mirror of
https://github.com/3b1b/manim.git
synced 2025-04-13 09:47:07 +00:00
518 lines
16 KiB
Python
518 lines
16 KiB
Python
#!/usr/bin/env python
|
|
|
|
import numpy as np
|
|
import itertools as it
|
|
import operator as op
|
|
from copy import deepcopy
|
|
from random import random
|
|
|
|
|
|
from animation import *
|
|
from mobject import *
|
|
from image_mobject import *
|
|
from constants import *
|
|
from region import *
|
|
from scene import Scene
|
|
|
|
from moser_helpers import *
|
|
from graphs import *
|
|
|
|
RADIUS = SPACE_HEIGHT - 0.1
|
|
CIRCLE_DENSITY = DEFAULT_POINT_DENSITY_1D*RADIUS
|
|
|
|
movie_prefix = "moser/"
|
|
|
|
############################################
|
|
|
|
class CircleScene(Scene):
|
|
def __init__(self, radians, *args, **kwargs):
|
|
Scene.__init__(self, *args, **kwargs)
|
|
self.radius = RADIUS
|
|
self.circle = Circle(density = CIRCLE_DENSITY).scale(self.radius)
|
|
self.points = [
|
|
(self.radius * np.cos(angle), self.radius * np.sin(angle), 0)
|
|
for angle in radians
|
|
]
|
|
self.dots = [Dot(point) for point in self.points]
|
|
self.lines = [Line(p1, p2) for p1, p2 in it.combinations(self.points, 2)]
|
|
self.add(self.circle, *self.dots + self.lines)
|
|
|
|
class GraphScene(Scene):
|
|
#Note, the placement of vertices in this is pretty hard coded, be
|
|
#warned if you want to change it.
|
|
def __init__(self, graph, *args, **kwargs):
|
|
Scene.__init__(self, *args, **kwargs)
|
|
#See CUBE_GRAPH above for format of graph
|
|
self.graph = graph
|
|
self.points = map(np.array, graph["vertices"])
|
|
self.vertices = self.dots = [Dot(p) for p in self.points]
|
|
self.edges = [
|
|
Line(self.points[i], self.points[j])
|
|
for i, j in graph["edges"]
|
|
]
|
|
self.add(*self.dots + self.edges)
|
|
|
|
def generate_regions(self):
|
|
regions = [
|
|
region_from_line_boundary(*[
|
|
[
|
|
self.points[rc[i]],
|
|
self.points[rc[(i+1)%len(rc)]]
|
|
]
|
|
for i in range(len(rc))
|
|
])
|
|
for rc in self.graph["region_cycles"]
|
|
]
|
|
regions[-1].complement()#Outer region painted outwardly...
|
|
self.regions = regions
|
|
|
|
##################################################
|
|
|
|
def count_lines(*radians):
|
|
#TODO, Count things explicitly?
|
|
sc = CircleScene(radians)
|
|
text_center = (sc.radius + 1, sc.radius -1, 0)
|
|
scale_factor = 0.4
|
|
text = tex_mobject(r"\text{How Many Lines?}", size = r"\large")
|
|
n = len(radians)
|
|
formula, answer = tex_mobject([
|
|
r"{%d \choose 2} = \frac{%d(%d - 1)}{2} = "%(n, n, n),
|
|
str(choose(n, 2))
|
|
])
|
|
text.scale(scale_factor).shift(text_center)
|
|
x = text_center[0]
|
|
new_lines = [
|
|
Line((x-1, y, 0), (x+1, y, 0))
|
|
for y in np.arange(
|
|
-(sc.radius - 1),
|
|
sc.radius - 1,
|
|
(2*sc.radius - 2)/len(sc.lines)
|
|
)
|
|
]
|
|
sc.add(text)
|
|
sc.dither()
|
|
sc.animate(*[
|
|
Transform(line1, line2, run_time = 2)
|
|
for line1, line2 in zip(sc.lines, new_lines)
|
|
])
|
|
sc.dither()
|
|
sc.remove(text)
|
|
sc.count(new_lines)
|
|
anims = [FadeIn(formula)]
|
|
for mob in sc.mobjects:
|
|
if mob == sc.number: #put in during animate_count
|
|
anims.append(Transform(mob, answer))
|
|
else:
|
|
anims.append(FadeOut(mob))
|
|
sc.animate(*anims, run_time = 1)
|
|
sc.write_to_movie(movie_prefix + "CountLines%dPoints"%len(radians))
|
|
|
|
|
|
def count_intersection_points(*radians):
|
|
radians = [r % (2*np.pi) for r in radians]
|
|
radians.sort()
|
|
sc = CircleScene(radians)
|
|
intersection_points = [
|
|
intersection((p[0], p[2]), (p[1], p[3]))
|
|
for p in it.combinations(sc.points, 4)
|
|
]
|
|
intersection_dots = [Dot(point) for point in intersection_points]
|
|
text_center = (sc.radius + 0.5, sc.radius -0.5, 0)
|
|
size = r"\large"
|
|
scale_factor = 0.4
|
|
text = tex_mobject(r"\text{How Many Intersection Points?}", size = size)
|
|
n = len(radians)
|
|
formula, answer = tex_mobjects([
|
|
r"{%d \choose 4} = \frac{%d(%d - 1)(%d - 2)(%d-3)}{1\cdot 2\cdot 3 \cdot 4}="%(n, n, n, n, n),
|
|
str(choose(n, 4))
|
|
])
|
|
text.scale(scale_factor).shift(text_center)
|
|
# new_points = [
|
|
# (text_center[0], y, 0)
|
|
# for y in np.arange(
|
|
# -(sc.radius - 1),
|
|
# sc.radius - 1,
|
|
# (2*sc.radius - 2)/choose(len(sc.points), 4)
|
|
# )
|
|
# ]
|
|
# new_dots = CompoundMobject(*[
|
|
# Dot(point) for point in new_points
|
|
# ])
|
|
|
|
sc.add(text)
|
|
sc.count(intersection_dots, "show", num_offset = (0, 0, 0))
|
|
sc.dither()
|
|
# sc.animate(Transform(intersection_dots, new_dots))
|
|
anims = []
|
|
for mob in sc.mobjects:
|
|
if mob == sc.number: #put in during animate_count
|
|
anims.append(Transform(mob, answer))
|
|
else:
|
|
anims.append(FadeOut(mob))
|
|
anims.append(Animation(formula))
|
|
sc.animate(*anims, run_time = 1)
|
|
|
|
name = "CountIntersectionPoints%dPoints"%len(radians)
|
|
sc.write_to_movie(movie_prefix + name)
|
|
|
|
def non_general_position():
|
|
radians = np.arange(1, 7)
|
|
new_radians = (np.pi/3)*radians
|
|
sc1 = CircleScene(radians)
|
|
sc2 = CircleScene(new_radians)
|
|
center_region = reduce(
|
|
Region.intersect,
|
|
[
|
|
HalfPlane((sc1.points[x], sc1.points[(x+3)%6]))
|
|
for x in [0, 4, 2]#Ya know, trust it
|
|
]
|
|
)
|
|
center_region
|
|
text = tex_mobject(r"\text{This region disappears}", size = r"\large")
|
|
text.center().scale(0.5).shift((-sc1.radius, sc1.radius-0.3, 0))
|
|
arrow = Arrow(
|
|
point = (-0.35, -0.1, 0),
|
|
direction = (1, -1, 0),
|
|
length = sc1.radius + 1,
|
|
color = "white",
|
|
)
|
|
|
|
sc1.highlight_region(center_region, "green")
|
|
sc1.add(text, arrow)
|
|
sc1.dither(2)
|
|
sc1.remove(text, arrow)
|
|
sc1.reset_background()
|
|
sc1.animate(*[
|
|
Transform(mob1, mob2, run_time = DEFAULT_ANIMATION_RUN_TIME)
|
|
for mob1, mob2 in zip(sc1.mobjects, sc2.mobjects)
|
|
])
|
|
sc1.write_to_movie(movie_prefix + "NonGeneralPosition")
|
|
|
|
def line_corresponds_with_pair(radians, r1, r2):
|
|
sc = CircleScene(radians)
|
|
#Remove from sc.lines list, so they won't be faded out
|
|
assert r1 in radians and r2 in radians
|
|
line_index = list(it.combinations(radians, 2)).index((r1, r2))
|
|
radians = list(radians)
|
|
dot0_index, dot1_index = radians.index(r1), radians.index(r2)
|
|
line, dot0, dot1 = sc.lines[line_index], sc.dots[dot0_index], sc.dots[dot1_index]
|
|
sc.lines.remove(line)
|
|
sc.dots.remove(dot0)
|
|
sc.dots.remove(dot1)
|
|
sc.dither()
|
|
sc.animate(*[
|
|
FadeOut(mob, alpha_func = not_quite_there)
|
|
for mob in sc.lines + sc.dots
|
|
])
|
|
sc.add(sc.circle)
|
|
sc.animate(*[
|
|
ScaleInPlace(mob, 3, alpha_func = there_and_back)
|
|
for mob in (dot0, dot1)
|
|
])
|
|
sc.animate(Transform(line, dot0))
|
|
name = "LineCorrspondsWithPair%d%d"%(dot0_index, dot1_index)
|
|
sc.write_to_movie(movie_prefix + name)
|
|
|
|
def illustrate_n_choose_k(n, k):
|
|
sc = Scene()
|
|
nrange = range(1, n+1)
|
|
tuples = list(it.combinations(nrange, k))
|
|
nrange_mobs = tex_mobjects([str(n) + r'\;' for n in nrange])
|
|
tuple_mobs = tex_mobjects(
|
|
[
|
|
(r'\\&' if c%(20//k) == 0 else r'\;\;') + str(p)
|
|
for p, c in zip(tuples, it.count())
|
|
],
|
|
size = r"\small"
|
|
)
|
|
tuple_terms = {
|
|
2 : "pairs",
|
|
3 : "triplets",
|
|
4 : "quadruplets",
|
|
}
|
|
tuple_term = tuple_terms[k] if k in tuple_terms else "tuples"
|
|
form1, count, form2 = tex_mobject([
|
|
r"{%d \choose %d} = "%(n, k),
|
|
"%d"%choose(n, k),
|
|
r" \text{ total %s}"%tuple_term
|
|
])
|
|
for mob in nrange_mobs:
|
|
mob.shift((0, 2, 0))
|
|
for mob in form1, count, form2:
|
|
mob.shift((0, -SPACE_HEIGHT + 1, 0))
|
|
count_center = count.get_center()
|
|
for mob in tuple_mobs:
|
|
mob.scale(0.6)
|
|
|
|
sc.add(*nrange_mobs)
|
|
sc.dither()
|
|
run_time = 6.0
|
|
frame_time = run_time / len(tuples)
|
|
for tup, count in zip(tuples, it.count()):
|
|
count_mob = tex_mobject(str(count+1))
|
|
count_mob.center().shift(count_center)
|
|
sc.add(count_mob)
|
|
tuple_copy = CompoundMobject(*[nrange_mobs[index-1] for index in tup])
|
|
tuple_copy.highlight()
|
|
sc.add(tuple_copy)
|
|
sc.add(tuple_mobs[count])
|
|
sc.dither(frame_time)
|
|
sc.remove(count_mob)
|
|
sc.remove(tuple_copy)
|
|
sc.add(count_mob)
|
|
sc.animate(FadeIn(CompoundMobject(form1, form2)))
|
|
sc.write_to_movie(movie_prefix + "Illustrate%dChoose%d"%(n, k))
|
|
|
|
def intersection_point_correspondances(radians, indices):
|
|
assert(len(indices) == 4)
|
|
indices.sort()
|
|
sc = CircleScene(radians)
|
|
intersection_point = intersection(
|
|
(sc.points[indices[0]], sc.points[indices[2]]),
|
|
(sc.points[indices[1]], sc.points[indices[3]])
|
|
)
|
|
intersection_point = tuple(list(intersection_point) + [0])
|
|
intersection_dot = Dot(intersection_point)
|
|
intersection_dot_arrow = Arrow(intersection_point).nudge()
|
|
sc.add(intersection_dot)
|
|
pairs = list(it.combinations(range(len(radians)), 2))
|
|
lines_to_save = [
|
|
sc.lines[pairs.index((indices[p0], indices[p1]))]
|
|
for p0, p1 in [(0, 2), (1, 3)]
|
|
]
|
|
dots_to_save = [
|
|
sc.dots[p]
|
|
for p in indices
|
|
]
|
|
line_statement = tex_mobject(r"\text{Pair of Lines}")
|
|
dots_statement = tex_mobject(r"&\text{Quadruplet of} \\ &\text{outer dots}")
|
|
for mob in line_statement, dots_statement:
|
|
mob.center()
|
|
mob.scale(0.7)
|
|
mob.shift((SPACE_WIDTH-2, SPACE_HEIGHT - 1, 0))
|
|
fade_outs = []
|
|
line_highlights = []
|
|
dot_highlights = []
|
|
dot_pointers = []
|
|
for mob in sc.mobjects:
|
|
if mob in lines_to_save:
|
|
line_highlights.append(Highlight(mob))
|
|
elif mob in dots_to_save:
|
|
dot_highlights.append(Highlight(mob))
|
|
dot_pointers.append(Arrow(mob.get_center()).nudge())
|
|
elif mob != intersection_dot:
|
|
fade_outs.append(FadeOut(mob, alpha_func = not_quite_there))
|
|
|
|
sc.add(intersection_dot_arrow)
|
|
sc.animate(Highlight(intersection_dot))
|
|
sc.remove(intersection_dot_arrow)
|
|
sc.animate(*fade_outs)
|
|
sc.dither()
|
|
sc.add(line_statement)
|
|
sc.animate(*line_highlights)
|
|
sc.remove(line_statement)
|
|
sc.dither()
|
|
sc.add(dots_statement, *dot_pointers)
|
|
sc.animate(*dot_highlights)
|
|
sc.remove(dots_statement, *dot_pointers)
|
|
|
|
name = "IntersectionPointCorrespondances"
|
|
for ind in indices:
|
|
name += str(ind)
|
|
sc.write_to_movie(movie_prefix + name)
|
|
|
|
def lines_intersect_outside(radians, indices):
|
|
assert(len(indices) == 4)
|
|
indices.sort()
|
|
sc = CircleScene(radians)
|
|
intersection_point = intersection(
|
|
(sc.points[indices[0]], sc.points[indices[1]]),
|
|
(sc.points[indices[2]], sc.points[indices[3]])
|
|
)
|
|
intersection_point = tuple(list(intersection_point) + [0])
|
|
intersection_dot = Dot(intersection_point)
|
|
pairs = list(it.combinations(range(len(radians)), 2))
|
|
lines_to_save = [
|
|
sc.lines[pairs.index((indices[p0], indices[p1]))]
|
|
for p0, p1 in [(0, 1), (2, 3)]
|
|
]
|
|
sc.animate(*[
|
|
FadeOut(mob, alpha_func = not_quite_there)
|
|
for mob in sc.mobjects if mob not in lines_to_save
|
|
])
|
|
sc.animate(*[
|
|
Transform(
|
|
Line(sc.points[indices[p0]], sc.points[indices[p1]]),
|
|
Line(sc.points[indices[p0]], intersection_point))
|
|
for p0, p1 in [(0, 1), (3, 2)]
|
|
] + [ShowCreation(intersection_dot)])
|
|
|
|
name = "LinesIntersectOutside"
|
|
for ind in indices:
|
|
name += str(ind)
|
|
sc.write_to_movie(movie_prefix + name)
|
|
|
|
def quadruplets_to_intersections(*radians):
|
|
sc = CircleScene(radians)
|
|
quadruplets = it.combinations(range(len(radians)), 4)
|
|
frame_time = 1.0
|
|
for quad in quadruplets:
|
|
intersection_dot = Dot(intersection(
|
|
(sc.points[quad[0]], sc.points[quad[2]]),
|
|
(sc.points[quad[1]], sc.points[quad[3]])
|
|
)).repeat(3)
|
|
dot_quad = [deepcopy(sc.dots[i]) for i in quad]
|
|
for dot in dot_quad:
|
|
dot.scale_in_place(2)
|
|
# arrows = [Arrow(d.get_center()) for d in dot_quad]
|
|
dot_quad = CompoundMobject(*dot_quad)
|
|
# arrows = CompoundMobject(*arrows)
|
|
dot_quad.highlight()
|
|
# sc.add(arrows)
|
|
sc.add(dot_quad)
|
|
sc.dither(frame_time / 3)
|
|
sc.animate(Transform(
|
|
dot_quad,
|
|
intersection_dot,
|
|
run_time = 3*frame_time/2
|
|
))
|
|
# sc.remove(arrows)
|
|
|
|
name = "QuadrupletsToIntersections" + len(radians)
|
|
sc.write_to_movie(movie_prefix + name)
|
|
|
|
def defining_graph(graph):
|
|
gs = GraphScene(graph)
|
|
dots, lines = gs.vertices, gs.edges
|
|
gs.remove(*dots + lines)
|
|
all_dots = CompoundMobject(*dots)
|
|
gs.animate(ShowCreation(all_dots))
|
|
gs.remove(all_dots)
|
|
gs.add(*dots)
|
|
gs.dither()
|
|
gs.animate(*[
|
|
ShowCreation(line) for line in lines
|
|
])
|
|
|
|
#Move to new graph
|
|
new_graph = deepcopy(graph)
|
|
new_graph["vertices"] = [
|
|
(v[0] + 3*random(), v[1] + 3*random(), 0)
|
|
for v in new_graph["vertices"]
|
|
]
|
|
ngs = GraphScene(new_graph)
|
|
gs.animate(*[
|
|
Transform(m[0], m[1])
|
|
for m in zip(gs.mobjects, ngs.mobjects)
|
|
], run_time = 7.0)
|
|
|
|
name = "DefiningGraph" + graph["name"]
|
|
gs.write_to_movie(movie_prefix + name)
|
|
|
|
def doubled_edges(graph):
|
|
gs = GraphScene(graph)
|
|
lines_to_double = gs.edges[:9:3]
|
|
crazy_lines = [
|
|
(
|
|
line,
|
|
Line(line.end, line.start),
|
|
CurvedLine(line.start, line.end) ,
|
|
CurvedLine(line.end, line.start)
|
|
)
|
|
for line in lines_to_double
|
|
]
|
|
anims = []
|
|
outward_curved_lines = []
|
|
kwargs = {"run_time" : 3.0}
|
|
for straight, backwards, inward, outward in crazy_lines:
|
|
anims += [
|
|
Transform(straight, inward, **kwargs),
|
|
Transform(backwards, outward, **kwargs),
|
|
]
|
|
outward_curved_lines.append(outward)
|
|
gs.animate(*anims)
|
|
gs.dither()
|
|
gs.remove(*outward_curved_lines)
|
|
|
|
name = "DoubledEdges" + graph["name"]
|
|
gs.write_to_movie(movie_prefix + name)
|
|
|
|
|
|
def eulers_formula(graph):
|
|
gs = GraphScene(graph)
|
|
terms = "V - E + F =2".split(" ")
|
|
form = dict([
|
|
(key, mob)
|
|
for key, mob in zip(terms, tex_mobjects(terms))
|
|
])
|
|
for mob in form.values():
|
|
mob.shift((0, SPACE_HEIGHT-1.5, 0))
|
|
formula = CompoundMobject(*form.values())
|
|
new_form = dict([
|
|
(key, deepcopy(mob).shift((0, -0.7, 0)))
|
|
for key, mob in zip(form.keys(), form.values())
|
|
])
|
|
gs.add(formula)
|
|
colored_dots = [
|
|
deepcopy(d).scale_in_place(1.5).highlight("red")
|
|
for d in gs.dots
|
|
]
|
|
colored_edges = [
|
|
deepcopy(e).highlight("red")
|
|
for e in gs.edges
|
|
]
|
|
frame_time = 0.3
|
|
|
|
gs.generate_regions()
|
|
parameters = [
|
|
(colored_dots, "V", "mobject", "-", "show_creation"),
|
|
(colored_edges, "E", "mobject", "+", "show_creation"),
|
|
(gs.regions, "F", "region", "=2", "show_all")
|
|
]
|
|
for items, letter, item_type, symbol, mode in parameters:
|
|
gs.count(
|
|
items,
|
|
item_type = item_type,
|
|
mode = mode,
|
|
num_offset = new_form[letter].get_center(),
|
|
run_time = frame_time*len(items)
|
|
)
|
|
gs.dither()
|
|
if item_type == "mobject":
|
|
gs.remove(*items)
|
|
gs.add(new_form[symbol])
|
|
gs.reset_background()
|
|
|
|
name = "EulersFormula" + graph["name"]
|
|
gs.write_to_movie(movie_prefix + name)
|
|
|
|
|
|
##################################################
|
|
|
|
if __name__ == '__main__':
|
|
radians = np.arange(0, 6, 6.0/7)
|
|
# count_lines(*radians)
|
|
# count_lines(*radians[:4])
|
|
# count_intersection_points(*radians[:4])
|
|
# count_intersection_points(*radians[:6])
|
|
# count_intersection_points(*radians)
|
|
# non_general_position()
|
|
# line_corresponds_with_pair(radians, radians[3], radians[4])
|
|
# line_corresponds_with_pair(radians, radians[2], radians[5])
|
|
# illustrate_n_choose_k(7, 2)
|
|
# illustrate_n_choose_k(6, 4)
|
|
# intersection_point_correspondances(radians, range(0, 7, 2))
|
|
# lines_intersect_outside(radians, [2, 4, 5, 6])
|
|
quadruplets_to_intersections(*radians[:6])
|
|
# defining_graph(SAMPLE_GRAPH)
|
|
# doubled_edges(CUBE_GRAPH)
|
|
# eulers_formula(CUBE_GRAPH)
|
|
# eulers_formula(SAMPLE_GRAPH)
|
|
# eulers_formula(OCTOHEDRON_GRAPH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|