mirror of
https://github.com/3b1b/manim.git
synced 2025-04-13 09:47:07 +00:00
593 lines
22 KiB
Python
593 lines
22 KiB
Python
import itertools as it
|
|
import numpy as np
|
|
import operator as op
|
|
|
|
import aggdraw
|
|
import copy
|
|
import time
|
|
|
|
from PIL import Image
|
|
from colour import Color
|
|
from scipy.spatial.distance import pdist
|
|
|
|
from constants import *
|
|
from mobject.types.image_mobject import AbstractImageMobject
|
|
from mobject.mobject import Mobject
|
|
from mobject.types.point_cloud_mobject import PMobject
|
|
from mobject.types.vectorized_mobject import VMobject
|
|
from utils.color import color_to_int_rgba
|
|
from utils.color import rgb_to_hex
|
|
from utils.config_ops import digest_config
|
|
from utils.images import get_full_raster_image_path
|
|
from utils.iterables import batch_by_property
|
|
from utils.iterables import list_difference_update
|
|
from utils.iterables import remove_list_redundancies
|
|
from utils.simple_functions import fdiv
|
|
from utils.space_ops import angle_of_vector
|
|
|
|
|
|
class Camera(object):
|
|
CONFIG = {
|
|
"background_image": None,
|
|
"pixel_shape": (DEFAULT_PIXEL_HEIGHT, DEFAULT_PIXEL_WIDTH),
|
|
# Note: frame_shape will be resized to match pixel_shape
|
|
"frame_shape": (FRAME_HEIGHT, FRAME_WIDTH),
|
|
"space_center": ORIGIN,
|
|
"background_color": BLACK,
|
|
"background_opacity": 0,
|
|
# Points in vectorized mobjects with norm greater
|
|
# than this value will be rescaled.
|
|
"max_allowable_norm": FRAME_WIDTH,
|
|
"image_mode": "RGBA",
|
|
"n_rgb_coords": 4,
|
|
"pixel_array_dtype": 'uint8',
|
|
"use_z_coordinate_for_display_order": False,
|
|
# z_buff_func is only used if the flag above is set to True.
|
|
# round z coordinate to nearest hundredth when comparring
|
|
"z_buff_func": lambda m: np.round(m.get_center()[2], 2),
|
|
}
|
|
|
|
def __init__(self, background=None, **kwargs):
|
|
digest_config(self, kwargs, locals())
|
|
self.rgb_max_val = np.iinfo(self.pixel_array_dtype).max
|
|
self.init_background()
|
|
self.resize_frame_shape()
|
|
self.reset()
|
|
|
|
def __deepcopy__(self, memo):
|
|
# This is to address a strange bug where deepcopying
|
|
# will result in a segfault, which is somehow related
|
|
# to the aggdraw library
|
|
self.canvas = None
|
|
return copy.copy(self)
|
|
|
|
def reset_pixel_shape(self, new_shape):
|
|
self.pixel_shape = tuple(new_shape)
|
|
self.init_background()
|
|
self.resize_frame_shape()
|
|
self.reset()
|
|
|
|
def resize_frame_shape(self, fixed_dimension=0):
|
|
"""
|
|
Changes frame_shape to match the aspect ratio
|
|
of pixel_shape, where fixed_dimension determines
|
|
whether frame_shape[0] (height) or frame_shape[1] (width)
|
|
remains fixed while the other changes accordingly.
|
|
"""
|
|
frame_height, frame_width = self.frame_shape
|
|
pixel_height, pixel_width = self.pixel_shape
|
|
aspect_ratio = fdiv(pixel_width, pixel_height)
|
|
if fixed_dimension == 0:
|
|
frame_height = frame_width / aspect_ratio
|
|
else:
|
|
frame_width = aspect_ratio * frame_height
|
|
self.frame_shape = (frame_height, frame_width)
|
|
|
|
def init_background(self):
|
|
if self.background_image is not None:
|
|
path = get_full_raster_image_path(self.background_image)
|
|
image = Image.open(path).convert(self.image_mode)
|
|
height, width = self.pixel_shape
|
|
# TODO, how to gracefully handle backgrounds
|
|
# with different sizes?
|
|
self.background = np.array(image)[:height, :width]
|
|
self.background = self.background.astype(self.pixel_array_dtype)
|
|
else:
|
|
background_rgba = color_to_int_rgba(
|
|
self.background_color, self.background_opacity
|
|
)
|
|
self.background = np.zeros(
|
|
list(self.pixel_shape) + [self.n_rgb_coords],
|
|
dtype=self.pixel_array_dtype
|
|
)
|
|
self.background[:, :] = background_rgba
|
|
|
|
def get_image(self):
|
|
return Image.fromarray(
|
|
self.pixel_array,
|
|
mode=self.image_mode
|
|
)
|
|
|
|
def get_pixel_array(self):
|
|
return self.pixel_array
|
|
|
|
def convert_pixel_array(self, pixel_array, convert_from_floats=False):
|
|
retval = np.array(pixel_array)
|
|
if convert_from_floats:
|
|
retval = np.apply_along_axis(
|
|
lambda f: (f * self.rgb_max_val).astype(self.pixel_array_dtype),
|
|
2,
|
|
retval
|
|
)
|
|
return retval
|
|
|
|
def set_pixel_array(self, pixel_array, convert_from_floats=False):
|
|
converted_array = self.convert_pixel_array(
|
|
pixel_array, convert_from_floats)
|
|
if not (hasattr(self, "pixel_array") and self.pixel_array.shape == converted_array.shape):
|
|
self.pixel_array = converted_array
|
|
else:
|
|
# Set in place
|
|
self.pixel_array[:, :, :] = converted_array[:, :, :]
|
|
|
|
def set_background(self, pixel_array, convert_from_floats=False):
|
|
self.background = self.convert_pixel_array(
|
|
pixel_array, convert_from_floats)
|
|
|
|
def make_background_from_func(self, coords_to_colors_func):
|
|
"""
|
|
Sets background by using coords_to_colors_func to determine each pixel's color. Each input
|
|
to coords_to_colors_func is an (x, y) pair in space (in ordinary space coordinates; not
|
|
pixel coordinates), and each output is expected to be an RGBA array of 4 floats.
|
|
"""
|
|
|
|
print "Starting set_background; for reference, the current time is ", time.strftime("%H:%M:%S")
|
|
coords = self.get_coords_of_all_pixels()
|
|
new_background = np.apply_along_axis(
|
|
coords_to_colors_func,
|
|
2,
|
|
coords
|
|
)
|
|
print "Ending set_background; for reference, the current time is ", time.strftime("%H:%M:%S")
|
|
|
|
return self.convert_pixel_array(new_background, convert_from_floats=True)
|
|
|
|
def set_background_from_func(self, coords_to_colors_func):
|
|
self.set_background(
|
|
self.make_background_from_func(coords_to_colors_func))
|
|
|
|
def reset(self):
|
|
self.set_pixel_array(self.background)
|
|
return self
|
|
|
|
####
|
|
|
|
def extract_mobject_family_members(self, mobjects, only_those_with_points=False):
|
|
if only_those_with_points:
|
|
method = Mobject.family_members_with_points
|
|
else:
|
|
method = Mobject.submobject_family
|
|
return remove_list_redundancies(list(
|
|
it.chain(*[
|
|
method(m)
|
|
for m in mobjects
|
|
if not (isinstance(m, VMobject) and m.is_subpath)
|
|
])
|
|
))
|
|
|
|
def get_mobjects_to_display(
|
|
self, mobjects,
|
|
include_submobjects=True,
|
|
excluded_mobjects=None,
|
|
):
|
|
if include_submobjects:
|
|
mobjects = self.extract_mobject_family_members(
|
|
mobjects, only_those_with_points=True
|
|
)
|
|
if excluded_mobjects:
|
|
all_excluded = self.extract_mobject_family_members(
|
|
excluded_mobjects
|
|
)
|
|
mobjects = list_difference_update(mobjects, all_excluded)
|
|
|
|
if self.use_z_coordinate_for_display_order:
|
|
# Should perhaps think about what happens here when include_submobjects is False,
|
|
# (for now, the onus is then on the caller to ensure this is handled correctly by
|
|
# passing us an appropriately pre-flattened list of mobjects if need be)
|
|
return sorted(
|
|
mobjects,
|
|
lambda a, b: cmp(self.z_buff_func(a), self.z_buff_func(b))
|
|
)
|
|
else:
|
|
return mobjects
|
|
|
|
def capture_mobject(self, mobject, **kwargs):
|
|
return self.capture_mobjects([mobject], **kwargs)
|
|
|
|
def capture_mobjects(self, mobjects, **kwargs):
|
|
mobjects = self.get_mobjects_to_display(mobjects, **kwargs)
|
|
|
|
# Organize this list into batches of the same type, and
|
|
# apply corresponding function to those batches
|
|
type_func_pairs = [
|
|
(VMobject, self.display_multiple_vectorized_mobjects),
|
|
(PMobject, self.display_multiple_point_cloud_mobjects),
|
|
(AbstractImageMobject, self.display_multiple_image_mobjects),
|
|
(Mobject, lambda batch: batch), # Do nothing
|
|
]
|
|
|
|
def get_mobject_type(mobject):
|
|
for mobject_type, func in type_func_pairs:
|
|
if isinstance(mobject, mobject_type):
|
|
return mobject_type
|
|
raise Exception(
|
|
"Trying to display something which is not of type Mobject"
|
|
)
|
|
batch_type_pairs = batch_by_property(mobjects, get_mobject_type)
|
|
|
|
# Display in these batches
|
|
for batch, batch_type in batch_type_pairs:
|
|
# check what the type is, and call the appropriate function
|
|
for mobject_type, func in type_func_pairs:
|
|
if batch_type == mobject_type:
|
|
func(batch)
|
|
|
|
# Methods associated with svg rendering
|
|
|
|
def get_aggdraw_canvas(self):
|
|
if not hasattr(self, "canvas") or not self.canvas:
|
|
self.reset_aggdraw_canvas()
|
|
return self.canvas
|
|
|
|
def reset_aggdraw_canvas(self):
|
|
image = Image.fromarray(self.pixel_array, mode=self.image_mode)
|
|
self.canvas = aggdraw.Draw(image)
|
|
|
|
def display_multiple_vectorized_mobjects(self, vmobjects):
|
|
if len(vmobjects) == 0:
|
|
return
|
|
batch_file_pairs = batch_by_property(
|
|
vmobjects,
|
|
lambda vm: vm.get_background_image_file()
|
|
)
|
|
for batch, file_name in batch_file_pairs:
|
|
if file_name:
|
|
self.display_multiple_background_colored_vmobject(batch)
|
|
else:
|
|
self.display_multiple_non_background_colored_vmobjects(batch)
|
|
|
|
def display_multiple_non_background_colored_vmobjects(self, vmobjects):
|
|
self.reset_aggdraw_canvas()
|
|
canvas = self.get_aggdraw_canvas()
|
|
for vmobject in vmobjects:
|
|
self.display_vectorized(vmobject, canvas)
|
|
canvas.flush()
|
|
|
|
def display_vectorized(self, vmobject, canvas=None):
|
|
if vmobject.is_subpath:
|
|
# Subpath vectorized mobjects are taken care
|
|
# of by their parent
|
|
return
|
|
canvas = canvas or self.get_aggdraw_canvas()
|
|
pen, fill = self.get_pen_and_fill(vmobject)
|
|
pathstring = self.get_pathstring(vmobject)
|
|
symbol = aggdraw.Symbol(pathstring)
|
|
canvas.symbol((0, 0), symbol, pen, fill)
|
|
|
|
def get_pen_and_fill(self, vmobject):
|
|
stroke_width = max(vmobject.get_stroke_width(), 0)
|
|
if stroke_width == 0:
|
|
pen = None
|
|
else:
|
|
stroke_rgb = self.get_stroke_rgb(vmobject)
|
|
stroke_hex = rgb_to_hex(stroke_rgb)
|
|
pen = aggdraw.Pen(stroke_hex, stroke_width)
|
|
|
|
fill_opacity = int(self.rgb_max_val * vmobject.get_fill_opacity())
|
|
if fill_opacity == 0:
|
|
fill = None
|
|
else:
|
|
fill_rgb = self.get_fill_rgb(vmobject)
|
|
fill_hex = rgb_to_hex(fill_rgb)
|
|
fill = aggdraw.Brush(fill_hex, fill_opacity)
|
|
|
|
return (pen, fill)
|
|
|
|
def color_to_hex_l(self, color):
|
|
try:
|
|
return color.get_hex_l()
|
|
except:
|
|
return Color(BLACK).get_hex_l()
|
|
|
|
def get_stroke_rgb(self, vmobject):
|
|
return vmobject.get_stroke_rgb()
|
|
|
|
def get_fill_rgb(self, vmobject):
|
|
return vmobject.get_fill_rgb()
|
|
|
|
def get_pathstring(self, vmobject):
|
|
result = ""
|
|
for mob in [vmobject] + vmobject.get_subpath_mobjects():
|
|
points = mob.points
|
|
# points = self.adjust_out_of_range_points(points)
|
|
if len(points) == 0:
|
|
continue
|
|
coords = self.points_to_pixel_coords(points)
|
|
coord_strings = coords.flatten().astype(str)
|
|
# Start new path string with M
|
|
coord_strings[0] = "M" + coord_strings[0]
|
|
# The C at the start of every 6th number communicates
|
|
# that the following 6 define a cubic Bezier
|
|
coord_strings[2::6] = map(
|
|
lambda s: "C" + str(s), coord_strings[2::6])
|
|
# Possibly finish with "Z"
|
|
if vmobject.mark_paths_closed:
|
|
coord_strings[-1] = coord_strings[-1] + " Z"
|
|
result += " ".join(coord_strings)
|
|
return result
|
|
|
|
def get_background_colored_vmobject_displayer(self):
|
|
# Quite wordy to type out a bunch
|
|
long_name = "background_colored_vmobject_displayer"
|
|
if not hasattr(self, long_name):
|
|
setattr(self, long_name, BackgroundColoredVMobjectDisplayer(self))
|
|
return getattr(self, long_name)
|
|
|
|
def display_multiple_background_colored_vmobject(self, cvmobjects):
|
|
displayer = self.get_background_colored_vmobject_displayer()
|
|
cvmobject_pixel_array = displayer.display(*cvmobjects)
|
|
self.overlay_rgba_array(cvmobject_pixel_array)
|
|
return self
|
|
|
|
# Methods for other rendering
|
|
|
|
def display_multiple_point_cloud_mobjects(self, pmobjects):
|
|
for pmobject in pmobjects:
|
|
self.display_point_cloud(
|
|
pmobject.points,
|
|
pmobject.rgbas,
|
|
self.adjusted_thickness(pmobject.stroke_width)
|
|
)
|
|
|
|
def display_point_cloud(self, points, rgbas, thickness):
|
|
if len(points) == 0:
|
|
return
|
|
pixel_coords = self.points_to_pixel_coords(points)
|
|
pixel_coords = self.thickened_coordinates(
|
|
pixel_coords, thickness
|
|
)
|
|
rgba_len = self.pixel_array.shape[2]
|
|
|
|
rgbas = (self.rgb_max_val * rgbas).astype(self.pixel_array_dtype)
|
|
target_len = len(pixel_coords)
|
|
factor = target_len / len(rgbas)
|
|
rgbas = np.array([rgbas] * factor).reshape((target_len, rgba_len))
|
|
|
|
on_screen_indices = self.on_screen_pixels(pixel_coords)
|
|
pixel_coords = pixel_coords[on_screen_indices]
|
|
rgbas = rgbas[on_screen_indices]
|
|
|
|
ph, pw = self.pixel_shape
|
|
|
|
flattener = np.array([1, pw], dtype='int')
|
|
flattener = flattener.reshape((2, 1))
|
|
indices = np.dot(pixel_coords, flattener)[:, 0]
|
|
indices = indices.astype('int')
|
|
|
|
new_pa = self.pixel_array.reshape((ph * pw, rgba_len))
|
|
new_pa[indices] = rgbas
|
|
self.pixel_array = new_pa.reshape((ph, pw, rgba_len))
|
|
|
|
def display_multiple_image_mobjects(self, image_mobjects):
|
|
for image_mobject in image_mobjects:
|
|
self.display_image_mobject(image_mobject)
|
|
|
|
def display_image_mobject(self, image_mobject):
|
|
corner_coords = self.points_to_pixel_coords(image_mobject.points)
|
|
ul_coords, ur_coords, dl_coords = corner_coords
|
|
right_vect = ur_coords - ul_coords
|
|
down_vect = dl_coords - ul_coords
|
|
center_coords = ul_coords + (right_vect + down_vect) / 2
|
|
|
|
sub_image = Image.fromarray(
|
|
image_mobject.get_pixel_array(),
|
|
mode="RGBA"
|
|
)
|
|
|
|
# Reshape
|
|
pixel_width = int(pdist([ul_coords, ur_coords]))
|
|
pixel_height = int(pdist([ul_coords, dl_coords]))
|
|
sub_image = sub_image.resize(
|
|
(pixel_width, pixel_height), resample=Image.BICUBIC
|
|
)
|
|
|
|
# Rotate
|
|
angle = angle_of_vector(right_vect)
|
|
adjusted_angle = -int(360 * angle / TAU)
|
|
if adjusted_angle != 0:
|
|
sub_image = sub_image.rotate(
|
|
adjusted_angle, resample=Image.BICUBIC, expand=1
|
|
)
|
|
|
|
# TODO, there is no accounting for a shear...
|
|
|
|
# Paste into an image as large as the camear's pixel array
|
|
h, w = self.pixel_shape
|
|
full_image = Image.fromarray(
|
|
np.zeros((h, w)),
|
|
mode="RGBA"
|
|
)
|
|
new_ul_coords = center_coords - np.array(sub_image.size) / 2
|
|
full_image.paste(
|
|
sub_image,
|
|
box=(
|
|
new_ul_coords[0],
|
|
new_ul_coords[1],
|
|
new_ul_coords[0] + sub_image.size[0],
|
|
new_ul_coords[1] + sub_image.size[1],
|
|
)
|
|
)
|
|
|
|
# Paint on top of existing pixel array
|
|
self.overlay_PIL_image(full_image)
|
|
|
|
def overlay_rgba_array(self, arr):
|
|
self.overlay_PIL_image(Image.fromarray(arr, mode="RGBA"))
|
|
|
|
def overlay_PIL_image(self, image):
|
|
self.pixel_array = np.array(
|
|
Image.alpha_composite(self.get_image(), image)
|
|
)
|
|
|
|
def adjust_out_of_range_points(self, points):
|
|
if not np.any(points > self.max_allowable_norm):
|
|
return points
|
|
norms = np.apply_along_axis(np.linalg.norm, 1, points)
|
|
violator_indices = norms > self.max_allowable_norm
|
|
violators = points[violator_indices, :]
|
|
violator_norms = norms[violator_indices]
|
|
reshaped_norms = np.repeat(
|
|
violator_norms.reshape((len(violator_norms), 1)),
|
|
points.shape[1], 1
|
|
)
|
|
rescaled = self.max_allowable_norm * violators / reshaped_norms
|
|
points[violator_indices] = rescaled
|
|
return points
|
|
|
|
def points_to_pixel_coords(self, points):
|
|
shifted_points = points - self.space_center
|
|
|
|
result = np.zeros((len(points), 2))
|
|
ph, pw = self.pixel_shape
|
|
sh, sw = self.frame_shape
|
|
width_mult = pw / sw
|
|
width_add = pw / 2
|
|
height_mult = ph / sh
|
|
height_add = ph / 2
|
|
# Flip on y-axis as you go
|
|
height_mult *= -1
|
|
|
|
result[:, 0] = shifted_points[:, 0] * width_mult + width_add
|
|
result[:, 1] = shifted_points[:, 1] * height_mult + height_add
|
|
return result.astype('int')
|
|
|
|
def on_screen_pixels(self, pixel_coords):
|
|
return reduce(op.and_, [
|
|
pixel_coords[:, 0] >= 0,
|
|
pixel_coords[:, 0] < self.pixel_shape[1],
|
|
pixel_coords[:, 1] >= 0,
|
|
pixel_coords[:, 1] < self.pixel_shape[0],
|
|
])
|
|
|
|
def adjusted_thickness(self, thickness):
|
|
big_shape = PRODUCTION_QUALITY_CAMERA_CONFIG["pixel_shape"]
|
|
factor = sum(big_shape) / sum(self.pixel_shape)
|
|
return 1 + (thickness - 1) / factor
|
|
|
|
def get_thickening_nudges(self, thickness):
|
|
_range = range(-thickness / 2 + 1, thickness / 2 + 1)
|
|
return np.array(list(it.product(_range, _range)))
|
|
|
|
def thickened_coordinates(self, pixel_coords, thickness):
|
|
nudges = self.get_thickening_nudges(thickness)
|
|
pixel_coords = np.array([
|
|
pixel_coords + nudge
|
|
for nudge in nudges
|
|
])
|
|
size = pixel_coords.size
|
|
return pixel_coords.reshape((size / 2, 2))
|
|
|
|
def get_coords_of_all_pixels(self):
|
|
# These are in x, y order, to help me keep things straight
|
|
full_space_dims = np.array(self.frame_shape)[::-1]
|
|
full_pixel_dims = np.array(self.pixel_shape)[::-1]
|
|
|
|
# These are addressed in the same y, x order as in pixel_array, but the values in them
|
|
# are listed in x, y order
|
|
uncentered_pixel_coords = np.indices(self.pixel_shape)[
|
|
::-1].transpose(1, 2, 0)
|
|
uncentered_space_coords = fdiv(
|
|
uncentered_pixel_coords * full_space_dims,
|
|
full_pixel_dims)
|
|
# Could structure above line's computation slightly differently, but figured (without much
|
|
# thought) multiplying by frame_shape first, THEN dividing by pixel_shape, is probably
|
|
# better than the other order, for avoiding underflow quantization in the division (whereas
|
|
# overflow is unlikely to be a problem)
|
|
|
|
centered_space_coords = (
|
|
uncentered_space_coords - fdiv(full_space_dims, 2))
|
|
|
|
# Have to also flip the y coordinates to account for pixel array being listed in
|
|
# top-to-bottom order, opposite of screen coordinate convention
|
|
centered_space_coords = centered_space_coords * (1, -1)
|
|
|
|
return centered_space_coords
|
|
|
|
|
|
class BackgroundColoredVMobjectDisplayer(object):
|
|
def __init__(self, camera):
|
|
self.camera = camera
|
|
self.file_name_to_pixel_array_map = {}
|
|
self.init_canvas()
|
|
|
|
def init_canvas(self):
|
|
self.pixel_array = np.zeros(
|
|
self.camera.pixel_array.shape,
|
|
dtype=self.camera.pixel_array_dtype,
|
|
)
|
|
self.reset_canvas()
|
|
|
|
def reset_canvas(self):
|
|
image = Image.fromarray(self.pixel_array, mode=self.camera.image_mode)
|
|
self.canvas = aggdraw.Draw(image)
|
|
|
|
def resize_background_array(
|
|
self, background_array,
|
|
new_width, new_height,
|
|
mode="RGBA"
|
|
):
|
|
image = Image.fromarray(background_array, mode=mode)
|
|
resized_image = image.resize((new_width, new_height))
|
|
return np.array(resized_image)
|
|
|
|
def resize_background_array_to_match(self, background_array, pixel_array):
|
|
height, width = pixel_array.shape[:2]
|
|
mode = "RGBA" if pixel_array.shape[2] == 4 else "RGB"
|
|
return self.resize_background_array(background_array, width, height, mode)
|
|
|
|
def get_background_array(self, file_name):
|
|
if file_name in self.file_name_to_pixel_array_map:
|
|
return self.file_name_to_pixel_array_map[file_name]
|
|
full_path = get_full_raster_image_path(file_name)
|
|
image = Image.open(full_path)
|
|
array = np.array(image)
|
|
|
|
camera = self.camera
|
|
if not np.all(camera.pixel_array.shape == array.shape):
|
|
array = self.resize_background_array_to_match(
|
|
array, camera.pixel_array)
|
|
|
|
self.file_name_to_pixel_array_map[file_name] = array
|
|
return array
|
|
|
|
def display(self, *cvmobjects):
|
|
batch_image_file_pairs = batch_by_property(
|
|
cvmobjects, lambda cv: cv.get_background_image_file()
|
|
)
|
|
curr_array = None
|
|
for batch, image_file in batch_image_file_pairs:
|
|
background_array = self.get_background_array(image_file)
|
|
for cvmobject in batch:
|
|
self.camera.display_vectorized(cvmobject, self.canvas)
|
|
self.canvas.flush()
|
|
new_array = np.array(
|
|
(background_array * self.pixel_array.astype('float') / 255),
|
|
dtype=self.camera.pixel_array_dtype
|
|
)
|
|
if curr_array is None:
|
|
curr_array = new_array
|
|
else:
|
|
curr_array = np.maximum(curr_array, new_array)
|
|
self.pixel_array[:, :] = 0
|
|
self.reset_canvas()
|
|
return curr_array
|