Kokoro-FastAPI/api/tests/test_tts_implementations.py

159 lines
5.9 KiB
Python
Raw Normal View History

"""Tests for TTS model implementations"""
import os
import torch
import pytest
import numpy as np
from unittest.mock import patch, MagicMock
from api.src.services.tts_base import TTSBaseModel
from api.src.services.tts_cpu import TTSCPUModel
from api.src.services.tts_gpu import TTSGPUModel, length_to_mask
# Base Model Tests
def test_get_device_error():
"""Test get_device() raises error when not initialized"""
TTSBaseModel._device = None
with pytest.raises(RuntimeError, match="Model not initialized"):
TTSBaseModel.get_device()
@pytest.mark.asyncio
@patch('torch.cuda.is_available')
@patch('os.path.exists')
@patch('os.path.join')
@patch('os.listdir')
@patch('torch.load')
@patch('torch.save')
async def test_setup_cuda_available(mock_save, mock_load, mock_listdir, mock_join, mock_exists, mock_cuda_available):
"""Test setup with CUDA available"""
TTSBaseModel._device = None
mock_cuda_available.return_value = True
mock_exists.return_value = True
mock_load.return_value = torch.zeros(1)
mock_listdir.return_value = ["voice1.pt", "voice2.pt"]
mock_join.return_value = "/mocked/path"
# Create mock model
mock_model = MagicMock()
mock_model.bert = MagicMock()
mock_model.process_text = MagicMock(return_value=("dummy", [1,2,3]))
mock_model.generate_from_tokens = MagicMock(return_value=np.zeros(1000))
# Mock initialize to return our mock model
TTSBaseModel.initialize = MagicMock(return_value=mock_model)
TTSBaseModel._instance = mock_model
voice_count = await TTSBaseModel.setup()
assert TTSBaseModel._device == "cuda"
assert voice_count == 2
@pytest.mark.asyncio
@patch('torch.cuda.is_available')
@patch('os.path.exists')
@patch('os.path.join')
@patch('os.listdir')
@patch('torch.load')
@patch('torch.save')
async def test_setup_cuda_unavailable(mock_save, mock_load, mock_listdir, mock_join, mock_exists, mock_cuda_available):
"""Test setup with CUDA unavailable"""
TTSBaseModel._device = None
mock_cuda_available.return_value = False
mock_exists.return_value = True
mock_load.return_value = torch.zeros(1)
mock_listdir.return_value = ["voice1.pt", "voice2.pt"]
mock_join.return_value = "/mocked/path"
# Create mock model
mock_model = MagicMock()
mock_model.bert = MagicMock()
mock_model.process_text = MagicMock(return_value=("dummy", [1,2,3]))
mock_model.generate_from_tokens = MagicMock(return_value=np.zeros(1000))
# Mock initialize to return our mock model
TTSBaseModel.initialize = MagicMock(return_value=mock_model)
TTSBaseModel._instance = mock_model
voice_count = await TTSBaseModel.setup()
assert TTSBaseModel._device == "cpu"
assert voice_count == 2
# CPU Model Tests
def test_cpu_initialize_missing_model():
"""Test CPU initialize with missing model"""
TTSCPUModel._onnx_session = None # Reset the session
with patch('os.path.exists', return_value=False), \
patch('onnxruntime.InferenceSession', return_value=None):
result = TTSCPUModel.initialize("dummy_dir")
assert result is None
def test_cpu_generate_uninitialized():
"""Test CPU generate methods with uninitialized model"""
TTSCPUModel._onnx_session = None
with pytest.raises(RuntimeError, match="ONNX model not initialized"):
TTSCPUModel.generate_from_text("test", torch.zeros(1), "en", 1.0)
with pytest.raises(RuntimeError, match="ONNX model not initialized"):
TTSCPUModel.generate_from_tokens([1,2,3], torch.zeros(1), 1.0)
def test_cpu_process_text():
"""Test CPU process_text functionality"""
with patch('api.src.services.tts_cpu.phonemize') as mock_phonemize, \
patch('api.src.services.tts_cpu.tokenize') as mock_tokenize:
mock_phonemize.return_value = "test phonemes"
mock_tokenize.return_value = [1, 2, 3]
phonemes, tokens = TTSCPUModel.process_text("test", "en")
assert phonemes == "test phonemes"
assert tokens == [0, 1, 2, 3, 0] # Should add start/end tokens
# GPU Model Tests
@patch('torch.cuda.is_available')
def test_gpu_initialize_cuda_unavailable(mock_cuda_available):
"""Test GPU initialize with CUDA unavailable"""
mock_cuda_available.return_value = False
TTSGPUModel._instance = None
result = TTSGPUModel.initialize("dummy_dir", "dummy_path")
assert result is None
@patch('api.src.services.tts_gpu.length_to_mask')
def test_gpu_length_to_mask(mock_length_to_mask):
"""Test length_to_mask function"""
# Setup mock return value
expected_mask = torch.tensor([
[False, False, False, True, True],
[False, False, False, False, False]
])
mock_length_to_mask.return_value = expected_mask
# Call function with test input
lengths = torch.tensor([3, 5])
mask = mock_length_to_mask(lengths)
# Verify mock was called with correct input
mock_length_to_mask.assert_called_once()
assert torch.equal(mask, expected_mask)
def test_gpu_generate_uninitialized():
"""Test GPU generate methods with uninitialized model"""
TTSGPUModel._instance = None
with pytest.raises(RuntimeError, match="GPU model not initialized"):
TTSGPUModel.generate_from_text("test", torch.zeros(1), "en", 1.0)
with pytest.raises(RuntimeError, match="GPU model not initialized"):
TTSGPUModel.generate_from_tokens([1,2,3], torch.zeros(1), 1.0)
def test_gpu_process_text():
"""Test GPU process_text functionality"""
with patch('api.src.services.tts_gpu.phonemize') as mock_phonemize, \
patch('api.src.services.tts_gpu.tokenize') as mock_tokenize:
mock_phonemize.return_value = "test phonemes"
mock_tokenize.return_value = [1, 2, 3]
phonemes, tokens = TTSGPUModel.process_text("test", "en")
assert phonemes == "test phonemes"
assert tokens == [1, 2, 3] # GPU implementation doesn't add start/end tokens