mirror of
https://github.com/3b1b/manim.git
synced 2025-04-13 09:47:07 +00:00
114 lines
No EOL
3.5 KiB
Python
114 lines
No EOL
3.5 KiB
Python
import numpy as np
|
|
import itertools as it
|
|
|
|
from mobject import Mobject, Mobject1D, Mobject2D, Mobject
|
|
from geometry import Line
|
|
from helpers import *
|
|
|
|
|
|
class Stars(Mobject1D):
|
|
CONFIG = {
|
|
"stroke_width" : 1,
|
|
"radius" : SPACE_WIDTH,
|
|
"num_points" : 1000,
|
|
}
|
|
def generate_points(self):
|
|
radii, phis, thetas = [
|
|
scalar*np.random.random(self.num_points)
|
|
for scalar in [self.radius, np.pi, 2*np.pi]
|
|
]
|
|
self.add_points([
|
|
(
|
|
r * np.sin(phi)*np.cos(theta),
|
|
r * np.sin(phi)*np.sin(theta),
|
|
r * np.cos(phi)
|
|
)
|
|
for r, phi, theta in zip(radii, phis, thetas)
|
|
])
|
|
|
|
class CubeWithFaces(Mobject2D):
|
|
def generate_points(self):
|
|
self.add_points([
|
|
sgn * np.array(coords)
|
|
for x in np.arange(-1, 1, self.epsilon)
|
|
for y in np.arange(x, 1, self.epsilon)
|
|
for coords in it.permutations([x, y, 1])
|
|
for sgn in [-1, 1]
|
|
])
|
|
self.pose_at_angle()
|
|
self.set_color(BLUE)
|
|
|
|
def unit_normal(self, coords):
|
|
return np.array(map(lambda x : 1 if abs(x) == 1 else 0, coords))
|
|
|
|
class Cube(Mobject1D):
|
|
def generate_points(self):
|
|
self.add_points([
|
|
([a, b, c][p[0]], [a, b, c][p[1]], [a, b, c][p[2]])
|
|
for p in [(0, 1, 2), (2, 0, 1), (1, 2, 0)]
|
|
for a, b, c in it.product([-1, 1], [-1, 1], np.arange(-1, 1, self.epsilon))
|
|
])
|
|
self.pose_at_angle()
|
|
self.set_color(YELLOW)
|
|
|
|
class Octohedron(Mobject1D):
|
|
def generate_points(self):
|
|
x = np.array([1, 0, 0])
|
|
y = np.array([0, 1, 0])
|
|
z = np.array([0, 0, 1])
|
|
vertex_pairs = [(x+y, x-y), (x+y,-x+y), (-x-y,-x+y), (-x-y,x-y)]
|
|
vertex_pairs += [
|
|
(b[0]*x+b[1]*y, b[2]*np.sqrt(2)*z)
|
|
for b in it.product(*[(-1, 1)]*3)
|
|
]
|
|
for pair in vertex_pairs:
|
|
self.add_points(
|
|
Line(pair[0], pair[1], density = 1/self.epsilon).points
|
|
)
|
|
self.pose_at_angle()
|
|
self.set_color(MAROON_D)
|
|
|
|
class Dodecahedron(Mobject1D):
|
|
def generate_points(self):
|
|
phi = (1 + np.sqrt(5)) / 2
|
|
x = np.array([1, 0, 0])
|
|
y = np.array([0, 1, 0])
|
|
z = np.array([0, 0, 1])
|
|
v1, v2 = (phi, 1/phi, 0), (phi, -1/phi, 0)
|
|
vertex_pairs = [
|
|
(v1, v2),
|
|
(x+y+z, v1),
|
|
(x+y-z, v1),
|
|
(x-y+z, v2),
|
|
(x-y-z, v2),
|
|
]
|
|
five_lines_points = Mobject(*[
|
|
Line(pair[0], pair[1], density = 1.0/self.epsilon)
|
|
for pair in vertex_pairs
|
|
]).points
|
|
#Rotate those 5 edges into all 30.
|
|
for i in range(3):
|
|
perm = map(lambda j : j%3, range(i, i+3))
|
|
for b in [-1, 1]:
|
|
matrix = b*np.array([x[perm], y[perm], z[perm]])
|
|
self.add_points(np.dot(five_lines_points, matrix))
|
|
self.pose_at_angle()
|
|
self.set_color(GREEN)
|
|
|
|
class Sphere(Mobject2D):
|
|
def generate_points(self):
|
|
self.add_points([
|
|
(
|
|
np.sin(phi) * np.cos(theta),
|
|
np.sin(phi) * np.sin(theta),
|
|
np.cos(phi)
|
|
)
|
|
for phi in np.arange(self.epsilon, np.pi, self.epsilon)
|
|
for theta in np.arange(0, 2 * np.pi, 2 * self.epsilon / np.sin(phi))
|
|
])
|
|
self.set_color(BLUE)
|
|
|
|
def unit_normal(self, coords):
|
|
return np.array(coords) / np.linalg.norm(coords)
|
|
|
|
|