text).strip()
|
|
|
|
if token.text is not None
|
|
|
|
else ""
|
|
|
|
)
|
2025-02-08 20:36:50 -07:00
|
|
|
if not text:
|
|
|
|
logger.debug("Skipping empty token")
|
|
|
|
continue
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
# Get and validate timestamps
|
2025-02-09 18:32:17 -07:00
|
|
|
start_ts = getattr(token, "start_ts", None)
|
|
|
|
end_ts = getattr(token, "end_ts", None)
|
2025-02-08 20:36:50 -07:00
|
|
|
if start_ts is None or end_ts is None:
|
2025-02-09 18:32:17 -07:00
|
|
|
logger.debug(
|
|
|
|
f"Skipping token with None timestamps: {text}"
|
|
|
|
)
|
2025-02-08 20:36:50 -07:00
|
|
|
continue
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
# Convert timestamps to float
|
|
|
|
try:
|
|
|
|
start_time = float(start_ts)
|
|
|
|
end_time = float(end_ts)
|
|
|
|
except (TypeError, ValueError):
|
2025-02-09 18:32:17 -07:00
|
|
|
logger.debug(
|
|
|
|
f"Skipping token with invalid timestamps: {text}"
|
|
|
|
)
|
2025-02-08 20:36:50 -07:00
|
|
|
continue
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
# Add timestamp
|
2025-02-09 18:32:17 -07:00
|
|
|
word_timestamps.append(
|
|
|
|
{
|
|
|
|
"word": text,
|
|
|
|
"start_time": start_time,
|
|
|
|
"end_time": end_time,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
logger.debug(
|
|
|
|
f"Added timestamp for word '{text}': {start_time:.3f}s - {end_time:.3f}s"
|
|
|
|
)
|
2025-02-04 19:41:41 -07:00
|
|
|
except Exception as e:
|
2025-02-08 20:36:50 -07:00
|
|
|
logger.warning(f"Error processing token: {e}")
|
2025-02-04 19:41:41 -07:00
|
|
|
continue
|
2025-02-08 20:36:50 -07:00
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"Failed to process text with pipeline: {e}")
|
|
|
|
raise RuntimeError(f"Pipeline processing failed: {e}")
|
2025-02-04 19:41:41 -07:00
|
|
|
|
|
|
|
if not chunks:
|
|
|
|
raise ValueError("No audio chunks were generated successfully")
|
|
|
|
|
|
|
|
# Combine chunks
|
|
|
|
audio = np.concatenate(chunks) if len(chunks) > 1 else chunks[0]
|
|
|
|
processing_time = time.time() - start_time
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-04 19:41:41 -07:00
|
|
|
if return_timestamps:
|
|
|
|
# Validate timestamps before returning
|
|
|
|
if not word_timestamps:
|
|
|
|
logger.warning("No valid timestamps were generated")
|
|
|
|
else:
|
|
|
|
# Sort timestamps by start time to ensure proper order
|
2025-02-09 18:32:17 -07:00
|
|
|
word_timestamps.sort(key=lambda x: x["start_time"])
|
2025-02-04 19:41:41 -07:00
|
|
|
# Validate timestamp sequence
|
|
|
|
for i in range(1, len(word_timestamps)):
|
2025-02-09 18:32:17 -07:00
|
|
|
prev = word_timestamps[i - 1]
|
2025-02-04 19:41:41 -07:00
|
|
|
curr = word_timestamps[i]
|
2025-02-09 18:32:17 -07:00
|
|
|
if curr["start_time"] < prev["end_time"]:
|
|
|
|
logger.warning(
|
|
|
|
f"Overlapping timestamps detected: '{prev['word']}' ({prev['start_time']:.3f}-{prev['end_time']:.3f}) and '{curr['word']}' ({curr['start_time']:.3f}-{curr['end_time']:.3f})"
|
|
|
|
)
|
|
|
|
|
|
|
|
logger.debug(
|
|
|
|
f"Returning {len(word_timestamps)} word timestamps"
|
|
|
|
)
|
|
|
|
logger.debug(
|
|
|
|
f"First timestamp: {word_timestamps[0]['word']} at {word_timestamps[0]['start_time']:.3f}s"
|
|
|
|
)
|
|
|
|
logger.debug(
|
|
|
|
f"Last timestamp: {word_timestamps[-1]['word']} at {word_timestamps[-1]['end_time']:.3f}s"
|
|
|
|
)
|
|
|
|
|
2025-02-04 19:41:41 -07:00
|
|
|
return audio, processing_time, word_timestamps
|
|
|
|
return audio, processing_time
|
2025-01-25 05:25:13 -07:00
|
|
|
|
2025-01-30 22:56:23 -07:00
|
|
|
else:
|
2025-02-04 19:41:41 -07:00
|
|
|
# For legacy backends
|
|
|
|
async for chunk in self.generate_audio_stream(
|
2025-02-09 18:32:17 -07:00
|
|
|
text,
|
|
|
|
voice,
|
|
|
|
speed, # Default to WAV for raw audio
|
2025-02-04 19:41:41 -07:00
|
|
|
):
|
|
|
|
if chunk is not None:
|
|
|
|
chunks.append(chunk)
|
|
|
|
|
|
|
|
if not chunks:
|
|
|
|
raise ValueError("No audio chunks were generated successfully")
|
|
|
|
|
|
|
|
# Combine chunks
|
|
|
|
audio = np.concatenate(chunks) if len(chunks) > 1 else chunks[0]
|
|
|
|
processing_time = time.time() - start_time
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-04 19:41:41 -07:00
|
|
|
if return_timestamps:
|
2025-02-09 18:32:17 -07:00
|
|
|
return (
|
|
|
|
audio,
|
|
|
|
processing_time,
|
|
|
|
[],
|
|
|
|
) # Empty timestamps for legacy backends
|
2025-02-04 19:41:41 -07:00
|
|
|
return audio, processing_time
|
2025-01-25 05:25:13 -07:00
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"Error in audio generation: {str(e)}")
|
|
|
|
raise
|
|
|
|
|
2025-02-04 19:41:41 -07:00
|
|
|
async def combine_voices(self, voices: List[str]) -> torch.Tensor:
|
|
|
|
"""Combine multiple voices.
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-04 19:41:41 -07:00
|
|
|
Returns:
|
|
|
|
Combined voice tensor
|
|
|
|
"""
|
2025-01-22 02:33:29 -07:00
|
|
|
return await self._voice_manager.combine_voices(voices)
|
2025-01-09 18:41:44 -07:00
|
|
|
|
2025-01-07 03:50:08 -07:00
|
|
|
async def list_voices(self) -> List[str]:
|
2025-01-25 05:25:13 -07:00
|
|
|
"""List available voices."""
|
2025-02-03 03:33:12 -07:00
|
|
|
return await self._voice_manager.list_voices()
|
2025-02-04 19:41:41 -07:00
|
|
|
|
|
|
|
async def generate_from_phonemes(
|
|
|
|
self,
|
|
|
|
phonemes: str,
|
|
|
|
voice: str,
|
2025-02-08 01:29:15 -07:00
|
|
|
speed: float = 1.0,
|
2025-02-09 18:32:17 -07:00
|
|
|
lang_code: Optional[str] = None,
|
2025-02-04 19:41:41 -07:00
|
|
|
) -> Tuple[np.ndarray, float]:
|
|
|
|
"""Generate audio directly from phonemes.
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-04 19:41:41 -07:00
|
|
|
Args:
|
|
|
|
phonemes: Phonemes in Kokoro format
|
|
|
|
voice: Voice name
|
|
|
|
speed: Speed multiplier
|
2025-02-08 01:29:15 -07:00
|
|
|
lang_code: Optional language code override
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-04 19:41:41 -07:00
|
|
|
Returns:
|
|
|
|
Tuple of (audio array, processing time)
|
|
|
|
"""
|
|
|
|
start_time = time.time()
|
|
|
|
try:
|
|
|
|
# Get backend and voice path
|
|
|
|
backend = self.model_manager.get_backend()
|
|
|
|
voice_name, voice_path = await self._get_voice_path(voice)
|
|
|
|
|
2025-02-05 02:45:28 -07:00
|
|
|
if isinstance(backend, KokoroV1):
|
|
|
|
# For Kokoro V1, use generate_from_tokens with raw phonemes
|
|
|
|
result = None
|
2025-02-08 01:29:15 -07:00
|
|
|
# Use provided lang_code or determine from voice name
|
|
|
|
pipeline_lang_code = lang_code if lang_code else voice[:1].lower()
|
2025-02-09 18:32:17 -07:00
|
|
|
logger.info(
|
|
|
|
f"Using lang_code '{pipeline_lang_code}' for voice '{voice_name}' in phoneme pipeline"
|
|
|
|
)
|
|
|
|
|
2025-02-08 20:36:50 -07:00
|
|
|
try:
|
|
|
|
# Use backend's pipeline management
|
2025-02-09 18:32:17 -07:00
|
|
|
for r in backend._get_pipeline(
|
|
|
|
pipeline_lang_code
|
|
|
|
).generate_from_tokens(
|
2025-02-08 20:36:50 -07:00
|
|
|
tokens=phonemes, # Pass raw phonemes string
|
|
|
|
voice=voice_path,
|
2025-02-09 18:32:17 -07:00
|
|
|
speed=speed,
|
2025-02-08 20:36:50 -07:00
|
|
|
):
|
|
|
|
if r.audio is not None:
|
|
|
|
result = r
|
|
|
|
break
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"Failed to generate from phonemes: {e}")
|
|
|
|
raise RuntimeError(f"Phoneme generation failed: {e}")
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-05 02:45:28 -07:00
|
|
|
if result is None or result.audio is None:
|
|
|
|
raise ValueError("No audio generated")
|
2025-02-09 18:32:17 -07:00
|
|
|
|
2025-02-05 02:45:28 -07:00
|
|
|
processing_time = time.time() - start_time
|
|
|
|
return result.audio.numpy(), processing_time
|
|
|
|
else:
|
2025-02-09 18:32:17 -07:00
|
|
|
raise ValueError(
|
|
|
|
"Phoneme generation only supported with Kokoro V1 backend"
|
|
|
|
)
|
2025-02-04 19:41:41 -07:00
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"Error in phoneme audio generation: {str(e)}")
|
|
|
|
raise
|