mirror of
https://github.com/3b1b/manim.git
synced 2025-04-13 09:47:07 +00:00
375 lines
10 KiB
Python
375 lines
10 KiB
Python
import numpy as np
|
|
import itertools as it
|
|
import operator as op
|
|
from PIL import Image
|
|
from colour import Color
|
|
import random
|
|
import inspect
|
|
import string
|
|
import re
|
|
|
|
|
|
from constants import *
|
|
|
|
|
|
def color_to_int_rgb(color):
|
|
return (255*np.array(Color(color).get_rgb())).astype('uint8')
|
|
|
|
def compass_directions(n = 4, start_vect = UP):
|
|
angle = 2*np.pi/n
|
|
return [
|
|
rotate_vector(start_vect, k*angle)
|
|
for k in range(n)
|
|
]
|
|
|
|
def bezier(points):
|
|
n = len(points) - 1
|
|
return lambda t : sum([
|
|
((1-t)**(n-k))*(t**k)*choose(n, k)*point
|
|
for point, k in zip(points, it.count())
|
|
])
|
|
|
|
def remove_list_redundancies(l):
|
|
"""
|
|
Used instead of lsit(set(l)) to maintain order
|
|
"""
|
|
return sorted(list(set(l)), lambda a, b : l.index(a) - l.index(b))
|
|
|
|
def list_update(l1, l2):
|
|
"""
|
|
Used instead of list(set(l1).update(l2)) to maintain order,
|
|
making sure duplicates are removed from l1, not l2.
|
|
"""
|
|
return filter(lambda e : e not in l2, l1) + list(l2)
|
|
|
|
def all_elements_are_instances(iterable, Class):
|
|
return all(map(lambda e : isinstance(e, Class), iterable))
|
|
|
|
def adjascent_pairs(objects):
|
|
return zip(objects, list(objects[1:])+[objects[0]])
|
|
|
|
def complex_to_R3(complex_num):
|
|
return np.array((complex_num.real, complex_num.imag, 0))
|
|
|
|
def tuplify(obj):
|
|
if isinstance(obj, str):
|
|
return (obj,)
|
|
try:
|
|
return tuple(obj)
|
|
except:
|
|
return (obj,)
|
|
|
|
def instantiate(obj):
|
|
"""
|
|
Useful so that classes or instance of those classes can be
|
|
included in configuration, which can prevent defaults from
|
|
getting created during compilation/importing
|
|
"""
|
|
return obj() if isinstance(obj, type) else obj
|
|
|
|
def get_all_descendent_classes(Class):
|
|
awaiting_review = [Class]
|
|
result = []
|
|
while awaiting_review:
|
|
Child = awaiting_review.pop()
|
|
awaiting_review += Child.__subclasses__()
|
|
result.append(Child)
|
|
return result
|
|
|
|
def filtered_locals(local_args):
|
|
result = local_args.copy()
|
|
ignored_local_args = ["self", "kwargs"]
|
|
for arg in ignored_local_args:
|
|
result.pop(arg, local_args)
|
|
return result
|
|
|
|
|
|
def digest_config(obj, kwargs, local_args = {}):
|
|
"""
|
|
Sets init args and CONFIG values as local variables
|
|
|
|
The purpose of this function is to ensure that all
|
|
configuration of any object is inheritable, able to
|
|
be easily passed into instantiation, and is attached
|
|
as an attribute of the object.
|
|
"""
|
|
### Assemble list of CONFIGs from all super classes
|
|
classes_in_heirarchy = [obj.__class__]
|
|
configs = []
|
|
while len(classes_in_heirarchy) > 0:
|
|
Class = classes_in_heirarchy.pop()
|
|
classes_in_heirarchy += Class.__bases__
|
|
if hasattr(Class, "CONFIG"):
|
|
configs.append(Class.CONFIG)
|
|
|
|
#Order matters a lot here, first dicts have higher priority
|
|
all_dicts = [kwargs, filtered_locals(local_args), obj.__dict__]
|
|
all_dicts += configs
|
|
item_lists = reversed([d.items() for d in all_dicts])
|
|
obj.__dict__ = dict(reduce(op.add, item_lists))
|
|
|
|
def digest_locals(obj):
|
|
caller_locals = inspect.currentframe().f_back.f_locals
|
|
obj.__dict__.update(filtered_locals(caller_locals))
|
|
|
|
|
|
def interpolate(start, end, alpha):
|
|
return (1-alpha)*start + alpha*end
|
|
|
|
def center_of_mass(points):
|
|
points = [np.array(point).astype("float") for point in points]
|
|
return sum(points) / len(points)
|
|
|
|
def choose(n, r):
|
|
if n < r: return 0
|
|
if r == 0: return 1
|
|
denom = reduce(op.mul, xrange(1, r+1), 1)
|
|
numer = reduce(op.mul, xrange(n, n-r, -1), 1)
|
|
return numer//denom
|
|
|
|
def is_on_line(p0, p1, p2, threshold = 0.01):
|
|
"""
|
|
Returns true of p0 is on the line between p1 and p2
|
|
"""
|
|
p0, p1, p2 = map(lambda tup : np.array(tup[:2]), [p0, p1, p2])
|
|
p1 -= p0
|
|
p2 -= p0
|
|
return abs((p1[0] / p1[1]) - (p2[0] / p2[1])) < threshold
|
|
|
|
|
|
def intersection(line1, line2):
|
|
"""
|
|
A "line" should come in the form [(x0, y0), (x1, y1)] for two
|
|
points it runs through
|
|
"""
|
|
p0, p1, p2, p3 = map(
|
|
lambda tup : np.array(tup[:2]),
|
|
[line1[0], line1[1], line2[0], line2[1]]
|
|
)
|
|
p1, p2, p3 = map(lambda x : x - p0, [p1, p2, p3])
|
|
transform = np.zeros((2, 2))
|
|
transform[:,0], transform[:,1] = p1, p2
|
|
if np.linalg.det(transform) == 0: return
|
|
inv = np.linalg.inv(transform)
|
|
new_p3 = np.dot(inv, p3.reshape((2, 1)))
|
|
#Where does line connecting (0, 1) to new_p3 hit x axis
|
|
x_intercept = new_p3[0] / (1 - new_p3[1])
|
|
result = np.dot(transform, [[x_intercept], [0]])
|
|
result = result.reshape((2,)) + p0
|
|
return result
|
|
|
|
def random_color():
|
|
return random.choice(PALETTE)
|
|
|
|
|
|
################################################
|
|
|
|
def straight_path(start_points, end_points, alpha):
|
|
return interpolate(start_points, end_points, alpha)
|
|
|
|
def path_along_arc(arc_angle):
|
|
"""
|
|
If vect is vector from start to end, [vect[:,1], -vect[:,0]] is
|
|
perpendicualr to vect in the left direction.
|
|
"""
|
|
if arc_angle == 0:
|
|
return straight_path
|
|
def path(start_points, end_points, alpha):
|
|
vects = end_points - start_points
|
|
centers = start_points + 0.5*vects
|
|
if arc_angle != np.pi:
|
|
for i, b in [(0, -1), (1, 1)]:
|
|
centers[:,i] += 0.5*b*vects[:,1-i]/np.tan(arc_angle/2)
|
|
return centers + np.dot(
|
|
start_points-centers,
|
|
np.transpose(rotation_about_z(alpha*arc_angle))
|
|
)
|
|
return path
|
|
|
|
def clockwise_path():
|
|
return path_along_arc(-np.pi)
|
|
|
|
def counterclockwise_path():
|
|
return path_along_arc(np.pi)
|
|
|
|
|
|
################################################
|
|
|
|
def to_cammel_case(name):
|
|
return "".join([
|
|
filter(
|
|
lambda c : c not in string.punctuation + string.whitespace, part
|
|
).capitalize()
|
|
for part in name.split("_")
|
|
])
|
|
|
|
def initials(name, sep_values = [" ", "_"]):
|
|
return "".join([
|
|
(s[0] if s else "")
|
|
for s in re.split("|".join(sep_values), name)
|
|
])
|
|
|
|
def cammel_case_initials(name):
|
|
return filter(lambda c : c.isupper(), name)
|
|
|
|
################################################
|
|
|
|
def drag_pixels(frames):
|
|
curr = frames[0]
|
|
new_frames = []
|
|
for frame in frames:
|
|
curr += (curr == 0) * np.array(frame)
|
|
new_frames.append(np.array(curr))
|
|
return new_frames
|
|
|
|
def invert_image(image):
|
|
arr = np.array(image)
|
|
arr = (255 * np.ones(arr.shape)).astype(arr.dtype) - arr
|
|
return Image.fromarray(arr)
|
|
|
|
def streth_array_to_length(nparray, length):
|
|
curr_len = len(nparray)
|
|
if curr_len > length:
|
|
raise Warning("Trying to stretch array to a length shorter than its own")
|
|
indices = np.arange(length)/ float(length)
|
|
indices *= curr_len
|
|
return nparray[indices.astype('int')]
|
|
|
|
def make_even(iterable_1, iterable_2):
|
|
list_1, list_2 = list(iterable_1), list(iterable_2)
|
|
length = max(len(list_1), len(list_2))
|
|
return (
|
|
[list_1[(n * len(list_1)) / length] for n in xrange(length)],
|
|
[list_2[(n * len(list_2)) / length] for n in xrange(length)]
|
|
)
|
|
|
|
def make_even_by_cycling(iterable_1, iterable_2):
|
|
length = max(len(iterable_1), len(iterable_2))
|
|
cycle1 = it.cycle(iterable_1)
|
|
cycle2 = it.cycle(iterable_2)
|
|
return (
|
|
[cycle1.next() for x in range(length)],
|
|
[cycle2.next() for x in range(length)]
|
|
)
|
|
|
|
### Alpha Functions ###
|
|
|
|
def sigmoid(x):
|
|
return 1.0/(1 + np.exp(-x))
|
|
|
|
def smooth(t, inflection = 10.0):
|
|
error = sigmoid(-inflection / 2)
|
|
return (sigmoid(inflection*(t - 0.5)) - error) / (1 - 2*error)
|
|
|
|
def rush_into(t):
|
|
return 2*smooth(t/2.0)
|
|
|
|
def rush_from(t):
|
|
return 2*smooth(t/2.0+0.5) - 1
|
|
|
|
def slow_into(t):
|
|
return np.sqrt(1-(1-t)*(1-t))
|
|
|
|
def there_and_back(t, inflection = 10.0):
|
|
new_t = 2*t if t < 0.5 else 2*(1 - t)
|
|
return smooth(new_t, inflection)
|
|
|
|
|
|
def not_quite_there(func = smooth, proportion = 0.7):
|
|
def result(t):
|
|
return proportion*func(t)
|
|
return result
|
|
|
|
def wiggle(t, wiggles = 2):
|
|
return there_and_back(t) * np.sin(wiggles*np.pi*t)
|
|
|
|
def squish_rate_func(func, a = 0.4, b = 0.6):
|
|
def result(t):
|
|
if t < a:
|
|
return func(0)
|
|
elif t > b:
|
|
return func(1)
|
|
else:
|
|
return func((t-a)/(b-a))
|
|
return result
|
|
|
|
### Functional Functions ###
|
|
|
|
def composition(func_list):
|
|
"""
|
|
func_list should contain elements of the form (f, args)
|
|
"""
|
|
return reduce(
|
|
lambda (f1, args1), (f2, args2) : (lambda x : f1(f2(x, *args2), *args1)),
|
|
func_list,
|
|
lambda x : x
|
|
)
|
|
|
|
def remove_nones(sequence):
|
|
return filter(lambda x : x, sequence)
|
|
|
|
#Matrix operations
|
|
def thick_diagonal(dim, thickness = 2):
|
|
row_indices = np.arange(dim).repeat(dim).reshape((dim, dim))
|
|
col_indices = np.transpose(row_indices)
|
|
return (np.abs(row_indices - col_indices)<thickness).astype('uint8')
|
|
|
|
def rotation_matrix(angle, axis):
|
|
"""
|
|
Rotation in R^3 about a specified axess of rotation.
|
|
"""
|
|
about_z = rotation_about_z(angle)
|
|
z_to_axis = z_to_vector(axis)
|
|
axis_to_z = np.linalg.inv(z_to_axis)
|
|
return reduce(np.dot, [z_to_axis, about_z, axis_to_z])
|
|
|
|
def rotation_about_z(angle):
|
|
return [
|
|
[np.cos(angle), -np.sin(angle), 0],
|
|
[np.sin(angle), np.cos(angle), 0],
|
|
[0, 0, 1]
|
|
]
|
|
|
|
def z_to_vector(vector):
|
|
"""
|
|
Returns some matrix in SO(3) which takes the z-axis to the
|
|
(normalized) vector provided as an argument
|
|
"""
|
|
norm = np.linalg.norm(vector)
|
|
if norm == 0:
|
|
return np.identity(3)
|
|
v = np.array(vector) / norm
|
|
phi = np.arccos(v[2])
|
|
if any(v[:2]):
|
|
#projection of vector to {x^2 + y^2 = 1}
|
|
axis_proj = v[:2] / np.linalg.norm(v[:2])
|
|
theta = np.arccos(axis_proj[0])
|
|
if axis_proj[1] < 0:
|
|
theta = -theta
|
|
else:
|
|
theta = 0
|
|
phi_down = np.array([
|
|
[np.cos(phi), 0, np.sin(phi)],
|
|
[0, 1, 0],
|
|
[-np.sin(phi), 0, np.cos(phi)]
|
|
])
|
|
return np.dot(rotation_about_z(theta), phi_down)
|
|
|
|
def rotate_vector(vector, angle, axis = OUT):
|
|
return np.dot(rotation_matrix(angle, axis), vector)
|
|
|
|
def angle_between(v1, v2):
|
|
return np.arccos(np.dot(
|
|
v1 / np.linalg.norm(v1),
|
|
v2 / np.linalg.norm(v2)
|
|
))
|
|
|
|
def angle_of_vector(vector):
|
|
"""
|
|
Returns polar coordinate theta when vector is project on xy plane
|
|
"""
|
|
return np.log(complex(*vector[:2])).imag
|
|
|
|
|
|
|
|
|