3b1b-videos/_2021/poly_fractal.py

1269 lines
38 KiB
Python
Raw Normal View History

2021-08-31 10:41:00 -04:00
from manim_imports_ext import *
from _2021.quintic import coefficients_to_roots
from _2021.quintic import roots_to_coefficients
from _2021.quintic import dpoly
from _2021.quintic import poly
ROOT_COLORS_BRIGHT = [RED, GREEN, BLUE, YELLOW, MAROON_B]
ROOT_COLORS_DEEP = ["#440154", "#3b528b", "#21908c", "#5dc963", "#29abca"]
class PolyFractal(Mobject):
CONFIG = {
"shader_folder": "poly_fractal",
"shader_dtype": [
('point', np.float32, (3,)),
],
"colors": ROOT_COLORS_DEEP,
"coefs": [1.0, -1.0, 1.0, 0.0, 0.0, 1.0],
"scale_factor": 1.0,
"offset": ORIGIN,
"n_steps": 30,
}
def init_data(self):
self.data = {
"points": np.array([UL, DL, UR, DR]),
}
def init_uniforms(self):
super().init_uniforms()
self.set_colors(self.colors)
self.set_coefs(self.coefs)
self.set_scale(self.scale_factor)
self.set_offset(self.offset)
self.set_n_steps(self.n_steps)
def set_colors(self, colors):
self.uniforms.update({
f"color{n}": np.array(color_to_rgba(color))
for n, color in enumerate(colors)
})
return self
def set_coefs(self, coefs, reset_roots=True):
self.uniforms["n_roots"] = float(len(coefs))
self.uniforms.update({
f"coef{n}": np.array([coef.real, coef.imag])
for n, coef in enumerate(map(complex, coefs))
})
if reset_roots:
self.set_roots(coefficients_to_roots(coefs), False)
return self
def set_roots(self, roots, reset_coefs=True):
self.uniforms["n_roots"] = float(len(roots))
self.uniforms.update({
f"root{n}": np.array([root.real, root.imag])
for n, root in enumerate(map(complex, roots))
})
if reset_coefs:
self.set_coefs(roots_to_coefficients(roots), False)
return self
def set_scale(self, scale_factor):
self.uniforms["scale_factor"] = scale_factor
return self
def set_offset(self, offset):
self.uniforms["offset"] = np.array(offset)
return self
def set_n_steps(self, n_steps):
self.uniforms["n_steps"] = float(n_steps)
return self
# Scenes
class HelloPatrons(Scene):
def construct(self):
self.add(FullScreenRectangle())
morty = Mortimer()
morty.to_edge(DOWN).shift(3 * RIGHT)
self.play(PiCreatureSays(morty, "Hello patrons!", target_mode="wave_1"))
self.play(Blink(morty))
class ComingVideoWrapper(VideoWrapper):
animate_boundary = False
title = "Upcoming: Unsolvabillity of the Quintic"
class RealNewtonsMethod(Scene):
coefs = [-0.2, -1, 1, 0, 0, 1]
poly_tex = "x^5 + x^2 - x - 0.2"
dpoly_tex = "5x^4 + 2x - 1"
seed = 1.3
axes_config = {
"x_range": (-2, 2, 0.2),
"y_range": (-2, 6, 0.2),
"height": 8,
"width": 8,
"axis_config": {
"tick_size": 0.05,
"longer_tick_multiple": 2.0,
"tick_offset": 0,
# Change name
"numbers_with_elongated_ticks": list(range(-2, 3)),
"include_tip": False,
}
}
graph_color = BLUE_C
guess_color = YELLOW
rule_font_size = 42
n_search_steps = 5
def construct(self):
self.add_graph()
self.add_title(self.axes)
self.draw_graph()
self.highlight_roots()
self.introduce_step()
self.find_root()
def add_graph(self):
axes = self.axes = Axes(**self.axes_config)
axes.to_edge(RIGHT)
axes.add_coordinate_labels(
np.arange(*self.axes.x_range[:2]),
np.arange(self.axes.y_range[0] + 1, self.axes.y_range[1]),
)
self.add(axes)
graph = self.graph = axes.get_graph(
lambda x: poly(x, self.coefs)
)
graph.set_color(self.graph_color)
self.add(graph)
def add_title(self, axes, opacity=0):
title = TexText("Newton's method", font_size=60)
title.move_to(midpoint(axes.get_left(), LEFT_SIDE))
title.to_edge(UP)
title.set_opacity(opacity)
poly = Tex(f"P({self.poly_tex[0]}) = ", self.poly_tex, "= 0 ")
poly.match_width(title)
poly.next_to(title, DOWN, buff=MED_LARGE_BUFF)
poly.set_fill(GREY_A)
title.add(poly)
self.title = title
self.poly = poly
self.add(title)
def draw_graph(self):
underline = Underline(self.poly[:-1])
underline.match_style(self.graph)
self.play(
FlashAround(self.poly[:-1], color=self.graph_color),
ShowCreation(self.graph),
run_time=3
)
self.wait()
def highlight_roots(self):
roots = coefficients_to_roots(self.coefs)
real_roots = [
root.real for root in roots
if abs(root.imag) < 1e-6
]
real_roots.sort()
dots = VGroup(*(
Dot(self.axes.c2p(r, 0), radius=0.05)
for r in real_roots
))
dots.set_fill(YELLOW, 1)
dots.set_stroke(BLACK, 2, background=True)
squares = VGroup(*[
Square().set_height(0.25).move_to(dot)
for dot in dots
])
squares.set_stroke(YELLOW, 3)
squares.set_fill(opacity=0)
self.play(
LaggedStart(
*[
FadeIn(dot, shift=DOWN, scale=0.25)
for dot in dots
] + [
VShowPassingFlash(square, time_width=2.0, run_time=2)
for square in squares
],
lag_ratio=0.15
),
)
self.wait()
# Show values numerically
root_strs = ["{0:.4}".format(root) for root in real_roots]
equations = VGroup(*(
Tex(
"P(", root_str, ")", "=", "0",
font_size=self.rule_font_size
).set_color_by_tex(root_str, YELLOW)
for root_str in root_strs
))
equations.arrange(DOWN, buff=0.5, aligned_edge=LEFT)
equations.next_to(self.poly, DOWN, LARGE_BUFF, aligned_edge=LEFT)
question = Text("How do you\ncompute these?")
question.next_to(equations, RIGHT, buff=LARGE_BUFF)
question.set_color(YELLOW)
arrows = VGroup(*(
Arrow(
question.get_corner(UL) + 0.2 * DL,
eq[1].get_corner(UR) + 0.25 * LEFT,
path_arc=arc, stroke_width=3,
buff=0.2,
)
for eq, arc in zip(equations, [0.7 * PI, 0.5 * PI, 0.0 * PI])
))
arrows.set_color(YELLOW)
self.play(
LaggedStartMap(FadeIn, equations, lag_ratio=0.25),
LaggedStart(*(
FadeTransform(dot.copy(), eq[1])
for dot, eq in zip(dots, equations)
), lag_ratio=0.25)
)
self.wait()
self.play(
Write(question),
Write(arrows)
)
self.wait()
self.play(LaggedStart(
FadeOut(dots),
FadeOut(question),
FadeOut(arrows),
FadeOut(equations),
lag_ratio=0.25
))
self.wait()
def introduce_step(self):
axes = self.axes
graph = self.graph
# Add labels
guess_label = Tex(
"\\text{Guess: } x_0 = " + f"{self.seed}",
tex_to_color_map={"x_0": YELLOW}
)
guess_label.next_to(self.poly, DOWN, LARGE_BUFF)
guess_marker, guess_value, guess_tracker = self.get_guess_group()
get_guess = guess_tracker.get_value
self.play(self.title.animate.set_opacity(1))
self.wait()
self.play(Write(guess_label))
self.play(
FadeTransform(
guess_label[1].copy(),
VGroup(guess_marker, guess_value)
)
)
self.wait()
# Add lines
v_line = axes.get_v_line(axes.i2gp(get_guess(), graph))
tan_line = self.get_tan_line(get_guess())
v_line_label = Tex("P(x_0)", font_size=30, fill_color=GREY_A)
v_line_label.next_to(v_line, RIGHT, SMALL_BUFF)
self.add(v_line, guess_marker, guess_value)
self.play(ShowCreation(v_line))
self.play(FadeIn(v_line_label, 0.2 * RIGHT))
self.wait()
self.play(
ShowCreation(tan_line),
graph.animate.set_stroke(width=2),
)
# Mention next guess
next_guess_label = Text("Next guess", font_size=30)
next_guess_label.set_color(RED)
next_guess_label.next_to(axes.c2p(0, 0), RIGHT, MED_LARGE_BUFF)
next_guess_label.shift(UP)
next_guess_arrow = Arrow(next_guess_label, tan_line.get_start(), buff=0.1)
next_guess_arrow.set_stroke(RED, 3)
coord = axes.coordinate_labels[0][-1]
coord_copy = coord.copy()
coord.set_opacity(0)
self.play(
coord_copy.animate.scale(0),
ShowCreation(next_guess_arrow),
FadeIn(next_guess_label),
)
self.wait()
# Show derivative
dpoly = Tex("P'(x) = ", self.dpoly_tex)
dpoly.match_height(self.poly)
dpoly.match_style(self.poly)
dpoly.next_to(self.poly, DOWN, aligned_edge=LEFT)
self.play(
FadeIn(dpoly, 0.5 * DOWN),
guess_label.animate.shift(0.25 * DOWN)
)
self.wait()
# Show step
step_arrow = Arrow(v_line.get_start(), tan_line.get_start(), buff=0)
step_arrow.set_stroke(GREY_A, 3)
step_arrow.shift(0.1 * UP)
step_word = Text("Step", font_size=24)
step_word.set_stroke(BLACK, 3, background=True)
step_word.next_to(step_arrow, UP, SMALL_BUFF)
self.play(
ShowCreation(step_arrow),
FadeIn(step_word)
)
self.wait()
# Show slope
slope_eq_texs = [
"P'(x_0) = {P(x_0) \\over -\\text{Step}}",
"\\text{Step} = -{P(x_0) \\over P'(x_0)}",
]
slope_eqs = [
Tex(
tex,
isolate=[
"P'(x_0)",
"P(x_0)",
"\\text{Step}",
"-"
],
font_size=self.rule_font_size,
)
for tex in slope_eq_texs
]
for slope_eq in slope_eqs:
slope_eq.set_fill(GREY_A)
slope_eq.set_color_by_tex("Step", WHITE)
slope_eq.next_to(guess_label, DOWN, LARGE_BUFF)
rule = self.rule = self.get_update_rule()
rule.next_to(guess_label, DOWN, LARGE_BUFF)
for line in [v_line, Line(tan_line.get_start(), v_line.get_start())]:
self.play(
VShowPassingFlash(
Line(line.get_start(), line.get_end()).set_stroke(YELLOW, 10).insert_n_curves(20),
time_width=1.0,
run_time=1.5
)
)
self.wait()
self.play(
FadeTransform(v_line_label.copy(), slope_eqs[0].get_part_by_tex("P(x_0)")),
FadeTransform(step_word.copy(), slope_eqs[0].get_part_by_tex("\\text{Step}")),
FadeIn(slope_eqs[0][3:5]),
)
self.wait()
self.play(FadeIn(slope_eqs[0][:2]))
self.wait()
self.play(TransformMatchingTex(*slope_eqs, path_arc=PI / 2))
self.wait()
self.play(
FadeIn(rule),
slope_eqs[1].animate.to_edge(DOWN)
)
self.wait()
# Transition to x1
self.add(tan_line, guess_value)
self.play(
FadeOut(next_guess_label),
FadeOut(next_guess_arrow),
FadeOut(step_word),
FadeOut(step_arrow),
FadeOut(v_line),
FadeOut(v_line_label),
guess_tracker.animate.set_value(self.get_next_guess(get_guess())),
)
self.play(FadeOut(tan_line))
def find_root(self, cycle_run_time=1.0):
for n in range(self.n_search_steps):
self.play(*self.cycle_rule_entries_anims(), run_time=cycle_run_time)
self.step_towards_root()
def step_towards_root(self, fade_tan_with_vline=False):
guess = self.guess_tracker.get_value()
next_guess = self.get_next_guess(guess)
v_line = self.axes.get_v_line(self.axes.i2gp(guess, self.graph))
tan_line = self.get_tan_line(guess)
self.add(v_line, tan_line, self.guess_marker, self.guess_value)
self.play(
ShowCreation(v_line),
GrowFromCenter(tan_line)
)
anims = [
FadeOut(v_line),
self.guess_tracker.animate.set_value(next_guess)
]
tan_fade = FadeOut(tan_line)
if fade_tan_with_vline:
self.play(*anims, tan_fade)
else:
self.play(*anims)
self.play(tan_fade)
#
def get_guess_group(self):
axes = self.axes
guess_tracker = ValueTracker(self.seed)
get_guess = guess_tracker.get_value
guess_marker = Triangle(start_angle=PI / 2)
guess_marker.set_height(0.1)
guess_marker.set_width(0.1, stretch=True)
guess_marker.set_fill(self.guess_color, 1)
guess_marker.set_stroke(width=0)
guess_marker.add_updater(lambda m: m.move_to(
axes.c2p(get_guess(), 0), UP
))
guess_value = DecimalNumber(0, num_decimal_places=3, font_size=24)
def update_guess_value(gv):
gv.set_value(get_guess())
gv.next_to(guess_marker, DOWN, SMALL_BUFF)
gv.set_fill(self.guess_color)
gv.add_background_rectangle()
return gv
guess_value.add_updater(update_guess_value)
self.guess_tracker = guess_tracker
self.guess_marker = guess_marker
self.guess_value = guess_value
return (guess_marker, guess_value, guess_tracker)
def get_next_guess(self, curr_guess):
x = curr_guess
return x - poly(x, self.coefs) / dpoly(x, self.coefs)
def get_tan_line(self, curr_guess):
next_guess = self.get_next_guess(curr_guess)
start = self.axes.c2p(next_guess, 0)
end = self.axes.i2gp(curr_guess, self.graph)
line = Line(start, start + 2 * (end - start))
line.set_stroke(RED, 3)
return line
def get_update_rule(self, char="x"):
rule = Tex(
"""
z_1 =
z_0 - {P(z_0) \\over P'(z_0)}
""".replace("z", char),
tex_to_color_map={
f"{char}_1": self.guess_color,
f"{char}_0": self.guess_color
},
font_size=self.rule_font_size,
)
rule.n = 0
rule.zns = rule.get_parts_by_tex(f"{char}_0")
rule.znp1 = rule.get_parts_by_tex(f"{char}_1")
return rule
def cycle_rule_entries_anims(self):
rule = self.rule
rule.n += 1
char = rule.get_tex().strip()[0]
zns = VGroup()
for old_zn in rule.zns:
zn = Tex(f"{char}_{{{rule.n}}}", font_size=self.rule_font_size)
zn[0][1:].set_max_width(0.2, about_edge=DL)
zn.move_to(old_zn)
zn.match_color(old_zn)
zns.add(zn)
znp1 = Tex(f"{char}_{{{rule.n + 1}}}", font_size=self.rule_font_size)
znp1.move_to(rule.znp1)
znp1.match_color(rule.znp1[0])
result = (
FadeOut(rule.zns),
FadeTransformPieces(rule.znp1, zns),
FadeIn(znp1, 0.5 * RIGHT)
)
rule.zns = zns
rule.znp1 = znp1
return result
class AssumingItsGood(TeacherStudentsScene):
def construct(self):
self.pi_creatures.refresh_triangulation()
self.teacher_says(
TexText("Assuming this\\\\approximation\\\\is decent...", font_size=42),
bubble_kwargs={
"height": 3, "width": 4,
}
)
self.change_student_modes(
"pondering", "pondering", "tease",
look_at_arg=self.screen
)
self.pi_creatures.refresh_triangulation()
self.wait(3)
class RealNewtonsMethodHigherGraph(RealNewtonsMethod):
coefs = [1, -1, 1, 0, 0, 0.99]
poly_tex = "x^5 + x^2 - x + 1"
n_search_steps = 20
def find_root(self, cycle_run_time=0.5):
super().find_root(cycle_run_time)
def step_towards_root(self, fade_tan_with_vline=True):
super().step_towards_root(fade_tan_with_vline)
class FactorPolynomial(RealNewtonsMethodHigherGraph):
def construct(self):
self.add_graph()
self.add_title(self.axes)
self.show_factors()
def show_factors(self):
poly = self.poly
colors = color_gradient((BLUE, YELLOW), 5)
factored = Tex(
"P(x) = ", *(
f"(x - r_{n})"
for n in range(5)
),
tex_to_color_map={
f"r_{n}": color
for n, color in enumerate(colors)
}
)
factored.match_height(poly[0])
factored.next_to(poly, DOWN, LARGE_BUFF, LEFT)
self.play(
FadeTransform(poly.copy(), factored)
)
self.wait()
words = TexText("Potentially complex\\\\", "$r_n = a_n + b_n i$")
words.set_color(GREY_A)
words.next_to(factored, DOWN, buff=1.5)
words.shift(LEFT)
lines = VGroup(*(
Line(words, part, buff=0.15).set_stroke(part.get_color(), 2)
for n in range(5)
for part in [factored.get_part_by_tex(f"r_{n}")]
))
self.play(
FadeIn(words[0]),
Write(lines),
)
self.play(FadeIn(words[1], 0.5 * DOWN))
self.wait()
class TransitionToComplexPlane(RealNewtonsMethodHigherGraph):
poly_tex = "z^5 + z^2 - z + 1"
def construct(self):
self.add_graph()
self.add_title(self.axes)
self.poly.save_state()
self.poly.to_corner(UL)
self.center_graph()
self.show_example_point()
self.separate_input_and_output()
self.move_input_around_plane()
def center_graph(self):
shift_vect = DOWN - self.axes.c2p(0, 0)
self.play(
self.axes.animate.shift(shift_vect),
self.graph.animate.shift(shift_vect),
)
self.wait()
def show_example_point(self):
axes = self.axes
input_tracker = ValueTracker(1)
get_x = input_tracker.get_value
def get_px():
return poly(get_x(), self.coefs)
def get_graph_point():
return axes.c2p(get_x(), get_px())
marker = ArrowTip().set_height(0.1)
input_marker = marker.copy().rotate(PI / 2)
input_marker.set_color(YELLOW)
output_marker = marker.copy()
output_marker.set_color(MAROON_B)
input_marker.add_updater(lambda m: m.move_to(axes.x_axis.n2p(get_x()), UP))
output_marker.add_updater(lambda m: m.shift(axes.y_axis.n2p(get_px()) - m.get_start()))
v_line = always_redraw(
lambda: axes.get_v_line(get_graph_point(), line_func=Line).set_stroke(YELLOW, 1)
)
h_line = always_redraw(
lambda: axes.get_h_line(get_graph_point(), line_func=Line).set_stroke(MAROON_B, 1)
)
self.add(
input_tracker,
input_marker,
output_marker,
v_line,
h_line,
)
self.play(input_tracker.animate.set_value(-0.5), run_time=3)
self.play(input_tracker.animate.set_value(1.0), run_time=3)
self.play(ShowCreationThenFadeOut(
axes.get_tangent_line(get_x(), self.graph).set_stroke(RED, 3)
))
self.input_tracker = input_tracker
self.input_marker = input_marker
self.output_marker = output_marker
self.v_line = v_line
self.h_line = h_line
def separate_input_and_output(self):
axes = self.axes
x_axis, y_axis = axes.x_axis, axes.y_axis
graph = self.graph
input_marker = self.input_marker
output_marker = self.output_marker
v_line = self.v_line
h_line = self.h_line
in_plane = ComplexPlane(
(-2, 2),
(-2, 2),
height=5,
width=5,
)
in_plane.add_coordinate_labels(font_size=18)
in_plane.to_corner(DL)
out_plane = in_plane.deepcopy()
out_plane.to_corner(DR)
input_word = Text("Input")
output_word = Text("Output")
input_word.next_to(in_plane.x_axis, UP)
output_word.rotate(PI / 2)
output_word.next_to(out_plane.y_axis, RIGHT, buff=0.5)
cl_copy = axes.coordinate_labels.copy()
axes.coordinate_labels.set_opacity(0)
self.play(
*map(FadeOut, (v_line, h_line, graph, cl_copy)),
)
for axis1, axis2 in [(x_axis, in_plane.x_axis), (y_axis, out_plane.y_axis)]:
axis1.generate_target()
axis1.target.scale(axis2.get_unit_size() / axis1.get_unit_size())
axis1.target.shift(axis2.n2p(0) - axis1.target.n2p(0))
self.play(
MoveToTarget(x_axis),
MoveToTarget(y_axis),
FadeIn(input_word),
FadeIn(output_word),
)
self.wait()
self.add(in_plane, input_marker)
self.play(
input_word.animate.next_to(in_plane, UP),
x_axis.animate.set_stroke(width=0),
Write(in_plane, lag_ratio=0.03),
)
self.play(
Rotate(
VGroup(y_axis, output_word, output_marker),
-PI / 2,
about_point=out_plane.n2p(0)
)
)
self.add(out_plane, output_marker)
self.play(
output_word.animate.next_to(out_plane, UP),
y_axis.animate.set_stroke(width=0),
Write(out_plane, lag_ratio=0.03),
)
self.wait()
self.in_plane = in_plane
self.out_plane = out_plane
self.input_word = input_word
self.output_word = output_word
def move_input_around_plane(self):
in_plane = self.in_plane
out_plane = self.out_plane
input_marker = self.input_marker
output_marker = self.output_marker
in_dot, out_dot = [
Dot(radius=0.05).set_fill(marker.get_fill_color()).move_to(marker.get_start())
for marker in (input_marker, output_marker)
]
in_dot.set_fill(YELLOW, 1)
in_tracer = TracingTail(in_dot, stroke_color=in_dot.get_color())
out_tracer = TracingTail(out_dot, stroke_color=out_dot.get_color())
self.add(in_tracer, out_tracer)
out_dot.add_updater(lambda m: m.move_to(out_plane.n2p(
poly(in_plane.p2n(in_dot.get_center()), self.coefs)
)))
z_label = Tex("z", font_size=24)
z_label.set_fill(YELLOW)
z_label.add_background_rectangle()
z_label.add_updater(lambda m: m.next_to(in_dot, UP, SMALL_BUFF))
pz_label = Tex("P(z)", font_size=24)
pz_label.set_fill(MAROON_B)
pz_label.add_background_rectangle()
pz_label.add_updater(lambda m: m.next_to(out_dot, UP, SMALL_BUFF))
self.play(
*map(FadeOut, (input_marker, output_marker)),
*map(FadeIn, (in_dot, out_dot)),
FadeIn(z_label),
FlashAround(z_label),
)
self.play(
FadeTransform(z_label.copy(), pz_label)
)
z_values = [
complex(-0.5, 0.5),
complex(-0.5, -0.5),
complex(-0.25, 0.25),
complex(0.5, -0.5),
complex(0.5, 0.5),
complex(1, 0.25),
]
for z in z_values:
self.play(
in_dot.animate.move_to(in_plane.n2p(z)),
run_time=2,
path_arc=PI / 2
)
self.wait()
self.remove(in_tracer, out_tracer)
in_plane.generate_target()
in_dot.generate_target()
group = VGroup(in_plane.target, in_dot.target)
group.set_height(8).center().to_edge(RIGHT, buff=0),
self.play(
MoveToTarget(in_plane),
MoveToTarget(in_dot),
FadeOut(self.input_word),
FadeOut(self.output_word),
FadeOut(out_plane),
FadeOut(out_dot),
FadeOut(pz_label),
Restore(self.poly),
)
class ComplexNewtonsMethod(RealNewtonsMethod):
coefs = [1, -1, 1, 0, 0, 1]
poly_tex = "z^5 + z^2 - z + 1"
plane_config = {
"x_range": (-2, 2),
"y_range": (-2, 2),
"height": 8,
"width": 8,
}
seed = complex(-0.5, 0.5)
seed_tex = "-0.5 + 0.5i"
guess_color = YELLOW
pz_color = MAROON_B
step_arrow_width = 5
step_arrow_opacity = 1.0
step_arrow_len = None
n_search_steps = 9
def construct(self):
self.add_plane()
self.add_title()
self.add_z0_def()
self.add_pz_dot()
self.add_rule()
self.find_root()
def add_plane(self):
plane = ComplexPlane(**self.plane_config)
plane.add_coordinate_labels(font_size=24)
plane.to_edge(RIGHT, buff=0)
self.plane = plane
self.add(plane)
def add_title(self, opacity=1):
super().add_title(self.plane, opacity)
def add_z0_def(self):
seed_text = Text("(Arbitrary seed)")
z0_def = Tex(
f"z_0 = {self.seed_tex}",
tex_to_color_map={"z_0": self.guess_color},
font_size=self.rule_font_size
)
z0_group = VGroup(seed_text, z0_def)
z0_group.arrange(DOWN)
z0_group.next_to(self.title, DOWN, buff=LARGE_BUFF)
guess_dot = Dot(self.plane.n2p(self.seed), color=self.guess_color)
guess = DecimalNumber(self.seed, num_decimal_places=3, font_size=30)
guess.add_updater(
lambda m: m.set_value(self.plane.p2n(
guess_dot.get_center()
)).set_fill(self.guess_color).add_background_rectangle()
)
guess.add_updater(lambda m: m.next_to(guess_dot, UP, buff=0.15))
self.play(
Write(seed_text, run_time=1),
FadeIn(z0_def),
)
self.play(
FadeTransform(z0_def[0].copy(), guess_dot),
FadeIn(guess),
)
self.wait()
self.z0_group = z0_group
self.z0_def = z0_def
self.guess_dot = guess_dot
self.guess = guess
def add_pz_dot(self):
plane = self.plane
guess_dot = self.guess_dot
def get_pz():
z = plane.p2n(guess_dot.get_center())
return poly(z, self.coefs)
pz_dot = Dot(color=self.pz_color)
pz_dot.add_updater(lambda m: m.move_to(plane.n2p(get_pz())))
pz_label = Tex("P(z)", font_size=24)
pz_label.set_color(self.pz_color)
pz_label.add_background_rectangle()
pz_label.add_updater(lambda m: m.next_to(pz_dot, UL, buff=0))
self.play(
FadeTransform(self.poly[0].copy(), pz_label),
FadeIn(pz_dot),
)
self.wait()
def add_rule(self):
self.rule = rule = self.get_update_rule("z")
rule.next_to(self.z0_group, DOWN, buff=LARGE_BUFF)
self.play(
FadeTransformPieces(self.z0_def[0].copy(), rule.zns),
FadeIn(rule),
)
self.wait()
def find_root(self):
for x in range(self.n_search_steps):
self.root_search_step()
def root_search_step(self):
dot = self.guess_dot
dot_step_anims = self.get_dot_step_anims(VGroup(dot))
diff_rect = SurroundingRectangle(
self.rule.slice_by_tex("-"),
buff=0.1,
stroke_color=GREY_A,
stroke_width=1,
)
self.play(
ShowCreation(diff_rect),
dot_step_anims[0],
)
self.play(
dot_step_anims[1],
FadeOut(diff_rect),
*self.cycle_rule_entries_anims(),
run_time=2
)
self.wait()
def get_dot_step_anims(self, dots):
plane = self.plane
arrows = VGroup()
dots.generate_target()
for dot, dot_target in zip(dots, dots.target):
try:
z0 = plane.p2n(dot.get_center())
pz = poly(z0, self.coefs)
dpz = dpoly(z0, self.coefs)
if abs(pz) < 1e-3:
z1 = z0
else:
if dpz == 0:
dpz = 0.1 # ???
z1 = z0 - pz / dpz
if np.isnan(z1):
z1 = z0
arrow = Arrow(
plane.n2p(z0), plane.n2p(z1),
buff=0,
stroke_width=self.step_arrow_width,
storke_opacity=self.step_arrow_opacity,
)
if self.step_arrow_len is not None:
if arrow.get_length() > self.step_arrow_len:
arrow.set_length(self.step_arrow_len, about_point=arrow.get_start())
if not hasattr(dot, "history"):
dot.history = [dot.get_center().copy()]
dot.history.append(plane.n2p(z1))
arrows.add(arrow)
dot_target.move_to(plane.n2p(z1))
except ValueError:
pass
return [
ShowCreation(arrows, lag_ratio=0),
AnimationGroup(
MoveToTarget(dots),
FadeOut(arrows),
)
]
class ComplexNewtonsMethodManySeeds(ComplexNewtonsMethod):
dot_radius = 0.035
dot_color = WHITE
dot_opacity = 0.8
step_arrow_width = 3
step_arrow_opacity = 0.1
step_arrow_len = 0.15
plane_config = {
"x_range": (-2, 2),
"y_range": (-2, 2),
"height": 8,
"width": 8,
}
step = 0.2
n_search_steps = 20
colors = ROOT_COLORS_BRIGHT
def construct(self):
self.add_plane()
self.add_title()
self.add_z0_def()
self.add_rule()
self.add_true_root_circles()
self.find_root()
self.add_color()
def add_z0_def(self):
seed_text = Text("Many seeds: ")
z0_def = Tex(
"z_0",
tex_to_color_map={"z_0": self.guess_color},
font_size=self.rule_font_size
)
z0_group = VGroup(seed_text, z0_def)
z0_group.arrange(RIGHT)
z0_group.next_to(self.title, DOWN, buff=LARGE_BUFF)
x_range = self.plane_config["x_range"]
y_range = self.plane_config["y_range"]
step = self.step
x_vals = np.arange(x_range[0], x_range[1] + step, step)
y_vals = np.arange(y_range[0], y_range[1] + step, step)
guess_dots = VGroup(*(
Dot(
self.plane.c2p(x, y),
radius=self.dot_radius,
fill_opacity=self.dot_opacity,
)
for i, x in enumerate(x_vals)
for y in (y_vals if i % 2 == 0 else reversed(y_vals))
))
guess_dots.set_submobject_colors_by_gradient(WHITE, GREY_B)
guess_dots.set_fill(opacity=self.dot_opacity)
guess_dots.set_stroke(BLACK, 2, background=True)
self.play(
Write(seed_text, run_time=1),
FadeIn(z0_def),
)
self.play(
LaggedStart(*(
FadeTransform(z0_def[0].copy(), guess_dot)
for guess_dot in guess_dots
), lag_ratio=0.1 / len(guess_dots)),
run_time=3
)
self.wait()
self.z0_group = z0_group
self.z0_def = z0_def
self.guess_dots = guess_dots
def add_true_root_circles(self):
roots = coefficients_to_roots(self.coefs)
root_points = list(map(self.plane.n2p, roots))
colors = self.colors
root_circles = VGroup(*(
Dot(radius=0.1).set_fill(color, opacity=0.75).move_to(rp)
for rp, color in zip(root_points, colors)
))
self.play(LaggedStartMap(DrawBorderThenFill, root_circles))
self.wait()
self.root_circles = root_circles
def root_search_step(self):
dots = self.guess_dots
dot_step_anims = self.get_dot_step_anims(dots)
self.play(dot_step_anims[0], run_time=0.25)
self.play(
dot_step_anims[1],
*self.cycle_rule_entries_anims(),
run_time=1
)
def add_color(self):
root_points = [circ.get_center() for circ in self.root_circles]
colors = [circ.get_fill_color() for circ in self.root_circles]
dots = self.guess_dots
dots.generate_target()
for dot, dot_target in zip(dots, dots.target):
dc = dot.get_center()
dot_target.set_color(colors[
np.argmin([get_norm(dc - rp) for rp in root_points])
])
rect = SurroundingRectangle(self.rule)
rect.set_fill(BLACK, 1)
rect.set_stroke(width=0)
self.play(
FadeIn(rect),
MoveToTarget(dots)
)
self.wait()
len_history = max([len(dot.history) for dot in dots if hasattr(dot, "history")])
for n in range(len_history):
dots.generate_target()
for dot, dot_target in zip(dots, dots.target):
try:
dot_target.move_to(dot.history[len_history - n - 1])
except Exception:
pass
self.play(MoveToTarget(dots, run_time=0.5))
class ComplexNewtonsMethodManySeedsHigherRes(ComplexNewtonsMethodManySeeds):
step = 0.05
class IntroPolyFractal(Scene):
def construct(self):
plane = self.get_plane()
fractal = self.get_fractal(plane)
root_dots = self.get_root_dots(plane, fractal)
self.add(fractal)
self.add(plane)
self.add(root_dots)
# Transition from last scene
frame = self.camera.frame
frame.shift(plane.n2p(2) - RIGHT_SIDE)
blocker = BackgroundRectangle(plane, fill_opacity=1)
blocker.move_to(plane.n2p(-2), RIGHT)
self.add(blocker)
self.play(
frame.animate.center(),
FadeOut(blocker),
run_time=2,
)
self.wait()
self.play(
fractal.animate.set_colors(ROOT_COLORS_DEEP),
*(
dot.animate.set_fill(interpolate_color(color, WHITE, 0.2))
for dot, color in zip(root_dots, ROOT_COLORS_DEEP)
)
)
self.wait()
# Zoom in
fractal.set_n_steps(40)
zoom_points = [
[-3.12334879, 1.61196545, 0.],
[1.21514006, 0.01415811, 0.],
]
for point in zoom_points:
self.play(
frame.animate.set_height(2e-3).move_to(point),
run_time=25,
rate_func=bezier(2 * [0] + 6 * [1])
)
self.wait()
self.play(
frame.animate.center().set_height(8),
run_time=10,
rate_func=bezier(6 * [0] + 2 * [1])
)
# Allow for play
self.tie_fractal_to_root_dots(fractal)
fractal.set_n_steps(12)
def get_plane(self):
plane = ComplexPlane(
x_range=(-4, 4),
y_range=(-4, 4),
height=16,
width=16,
background_line_style={
"stroke_color": GREY_A,
"stroke_width": 1.0,
},
axis_config={
"stroke_width": 1.0,
}
)
plane.add_coordinate_labels(font_size=24)
self.plane = plane
return plane
def get_fractal(self, plane, colors=ROOT_COLORS_BRIGHT):
fractal = PolyFractal(
scale_factor=get_norm(plane.n2p(1) - plane.n2p(0)),
offset=plane.n2p(0),
colors=colors,
)
fractal.replace(plane, stretch=True)
return fractal
def get_root_dots(self, plane, fractal):
self.root_dots = VGroup(*(
Dot(plane.n2p(root), color=color)
for root, color in zip(
coefficients_to_roots(fractal.coefs),
fractal.colors
)
))
self.root_dots.set_stroke(BLACK, 5, background=True)
return self.root_dots
def tie_fractal_to_root_dots(self, fractal):
fractal.add_updater(lambda f: f.set_roots([
self.plane.p2n(dot.get_center())
for dot in self.root_dots
]))
def on_mouse_press(self, point, button, mods):
super().on_mouse_press(point, button, mods)
mob = self.point_to_mobject(point, search_set=self.root_dots)
if mob is None:
return
self.mouse_drag_point.move_to(point)
mob.add_updater(lambda m: m.move_to(self.mouse_drag_point))
self.unlock_mobject_data()
self.lock_static_mobject_data()
def on_mouse_release(self, point, button, mods):
super().on_mouse_release(point, button, mods)
self.root_dots.clear_updaters()
class IncreasingStepsPolyFractal(IntroPolyFractal):
play_mode = False
def construct(self):
plane = self.get_plane()
fractal = self.get_fractal(plane, colors=ROOT_COLORS_DEEP)
fractal.set_n_steps(0)
root_dots = self.get_root_dots(plane, fractal)
self.tie_fractal_to_root_dots(fractal)
steps_label = VGroup(Integer(0, edge_to_fix=RIGHT), Text("Steps"))
steps_label.arrange(RIGHT, aligned_edge=UP)
steps_label.next_to(ORIGIN, UP).to_edge(LEFT)
steps_label.set_stroke(BLACK, 5, background=True)
self.add(fractal)
self.add(plane)
self.add(root_dots)
self.add(steps_label)
step_tracker = ValueTracker(0)
get_n_steps = step_tracker.get_value
fractal.add_updater(lambda m: m.set_n_steps(int(get_n_steps())))
steps_label[0].add_updater(
lambda m: m.set_value(int(get_n_steps()))
)
steps_label[0].add_updater(lambda m: m.set_stroke(BLACK, 5, background=True))
if self.play_mode:
self.wait(20)
for n in range(20):
step_tracker.set_value(n)
if n == 1:
self.wait(15)
elif n == 2:
self.wait(10)
else:
self.wait()
else:
self.play(
step_tracker.animate.set_value(20),
run_time=10
)