mirror of
https://github.com/3b1b/videos.git
synced 2025-08-05 16:48:47 +00:00
297 lines
9.3 KiB
Python
297 lines
9.3 KiB
Python
from manim_imports_ext import *
|
||
|
||
|
||
def get_integer_matrix_exponential(matrix):
|
||
pass
|
||
|
||
|
||
def get_vector_field_and_stream_lines(func, coordinate_system,
|
||
magnitude_range=(0.5, 4),
|
||
vector_opacity=0.75,
|
||
vector_thickness=0.03,
|
||
color_by_magnitude=True,
|
||
line_color=GREY_A,
|
||
line_width=3,
|
||
sample_freq=3,
|
||
n_samples_per_line=8,
|
||
arc_len=3,
|
||
time_width=0.5,
|
||
):
|
||
vector_field = VectorField(
|
||
func, coordinate_system,
|
||
magnitude_range=magnitude_range,
|
||
vector_config={
|
||
"fill_opacity": vector_opacity,
|
||
"thickness": vector_thickness,
|
||
}
|
||
)
|
||
stream_lines = StreamLines(
|
||
func, coordinate_system,
|
||
step_multiple=1.0 / sample_freq,
|
||
n_samples_per_line=n_samples_per_line,
|
||
arc_len=arc_len,
|
||
magnitude_range=magnitude_range,
|
||
color_by_magnitude=color_by_magnitude,
|
||
stroke_color=line_color,
|
||
stroke_width=line_width,
|
||
)
|
||
animated_lines = AnimatedStreamLines(
|
||
stream_lines,
|
||
line_anim_config={
|
||
"time_width": time_width,
|
||
},
|
||
)
|
||
|
||
return vector_field, animated_lines
|
||
|
||
|
||
# Scenes
|
||
|
||
class ShowConfusionAtMatrixExponenent(Scene):
|
||
def construct(self):
|
||
# Sticking a matrix in an exponent like this might strike you as...
|
||
base = Tex("e")
|
||
base.set_height(1.0)
|
||
matrix = IntegerMatrix(
|
||
[[3, 1, 4],
|
||
[1, 5, 9],
|
||
[2, 6, 5]],
|
||
)
|
||
matrix.move_to(base.get_corner(UR), DL)
|
||
matrix_exp = VGroup(base, matrix)
|
||
matrix_exp.set_height(2)
|
||
matrix_exp.to_corner(UL)
|
||
matrix_exp.shift(3 * RIGHT)
|
||
|
||
randy = Randolph()
|
||
randy.set_height(2)
|
||
randy.to_corner(DL)
|
||
|
||
matrix.save_state()
|
||
matrix.center()
|
||
matrix.set_height(2.5)
|
||
|
||
self.add(randy)
|
||
self.play(
|
||
randy.animate.change("pondering", matrix),
|
||
Write(matrix.get_brackets()),
|
||
ShowIncreasingSubsets(matrix.get_entries()),
|
||
)
|
||
self.play(Blink(randy))
|
||
self.play(
|
||
matrix.animate.restore(),
|
||
Write(base),
|
||
randy.animate.change("erm", base),
|
||
)
|
||
self.play(Blink(randy))
|
||
|
||
# ...odd, to say the least.
|
||
rhs = Tex("= e \\cdot e \\dots e \\cdot e")
|
||
rhs.set_height(0.75 * base.get_height())
|
||
rhs.next_to(matrix_exp, RIGHT)
|
||
rhs.align_to(base, DOWN)
|
||
brace = Brace(rhs[0][1:], DOWN)
|
||
matrix_copy = matrix.copy()
|
||
matrix_copy.scale(0.5)
|
||
brace_label = VGroup(
|
||
matrix.copy().scale(0.5),
|
||
Text("times?")
|
||
)
|
||
brace_label.arrange(RIGHT)
|
||
brace_label.next_to(brace, DOWN, SMALL_BUFF)
|
||
|
||
bubble = randy.get_bubble(
|
||
TexText("I'm sorry,\\\\what?!").scale(0.75),
|
||
height=2,
|
||
width=3,
|
||
bubble_class=SpeechBubble,
|
||
)
|
||
|
||
self.play(
|
||
TransformMatchingParts(
|
||
base.copy(), rhs,
|
||
path_arc=10 * DEGREES,
|
||
lag_ratio=0.01,
|
||
),
|
||
GrowFromCenter(brace),
|
||
ReplacementTransform(
|
||
matrix.copy(), brace_label[0],
|
||
path_arc=30 * DEGREES,
|
||
run_time=2,
|
||
rate_func=squish_rate_func(smooth, 0.3, 1),
|
||
),
|
||
Write(
|
||
brace_label[1],
|
||
run_time=2,
|
||
rate_func=squish_rate_func(smooth, 0.5, 1),
|
||
),
|
||
)
|
||
self.play(
|
||
randy.animate.change("angry", rhs),
|
||
ShowCreation(bubble),
|
||
Write(bubble.content),
|
||
)
|
||
self.wait()
|
||
|
||
false_equation = VGroup(
|
||
matrix_exp, rhs, brace, brace_label
|
||
)
|
||
|
||
# The short version of this video would be to say the notation is misleading,
|
||
# having little to do with the number e being multiplying it by itself.
|
||
morty = Mortimer()
|
||
morty.match_height(randy)
|
||
morty.to_corner(DR)
|
||
false_equation.generate_target()
|
||
false_equation.target.scale(0.5)
|
||
false_equation.target.next_to(morty, UL)
|
||
fe_rect = SurroundingRectangle(false_equation.target)
|
||
fe_rect.set_color(GREY_BROWN)
|
||
cross = Cross(false_equation.target[1])
|
||
cross.set_stroke(RED, 5)
|
||
nonsense = Text("This would be nonsense")
|
||
nonsense.match_width(fe_rect)
|
||
nonsense.next_to(fe_rect, UP)
|
||
nonsense.set_color(RED)
|
||
|
||
randy.bubble = bubble
|
||
self.play(
|
||
MoveToTarget(false_equation),
|
||
RemovePiCreatureBubble(randy, target_mode="hesitant"),
|
||
morty.animate.change("raise_right_hand"),
|
||
ShowCreation(fe_rect),
|
||
VFadeIn(morty),
|
||
)
|
||
self.play(
|
||
ShowCreation(cross),
|
||
FadeIn(nonsense),
|
||
)
|
||
self.play(Blink(morty))
|
||
self.wait()
|
||
|
||
# Writing e with a matrix up top is shorthand for plugging in the matrix to a certain infinite polynomial.
|
||
real_equation = Tex(
|
||
"e^X := X^0 + X^1 + \\frac{1}{2} X^2 + \\frac{1}{6} X^3 + \\cdots + \\frac{1}{n!} X^n + \\cdots",
|
||
isolate=["X"]
|
||
)
|
||
xs = real_equation.get_parts_by_tex("X")
|
||
xs.set_color(TEAL)
|
||
real_equation.set_width(FRAME_WIDTH - 2.0)
|
||
real_equation.to_edge(UP)
|
||
|
||
by_definition = Text("(by definition)", font_size=24)
|
||
by_definition.set_fill(GREY_B)
|
||
bd_arrow = Vector(0.5 * UP)
|
||
bd_arrow.match_color(by_definition)
|
||
bd_arrow.next_to(real_equation.get_part_by_tex("="), DOWN, SMALL_BUFF)
|
||
by_definition.next_to(bd_arrow, DOWN)
|
||
|
||
self.play(
|
||
TransformFromCopy(base, real_equation[0]),
|
||
FadeTransform(matrix.copy(), real_equation[1]),
|
||
)
|
||
self.play(
|
||
GrowArrow(bd_arrow),
|
||
FadeIn(by_definition, DOWN),
|
||
Write(real_equation[2]),
|
||
FadeTransformPieces(xs[:1].copy(), xs[1:], path_arc=20 * DEGREES),
|
||
LaggedStart(*(
|
||
FadeIn(part)
|
||
for part in real_equation[4:]
|
||
if part not in xs
|
||
))
|
||
)
|
||
self.add(real_equation)
|
||
self.play(
|
||
randy.animate.change("pondering", real_equation),
|
||
morty.animate.change("pondering", real_equation),
|
||
)
|
||
self.wait()
|
||
|
||
# Still, that’s a complicated thing to do, which takes some explaining in its own right,
|
||
# and without context this definition does very little to explain how to think about this operation.
|
||
rhs_tex = "X^0 + X^1 + \\frac{1}{2} X^2 + \\frac{1}{6} X^3 + \\cdots + \\frac{1}{n!} X^n + \\cdots"
|
||
mat_tex = "\\left[ \\begin{array}{ccc} 3 & 1 & 4 \\\\ 1 & 5 & 9 \\\\ 2 & 6 & 5 \\end{array} \\right]"
|
||
ex_rhs = Tex(
|
||
rhs_tex.replace("X", mat_tex),
|
||
tex_to_color_map={mat_tex: TEAL},
|
||
)
|
||
ex_rhs.scale(0.5)
|
||
|
||
ex_eq = VGroup(matrix_exp.copy(), Tex("="), ex_rhs)
|
||
ex_eq[0][1].set_color(TEAL)
|
||
ex_eq.arrange(RIGHT)
|
||
ex_rhs.align_to(ex_eq[0], DOWN)
|
||
ex_eq = VGroup(ex_eq[0], ex_eq[1], *ex_rhs)
|
||
ex_eq[1:].shift(0.1 * DOWN)
|
||
ex_eq.next_to(real_equation, DOWN, buff=2, aligned_edge=DOWN)
|
||
|
||
false_group = VGroup(false_equation, fe_rect, cross, nonsense)
|
||
complicated = Text("Rather complicated!")
|
||
complicated.set_color(YELLOW)
|
||
complicated.next_to(ex_eq, DOWN, LARGE_BUFF)
|
||
|
||
self.play(
|
||
TransformFromCopy(matrix_exp, ex_eq[0]),
|
||
FadeOut(false_group, DOWN),
|
||
FadeTransformPieces(
|
||
real_equation.copy()[2:], ex_eq[1:], run_time=2,
|
||
),
|
||
randy.animate.change("hesitant"),
|
||
morty.animate.change("raise_right_hand"),
|
||
)
|
||
self.play(Blink(randy))
|
||
self.play(
|
||
FadeIn(complicated, shift=DOWN),
|
||
randy.animate.change("confused"),
|
||
morty.animate.change("hesitant"),
|
||
)
|
||
self.wait()
|
||
|
||
|
||
class CircularPhaseFlow(Scene):
|
||
def construct(self):
|
||
plane = NumberPlane(
|
||
x_range=[-4, 4],
|
||
y_range=[-2, 2],
|
||
height=8,
|
||
width=16,
|
||
)
|
||
plane.add_coordinate_labels()
|
||
|
||
vector_field, animated_lines = get_vector_field_and_stream_lines(
|
||
self.func, plane
|
||
)
|
||
|
||
self.add(plane)
|
||
self.add(vector_field)
|
||
self.add(animated_lines)
|
||
|
||
self.wait(10)
|
||
|
||
#
|
||
self.embed()
|
||
|
||
def func(self, x, y):
|
||
return (-y, x)
|
||
|
||
def get_label(self):
|
||
pass
|
||
|
||
|
||
class HyperbolicPhaseFlow(CircularPhaseFlow):
|
||
def func(self, x, y):
|
||
return (x, -y)
|
||
|
||
|
||
class WhyWedCare(Scene):
|
||
def construct(self):
|
||
pass
|
||
# ...how to think about this operation, or more importantly why we’d care.
|
||
|
||
# So if it’s alright with you I think we should hold off explaining this definition, or justifying the
|
||
# abuse of notation, until it’s a bit clearer what problems it helps us to solve.
|
||
|
||
|
||
#
|
||
self.embed()
|