mirror of
https://github.com/3b1b/manim.git
synced 2025-04-13 09:47:07 +00:00
294 lines
9.2 KiB
Python
294 lines
9.2 KiB
Python
import re
|
|
|
|
from .mobject import Mobject
|
|
|
|
from helpers import *
|
|
|
|
class VMobject(Mobject):
|
|
CONFIG = {
|
|
"fill_color" : BLACK,
|
|
"fill_opacity" : 0.0,
|
|
#Indicates that it will not be displayed, but
|
|
#that it should count in parent mobject's path
|
|
"is_subpath" : False,
|
|
"close_new_points" : False,
|
|
"mark_paths_closed" : False,
|
|
}
|
|
def __init__(self, *args, **kwargs):
|
|
Mobject.__init__(self, *args, **kwargs)
|
|
|
|
## Colors
|
|
def init_colors(self):
|
|
self.set_stroke(self.color, self.stroke_width)
|
|
self.set_fill(self.fill_color, self.fill_opacity)
|
|
return self
|
|
|
|
def set_family_attr(self, attr, value):
|
|
for mob in self.submobject_family():
|
|
setattr(mob, attr, value)
|
|
|
|
def set_fill(self, color = None, opacity = 1.0):
|
|
if color is not None:
|
|
self.set_family_attr("fill_rgb", color_to_rgb(color))
|
|
self.set_family_attr("fill_opacity", opacity)
|
|
return self
|
|
|
|
def set_stroke(self, color = None, width = None):
|
|
if color is not None:
|
|
self.set_family_attr("stroke_rgb", color_to_rgb(color))
|
|
if width is not None:
|
|
self.set_family_attr("stroke_width", width)
|
|
return self
|
|
|
|
def highlight(self, color):
|
|
self.set_fill(color = color)
|
|
self.set_stroke(color = color)
|
|
return self
|
|
|
|
def get_fill_color(self):
|
|
return Color(rgb = self.fill_rgb)
|
|
|
|
def get_fill_opacity(self):
|
|
return self.fill_opacity
|
|
|
|
def get_stroke_color(self):
|
|
try:
|
|
return Color(rgb = self.stroke_rgb)
|
|
except:
|
|
return Color(rgb = 0.99*self.stroke_rgb)
|
|
|
|
#TODO, get color? Specify if stroke or fill
|
|
#is the predominant color attribute?
|
|
|
|
## Drawing
|
|
def start_at(self, point):
|
|
if len(self.points) == 0:
|
|
self.points = np.zeros((1, 3))
|
|
self.points[0] = point
|
|
return self
|
|
|
|
def add_control_points(self, control_points):
|
|
assert(len(control_points) % 3 == 0)
|
|
self.points = np.append(
|
|
self.points,
|
|
control_points,
|
|
axis = 0
|
|
)
|
|
return self
|
|
|
|
def is_closed(self):
|
|
return is_closed(self.points)
|
|
|
|
def set_anchors_and_handles(self, anchors, handles1, handles2):
|
|
assert(len(anchors) == len(handles1)+1)
|
|
assert(len(anchors) == len(handles2)+1)
|
|
total_len = 3*(len(anchors)-1) + 1
|
|
self.points = np.zeros((total_len, self.dim))
|
|
self.points[0] = anchors[0]
|
|
arrays = [handles1, handles2, anchors[1:]]
|
|
for index, array in enumerate(arrays):
|
|
self.points[index+1::3] = array
|
|
return self.points
|
|
|
|
def set_points_as_corners(self, points):
|
|
if len(points) <= 1:
|
|
return self
|
|
points = np.array(points)
|
|
self.set_anchors_and_handles(points, *[
|
|
interpolate(points[:-1], points[1:], alpha)
|
|
for alpha in 1./3, 2./3
|
|
])
|
|
return self
|
|
|
|
def set_points_smoothly(self, points):
|
|
if len(points) <= 1:
|
|
return self
|
|
h1, h2 = get_smooth_handle_points(points)
|
|
self.set_anchors_and_handles(points, h1, h2)
|
|
return self
|
|
|
|
def set_points(self, points):
|
|
self.points = np.array(points)
|
|
return self
|
|
|
|
def set_anchor_points(self, points, mode = "smooth"):
|
|
if not isinstance(points, np.ndarray):
|
|
points = np.array(points)
|
|
if self.close_new_points and not is_closed(points):
|
|
points = np.append(points, [points[0]], axis = 0)
|
|
if mode == "smooth":
|
|
self.set_points_smoothly(points)
|
|
elif mode == "corners":
|
|
self.set_points_as_corners(points)
|
|
else:
|
|
raise Exception("Unknown mode")
|
|
return self
|
|
|
|
def change_anchor_mode(self, mode):
|
|
anchors, h1, h2 = self.get_anchors_and_handles()
|
|
self.set_anchor_points(anchors, mode = mode)
|
|
return self
|
|
|
|
def make_smooth(self):
|
|
return self.change_anchor_mode("smooth")
|
|
|
|
def make_jagged(self):
|
|
return self.change_anchor_mode("corners")
|
|
|
|
def add_subpath(self, points):
|
|
"""
|
|
A VMobject is meant to represnt
|
|
a single "path", in the svg sense of the word.
|
|
However, one such path may really consit of separate
|
|
continuous components if there is a move_to command.
|
|
|
|
These other portions of the path will be treated as submobjects,
|
|
but will be tracked in a separate special list for when
|
|
it comes time to display.
|
|
"""
|
|
subpath_mobject = VMobject(
|
|
is_subpath = True
|
|
)
|
|
subpath_mobject.set_points(points)
|
|
self.add(subpath_mobject)
|
|
return subpath_mobject
|
|
|
|
def get_subpath_mobjects(self):
|
|
return filter(
|
|
lambda m : m.is_subpath,
|
|
self.submobjects
|
|
)
|
|
|
|
## Information about line
|
|
|
|
def component_curves(self):
|
|
for n in range(self.get_num_anchor_points()-1):
|
|
yield self.get_nth_curve(n)
|
|
|
|
def get_nth_curve(self, n):
|
|
return bezier(self.points[3*n:3*n+4])
|
|
|
|
def get_num_anchor_points(self):
|
|
return (len(self.points) - 1)/3 + 1
|
|
|
|
def point_from_proportion(self, alpha):
|
|
num_cubics = self.get_num_anchor_points()-1
|
|
interpoint_alpha = num_cubics*(alpha % (1./num_cubics))
|
|
index = 3*int(alpha*num_cubics)
|
|
cubic = bezier(self.points[index:index+4])
|
|
return cubic(interpoint_alpha)
|
|
|
|
def get_anchors_and_handles(self):
|
|
return [
|
|
self.points[i::3]
|
|
for i in range(3)
|
|
]
|
|
|
|
## Alignment
|
|
|
|
def align_points(self, mobject):
|
|
Mobject.align_points(self, mobject)
|
|
is_subpath = self.is_subpath or mobject.is_subpath
|
|
self.is_subpath = mobject.is_subpath = is_subpath
|
|
mark_closed = self.mark_paths_closed and mobject.mark_paths_closed
|
|
self.mark_paths_closed = mobject.mark_paths_closed = mark_closed
|
|
return self
|
|
|
|
def align_points_with_larger(self, larger_mobject):
|
|
assert(isinstance(larger_mobject, VMobject))
|
|
self.insert_n_anchor_points(
|
|
larger_mobject.get_num_anchor_points()-\
|
|
self.get_num_anchor_points()
|
|
)
|
|
return self
|
|
|
|
def insert_n_anchor_points(self, n):
|
|
curr = self.get_num_anchor_points()
|
|
if curr == 0:
|
|
self.points = np.zeros((1, 3))
|
|
n = n-1
|
|
if curr == 1:
|
|
self.points = np.repeat(self.points, n+1)
|
|
return self
|
|
points = np.array([self.points[0]])
|
|
num_curves = curr-1
|
|
#Curves in self are buckets, and we need to know
|
|
#how many new anchor points to put into each one.
|
|
#Each element of index_allocation is like a bucket,
|
|
#and its value tells you the appropriate index of
|
|
#the smaller curve.
|
|
index_allocation = (np.arange(curr+n-1) * num_curves)/(curr+n-1)
|
|
for index in range(num_curves):
|
|
curr_bezier_points = self.points[3*index:3*index+4]
|
|
num_inter_curves = sum(index_allocation == index)
|
|
alphas = np.arange(0, num_inter_curves+1)/float(num_inter_curves)
|
|
for a, b in zip(alphas, alphas[1:]):
|
|
new_points = partial_bezier_points(
|
|
curr_bezier_points, a, b
|
|
)
|
|
points = np.append(
|
|
points, new_points[1:], axis = 0
|
|
)
|
|
self.set_points(points)
|
|
return self
|
|
|
|
def get_point_mobject(self, center = None):
|
|
if center is None:
|
|
center = self.get_center()
|
|
return VectorizedPoint(center)
|
|
|
|
def interpolate_color(self, mobject1, mobject2, alpha):
|
|
attrs = [
|
|
"stroke_rgb",
|
|
"stroke_width",
|
|
"fill_rgb",
|
|
"fill_opacity",
|
|
]
|
|
for attr in attrs:
|
|
setattr(self, attr, interpolate(
|
|
getattr(mobject1, attr),
|
|
getattr(mobject2, attr),
|
|
alpha
|
|
))
|
|
|
|
def become_partial(self, mobject, a, b):
|
|
assert(isinstance(mobject, VMobject))
|
|
#Partial curve includes three portions:
|
|
#-A middle section, which matches the curve exactly
|
|
#-A start, which is some ending portion of an inner cubic
|
|
#-An end, which is the starting portion of a later inner cubic
|
|
if a <= 0 and b >= 1:
|
|
self.set_points(mobject.points)
|
|
return self
|
|
num_cubics = mobject.get_num_anchor_points()-1
|
|
lower_index = int(a*num_cubics)
|
|
upper_index = int(b*num_cubics)
|
|
points = np.array(
|
|
mobject.points[3*lower_index:3*upper_index+4]
|
|
)
|
|
if len(points) > 1:
|
|
a_residue = (num_cubics*a)%1
|
|
b_residue = (num_cubics*b)%1
|
|
points[:4] = partial_bezier_points(
|
|
points[:4], a_residue, 1
|
|
)
|
|
points[-4:] = partial_bezier_points(
|
|
points[-4:], 0, b_residue
|
|
)
|
|
self.set_points(points)
|
|
return self
|
|
|
|
|
|
class VectorizedPoint(VMobject):
|
|
CONFIG = {
|
|
"color" : BLACK,
|
|
}
|
|
def __init__(self, location = ORIGIN, **kwargs):
|
|
VMobject.__init__(self, **kwargs)
|
|
self.set_points([location])
|
|
|
|
|
|
|
|
|
|
|
|
|