3b1b-manim/mobject/mobject.py

776 lines
25 KiB
Python

import numpy as np
import operator as op
import os
import copy
from PIL import Image
from colour import Color
from helpers import *
#TODO: Explain array_attrs
class Mobject(object):
"""
Mathematical Object
"""
CONFIG = {
"color" : WHITE,
"stroke_width" : DEFAULT_POINT_THICKNESS,
"name" : None,
"dim" : 3,
"target" : None,
}
def __init__(self, *submobjects, **kwargs):
digest_config(self, kwargs)
if not all(map(lambda m : isinstance(m, Mobject), submobjects)):
raise Exception("All submobjects must be of type Mobject")
self.submobjects = list(submobjects)
self.color = Color(self.color)
if self.name is None:
self.name = self.__class__.__name__
self.init_points()
self.generate_points()
self.init_colors()
def __str__(self):
return str(self.name)
def init_points(self):
self.points = np.zeros((0, self.dim))
def init_colors(self):
#For subclasses
pass
def generate_points(self):
#Typically implemented in subclass, unless purposefully left blank
pass
def add(self, *mobjects):
if self in mobjects:
raise Exception("Mobject cannot contain self")
self.submobjects = list_update(self.submobjects, mobjects)
return self
def add_to_back(self, *mobjects):
self.remove(*mobjects)
self.submobjects = list(mobjects) + self.submobjects
return self
def remove(self, *mobjects):
for mobject in mobjects:
if mobject in self.submobjects:
self.submobjects.remove(mobject)
return self
def get_array_attrs(self):
return ["points"]
def digest_mobject_attrs(self):
"""
Ensures all attributes which are mobjects are included
in the submobjects list.
"""
mobject_attrs = filter(
lambda x : isinstance(x, Mobject),
self.__dict__.values()
)
self.submobjects = list_update(self.submobjects, mobject_attrs)
return self
def apply_over_attr_arrays(self, func):
for attr in self.get_array_attrs():
setattr(self, attr, func(getattr(self, attr)))
return self
def get_image(self, camera = None):
if camera is None:
from camera import Camera
camera = Camera()
camera.capture_mobject(self)
return camera.get_image()
def show(self, camera = None):
self.get_image(camera = camera).show()
def save_image(self, name = None):
self.get_image().save(
os.path.join(ANIMATIONS_DIR, (name or str(self)) + ".png")
)
def copy(self):
#TODO, either justify reason for shallow copy, or
#remove this redundancy everywhere
# return self.deepcopy()
copy_mobject = copy.copy(self)
copy_mobject.points = np.array(self.points)
copy_mobject.submobjects = [
submob.copy() for submob in self.submobjects
]
family = self.submobject_family()
for attr, value in self.__dict__.items():
if isinstance(value, Mobject) and value in family and value is not self:
setattr(copy_mobject, attr, value.copy())
return copy_mobject
def deepcopy(self):
return copy.deepcopy(self)
def generate_target(self, use_deepcopy = False):
self.target = None #Prevent exponential explosion
if use_deepcopy:
self.target = self.deepcopy()
else:
self.target = self.copy()
return self.target
#### Transforming operations ######
def apply_to_family(self, func):
for mob in self.family_members_with_points():
func(mob)
def shift(self, *vectors):
total_vector = reduce(op.add, vectors)
for mob in self.family_members_with_points():
mob.points = mob.points.astype('float')
mob.points += total_vector
return self
def scale(self, scale_factor, about_point = None):
if about_point is not None:
self.shift(-about_point)
for mob in self.family_members_with_points():
mob.points *= scale_factor
if about_point is not None:
self.shift(about_point)
return self
def rotate_about_origin(self, angle, axis = OUT, axes = []):
if len(axes) == 0:
axes = [axis]
rot_matrix = np.identity(self.dim)
for axis in axes:
rot_matrix = np.dot(rot_matrix, rotation_matrix(angle, axis))
t_rot_matrix = np.transpose(rot_matrix)
for mob in self.family_members_with_points():
mob.points = np.dot(mob.points, t_rot_matrix)
return self
def rotate(self, angle, axis = OUT, axes = [], about_point = None):
if about_point is None:
self.rotate_about_origin(angle, axis, axes)
else:
self.do_about_point(about_point, self.rotate, angle, axis, axes)
return self
def stretch(self, factor, dim):
for mob in self.family_members_with_points():
mob.points[:,dim] *= factor
return self
def apply_function(self, function):
for mob in self.family_members_with_points():
mob.points = np.apply_along_axis(function, 1, mob.points)
return self
def apply_matrix(self, matrix):
matrix = np.array(matrix)
for mob in self.family_members_with_points():
mob.points = np.dot(mob.points, matrix.T)
return self
def wag(self, direction = RIGHT, axis = DOWN, wag_factor = 1.0):
for mob in self.family_members_with_points():
alphas = np.dot(mob.points, np.transpose(axis))
alphas -= min(alphas)
alphas /= max(alphas)
alphas = alphas**wag_factor
mob.points += np.dot(
alphas.reshape((len(alphas), 1)),
np.array(direction).reshape((1, mob.dim))
)
return self
def reverse_points(self):
for mob in self.family_members_with_points():
mob.apply_over_attr_arrays(
lambda arr : np.array(list(reversed(arr)))
)
return self
def repeat(self, count):
"""
This can make transition animations nicer
"""
def repeat_array(array):
return reduce(
lambda a1, a2 : np.append(a1, a2, axis = 0),
[array]*count
)
for mob in self.family_members_with_points():
mob.apply_over_attr_arrays(repeat_array)
return self
#### In place operations ######
def do_about_point(self, point, method, *args, **kwargs):
self.shift(-point)
method(*args, **kwargs)
self.shift(point)
return self
def do_in_place(self, method, *args, **kwargs):
self.do_about_point(self.get_center(), method, *args, **kwargs)
return self
def rotate_in_place(self, angle, axis = OUT, axes = []):
self.do_in_place(self.rotate, angle, axis, axes)
return self
def flip(self, axis = UP):
self.rotate_in_place(np.pi, axis)
return self
def scale_in_place(self, scale_factor):
self.do_in_place(self.scale, scale_factor)
return self
def scale_about_point(self, scale_factor, point):
self.do_about_point(point, self.scale, scale_factor)
return self
def pose_at_angle(self):
self.rotate_in_place(np.pi / 7, RIGHT+UP)
return self
def center(self):
self.shift(-self.get_center())
return self
def align_on_border(self, direction, buff = DEFAULT_MOBJECT_TO_EDGE_BUFFER):
"""
Direction just needs to be a vector pointing towards side or
corner in the 2d plane.
"""
target_point = np.sign(direction) * (SPACE_WIDTH, SPACE_HEIGHT, 0)
point_to_align = self.get_critical_point(direction)
shift_val = target_point - point_to_align - buff * np.array(direction)
shift_val = shift_val * abs(np.sign(direction))
self.shift(shift_val)
return self
def to_corner(self, corner = LEFT+DOWN, buff = DEFAULT_MOBJECT_TO_EDGE_BUFFER):
return self.align_on_border(corner, buff)
def to_edge(self, edge = LEFT, buff = DEFAULT_MOBJECT_TO_EDGE_BUFFER):
return self.align_on_border(edge, buff)
def next_to(self, mobject_or_point,
direction = RIGHT,
buff = DEFAULT_MOBJECT_TO_MOBJECT_BUFFER,
aligned_edge = ORIGIN,
align_using_submobjects = False,
):
if isinstance(mobject_or_point, Mobject):
mob = mobject_or_point
target_point = mob.get_critical_point(
aligned_edge+direction,
use_submobject = align_using_submobjects
)
else:
target_point = mobject_or_point
point_to_align = self.get_critical_point(
aligned_edge-direction,
use_submobject = align_using_submobjects
)
self.shift(target_point - point_to_align + buff*direction)
return self
def align_to(self, mobject_or_point, direction = UP):
if isinstance(mobject_or_point, Mobject):
mob = mobject_or_point
point = mob.get_edge_center(direction)
else:
point = mobject_or_point
diff = point - self.get_edge_center(direction)
self.shift(direction*np.dot(diff, direction))
return self
def shift_onto_screen(self, **kwargs):
space_lengths = [SPACE_WIDTH, SPACE_HEIGHT]
for vect in UP, DOWN, LEFT, RIGHT:
dim = np.argmax(np.abs(vect))
buff = kwargs.get("buff", DEFAULT_MOBJECT_TO_EDGE_BUFFER)
max_val = space_lengths[dim] - buff
edge_center = self.get_edge_center(vect)
if np.dot(edge_center, vect) > max_val:
self.to_edge(vect, **kwargs)
return self
def is_off_screen(self):
if self.get_left()[0] > SPACE_WIDTH:
return True
if self.get_right()[0] < -SPACE_WIDTH:
return True
if self.get_bottom()[1] > SPACE_HEIGHT:
return True
if self.get_top()[1] < -SPACE_HEIGHT:
return True
return False
def stretch_about_point(self, factor, dim, point):
self.do_about_point(point, self.stretch, factor, dim)
return self
def stretch_in_place(self, factor, dim):
self.do_in_place(self.stretch, factor, dim)
return self
def rescale_to_fit(self, length, dim, stretch = False):
old_length = self.length_over_dim(dim)
if old_length == 0:
return self
if stretch:
self.stretch_in_place(length/old_length, dim)
else:
self.scale_in_place(length/old_length)
return self
def stretch_to_fit_width(self, width):
return self.rescale_to_fit(width, 0, stretch = True)
def stretch_to_fit_height(self, height):
return self.rescale_to_fit(height, 1, stretch = True)
def scale_to_fit_width(self, width):
return self.rescale_to_fit(width, 0, stretch = False)
def scale_to_fit_height(self, height):
return self.rescale_to_fit(height, 1, stretch = False)
def scale_to_fit_depth(self, depth):
return self.rescale_to_fit(depth, 2, stretch = False)
def space_out_submobjects(self, factor = 1.5, **kwargs):
self.scale_in_place(factor)
for submob in self.submobjects:
submob.scale_in_place(1./factor)
return self
def move_to(self, point_or_mobject, aligned_edge = ORIGIN):
if isinstance(point_or_mobject, Mobject):
target = point_or_mobject.get_critical_point(aligned_edge)
else:
target = point_or_mobject
point_to_align = self.get_critical_point(aligned_edge)
self.shift(target - point_to_align)
return self
def replace(self, mobject, dim_to_match = 0, stretch = False):
if not mobject.get_num_points() and not mobject.submobjects:
raise Warning("Attempting to replace mobject with no points")
return self
if stretch:
self.stretch_to_fit_width(mobject.get_width())
self.stretch_to_fit_height(mobject.get_height())
else:
self.rescale_to_fit(
mobject.length_over_dim(dim_to_match),
dim_to_match,
stretch = False
)
self.shift(mobject.get_center() - self.get_center())
return self
def surround(self, mobject, dim_to_match = 0, stretch = False, buffer_factor = 1.2):
self.replace(mobject, dim_to_match, stretch)
self.scale_in_place(buffer_factor)
def position_endpoints_on(self, start, end):
curr_vect = self.points[-1] - self.points[0]
if np.all(curr_vect == 0):
raise Exception("Cannot position endpoints of closed loop")
target_vect = end - start
self.scale(np.linalg.norm(target_vect)/np.linalg.norm(curr_vect))
self.rotate(
angle_of_vector(target_vect) - \
angle_of_vector(curr_vect)
)
self.shift(start-self.points[0])
return self
## Color functions
def highlight(self, color = YELLOW_C, family = True):
"""
Condition is function which takes in one arguments, (x, y, z).
Here it just recurses to submobjects, but in subclasses this
should be further implemented based on the the inner workings
of color
"""
if family:
for submob in self.submobjects:
submob.highlight(color, family = family)
return self
def gradient_highlight(self, *colors):
self.submobject_gradient_highlight(*colors)
return self
def submobject_gradient_highlight(self, *colors):
if len(colors) == 0:
raise Exception("Need at least one color")
elif len(colors) == 1:
return self.highlight(*colors)
mobs = self.family_members_with_points()
new_colors = color_gradient(colors, len(mobs))
for mob, color in zip(mobs, new_colors):
mob.highlight(color, family = False)
return self
def set_color(self, color):
self.highlight(color)
self.color = Color(color)
return self
def to_original_color(self):
self.highlight(self.color)
return self
def fade_to(self, color, alpha):
for mob in self.family_members_with_points():
start = color_to_rgb(mob.get_color())
end = color_to_rgb(color)
new_rgb = interpolate(start, end, alpha)
mob.highlight(Color(rgb = new_rgb), family = False)
return self
def fade(self, darkness = 0.5):
self.fade_to(BLACK, darkness)
return self
def get_color(self):
return self.color
##
def save_state(self, use_deepcopy = False):
if hasattr(self, "saved_state"):
#Prevent exponential growth of data
self.saved_state = None
if use_deepcopy:
self.saved_state = self.deepcopy()
else:
self.saved_state = self.copy()
return self
def restore(self):
if not hasattr(self, "saved_state") or self.save_state is None:
raise Exception("Trying to restore without having saved")
self.align_data(self.saved_state)
for sm1, sm2 in zip(self.submobject_family(), self.saved_state.submobject_family()):
sm1.interpolate(sm1, sm2, 1)
return self
def apply_complex_function(self, function, **kwargs):
return self.apply_function(
lambda (x, y, z) : complex_to_R3(function(complex(x, y))),
**kwargs
)
def reduce_across_dimension(self, points_func, reduce_func, dim):
try:
points = self.get_points_defining_boundary()
values = [points_func(points[:, dim])]
except:
values = []
values += [
mob.reduce_across_dimension(points_func, reduce_func, dim)
for mob in self.submobjects
]
try:
return reduce_func(values)
except:
return 0
def get_merged_array(self, array_attr):
result = np.zeros((0, self.dim))
for mob in self.family_members_with_points():
result = np.append(result, getattr(mob, array_attr), 0)
return result
def get_all_points(self):
return self.get_merged_array("points")
### Getters ###
def get_points_defining_boundary(self):
return self.points
def get_num_points(self):
return len(self.points)
def get_critical_point(self, direction, use_submobject = False):
if use_submobject:
return self.get_submobject_critical_point(direction)
result = np.zeros(self.dim)
for dim in range(self.dim):
if direction[dim] <= 0:
min_point = self.reduce_across_dimension(np.min, np.min, dim)
if direction[dim] >= 0:
max_point = self.reduce_across_dimension(np.max, np.max, dim)
if direction[dim] == 0:
result[dim] = (max_point+min_point)/2
elif direction[dim] < 0:
result[dim] = min_point
else:
result[dim] = max_point
return result
def get_submobject_critical_point(self, direction):
if len(self.split()) == 1:
return self.get_critical_point(direction)
with_points = self.family_members_with_points()
submob_critical_points = np.array([
submob.get_critical_point(direction)
for submob in with_points
])
index = np.argmax(np.dot(direction, submob_critical_points.T))
return submob_critical_points[index]
# Pseudonyms for more general get_critical_point method
def get_edge_center(self, direction):
return self.get_critical_point(direction)
def get_corner(self, direction):
return self.get_critical_point(direction)
def get_center(self):
return self.get_critical_point(np.zeros(self.dim))
def get_center_of_mass(self):
return np.apply_along_axis(np.mean, 0, self.get_all_points())
def get_boundary_point(self, direction):
all_points = self.get_all_points()
return all_points[np.argmax(np.dot(all_points, direction))]
def get_top(self):
return self.get_edge_center(UP)
def get_bottom(self):
return self.get_edge_center(DOWN)
def get_right(self):
return self.get_edge_center(RIGHT)
def get_left(self):
return self.get_edge_center(LEFT)
def get_zenith(self):
return self.get_edge_center(OUT)
def get_nadir(self):
return self.get_edge_center(IN)
def length_over_dim(self, dim):
return (
self.reduce_across_dimension(np.max, np.max, dim) -
self.reduce_across_dimension(np.min, np.min, dim)
)
def get_width(self):
return self.length_over_dim(0)
def get_height(self):
return self.length_over_dim(1)
def get_depth(self):
return self.length_over_dim(2)
def point_from_proportion(self, alpha):
raise Exception("Not implemented")
## Family matters
def __getitem__(self, index):
return self.split()[index]
def __iter__(self):
return iter(self.split())
def __len__(self):
return len(self.split())
def split(self):
result = [self] if len(self.points) > 0 else []
return result + self.submobjects
def submobject_family(self):
sub_families = map(Mobject.submobject_family, self.submobjects)
all_mobjects = [self] + list(it.chain(*sub_families))
return remove_list_redundancies(all_mobjects)
def family_members_with_points(self):
return filter(
lambda m : m.get_num_points() > 0,
self.submobject_family()
)
def arrange_submobjects(self, direction = RIGHT, center = True, **kwargs):
for m1, m2 in zip(self.submobjects, self.submobjects[1:]):
m2.next_to(m1, direction, **kwargs)
if center:
self.center()
return self
def arrange_submobjects_in_grid(self, n_rows = None, n_cols = None, **kwargs):
submobs = self.submobjects
if n_rows is None and n_cols is None:
n_cols = int(np.sqrt(len(submobs)))
if n_rows is not None:
v1 = RIGHT
v2 = DOWN
n = len(submobs) / n_rows
elif n_cols is not None:
v1 = DOWN
v2 = RIGHT
n = len(submobs) / n_cols
Group(*[
Group(*submobs[i:i+n]).arrange_submobjects(v1, **kwargs)
for i in range(0, len(submobs), n)
]).arrange_submobjects(v2, **kwargs)
return self
def sort_submobjects(self, point_to_num_func = lambda p : p[0]):
self.submobjects.sort(
lambda *mobs : cmp(*[
point_to_num_func(mob.get_center())
for mob in mobs
])
)
return self
## Alignment
def align_data(self, mobject):
self.align_submobjects(mobject)
self.align_points(mobject)
#Recurse
for m1, m2 in zip(self.submobjects, mobject.submobjects):
m1.align_data(m2)
def get_point_mobject(self, center = None):
"""
The simplest mobject to be transformed to or from self.
Should by a point of the appropriate type
"""
raise Exception("Not implemented")
def align_points(self, mobject):
count1 = self.get_num_points()
count2 = mobject.get_num_points()
if count1 < count2:
self.align_points_with_larger(mobject)
elif count2 < count1:
mobject.align_points_with_larger(self)
return self
def align_points_with_larger(self, larger_mobject):
raise Exception("Not implemented")
def align_submobjects(self, mobject):
#If one is empty, and the other is not,
#push it into its submobject list
self_has_points, mob_has_points = [
mob.get_num_points() > 0
for mob in self, mobject
]
if self_has_points and not mob_has_points:
mobject.null_point_align(self)
elif mob_has_points and not self_has_points:
self.null_point_align(mobject)
self_count = len(self.submobjects)
mob_count = len(mobject.submobjects)
diff = abs(self_count-mob_count)
if self_count < mob_count:
self.add_n_more_submobjects(diff)
elif mob_count < self_count:
mobject.add_n_more_submobjects(diff)
return self
def null_point_align(self, mobject):
"""
If self has no points, but needs to align
with mobject, which has points
"""
if self.submobjects:
mobject.push_self_into_submobjects()
else:
self.points = np.array([mobject.points[0]])
return self
def push_self_into_submobjects(self):
copy = self.copy()
copy.submobjects = []
self.init_points()
self.add(copy)
return self
def add_n_more_submobjects(self, n):
curr = len(self.submobjects)
if n > 0 and curr == 0:
self.add(self.copy())
n -= 1
curr += 1
indices = curr*np.arange(curr+n)/(curr+n)
new_submobjects = []
for index in indices:
submob = self.submobjects[index]
if submob in new_submobjects:
submob = self.repeat_submobject(submob)
new_submobjects.append(submob)
self.submobjects = new_submobjects
return self
def repeat_submobject(self, submob):
return submob.copy()
def interpolate(self, mobject1, mobject2,
alpha, path_func = straight_path):
"""
Turns self into an interpolation between mobject1
and mobject2.
"""
self.points = path_func(
mobject1.points, mobject2.points, alpha
)
self.interpolate_color(mobject1, mobject2, alpha)
def interpolate_color(self, mobject1, mobject2, alpha):
pass #To implement in subclass
def become_partial(self, mobject, a, b):
"""
Set points in such a way as to become only
part of mobject.
Inputs 0 <= a < b <= 1 determine what portion
of mobject to become.
"""
pass #To implement in subclasses
#TODO, color?
def pointwise_become_partial(self, mobject, a, b):
pass #To implement in subclass
class Group(Mobject):
#Alternate name to improve readibility in cases where
#the mobject is used primarily for its submobject housing
#functionality.
pass