mirror of
https://github.com/3b1b/manim.git
synced 2025-04-13 09:47:07 +00:00
340 lines
10 KiB
Python
340 lines
10 KiB
Python
from __future__ import annotations
|
|
|
|
import itertools as it
|
|
|
|
import numpy as np
|
|
|
|
from manimlib.constants import FRAME_HEIGHT, FRAME_WIDTH
|
|
from manimlib.constants import WHITE
|
|
from manimlib.animation.composition import AnimationGroup
|
|
from manimlib.animation.indication import VShowPassingFlash
|
|
from manimlib.mobject.geometry import Arrow
|
|
from manimlib.mobject.types.vectorized_mobject import VGroup
|
|
from manimlib.mobject.types.vectorized_mobject import VMobject
|
|
from manimlib.utils.bezier import interpolate
|
|
from manimlib.utils.bezier import inverse_interpolate
|
|
from manimlib.utils.color import get_colormap_list
|
|
from manimlib.utils.config_ops import digest_config
|
|
from manimlib.utils.config_ops import merge_dicts_recursively
|
|
from manimlib.utils.rate_functions import linear
|
|
from manimlib.utils.simple_functions import sigmoid
|
|
from manimlib.utils.space_ops import get_norm
|
|
|
|
from typing import TYPE_CHECKING
|
|
|
|
if TYPE_CHECKING:
|
|
from typing import Callable, Iterable, Sequence, TypeVar
|
|
|
|
import numpy.typing as npt
|
|
|
|
from manimlib.mobject.coordinate_systems import CoordinateSystem
|
|
from manimlib.mobject.mobject import Mobject
|
|
|
|
T = TypeVar("T")
|
|
|
|
|
|
def get_vectorized_rgb_gradient_function(
|
|
min_value: T,
|
|
max_value: T,
|
|
color_map: str
|
|
) -> Callable[[npt.ArrayLike], np.ndarray]:
|
|
rgbs = np.array(get_colormap_list(color_map))
|
|
|
|
def func(values):
|
|
alphas = inverse_interpolate(
|
|
min_value, max_value, np.array(values)
|
|
)
|
|
alphas = np.clip(alphas, 0, 1)
|
|
scaled_alphas = alphas * (len(rgbs) - 1)
|
|
indices = scaled_alphas.astype(int)
|
|
next_indices = np.clip(indices + 1, 0, len(rgbs) - 1)
|
|
inter_alphas = scaled_alphas % 1
|
|
inter_alphas = inter_alphas.repeat(3).reshape((len(indices), 3))
|
|
result = interpolate(rgbs[indices], rgbs[next_indices], inter_alphas)
|
|
return result
|
|
return func
|
|
|
|
|
|
def get_rgb_gradient_function(
|
|
min_value: T,
|
|
max_value: T,
|
|
color_map: str
|
|
) -> Callable[[T], np.ndarray]:
|
|
vectorized_func = get_vectorized_rgb_gradient_function(min_value, max_value, color_map)
|
|
return lambda value: vectorized_func([value])[0]
|
|
|
|
|
|
def move_along_vector_field(
|
|
mobject: Mobject,
|
|
func: Callable[[np.ndarray], np.ndarray]
|
|
) -> Mobject:
|
|
mobject.add_updater(
|
|
lambda m, dt: m.shift(
|
|
func(m.get_center()) * dt
|
|
)
|
|
)
|
|
return mobject
|
|
|
|
|
|
def move_submobjects_along_vector_field(
|
|
mobject: Mobject,
|
|
func: Callable[[np.ndarray], np.ndarray]
|
|
) -> Mobject:
|
|
def apply_nudge(mob, dt):
|
|
for submob in mob:
|
|
x, y = submob.get_center()[:2]
|
|
if abs(x) < FRAME_WIDTH and abs(y) < FRAME_HEIGHT:
|
|
submob.shift(func(submob.get_center()) * dt)
|
|
|
|
mobject.add_updater(apply_nudge)
|
|
return mobject
|
|
|
|
|
|
def move_points_along_vector_field(
|
|
mobject: Mobject,
|
|
func: Callable[[float, float], Iterable[float]],
|
|
coordinate_system: CoordinateSystem
|
|
) -> Mobject:
|
|
cs = coordinate_system
|
|
origin = cs.get_origin()
|
|
|
|
def apply_nudge(self, dt):
|
|
mobject.apply_function(
|
|
lambda p: p + (cs.c2p(*func(*cs.p2c(p))) - origin) * dt
|
|
)
|
|
mobject.add_updater(apply_nudge)
|
|
return mobject
|
|
|
|
|
|
def get_sample_points_from_coordinate_system(
|
|
coordinate_system: CoordinateSystem,
|
|
step_multiple: float
|
|
) -> it.product[tuple[np.ndarray, ...]]:
|
|
ranges = []
|
|
for range_args in coordinate_system.get_all_ranges():
|
|
_min, _max, step = range_args
|
|
step *= step_multiple
|
|
ranges.append(np.arange(_min, _max + step, step))
|
|
return it.product(*ranges)
|
|
|
|
|
|
# Mobjects
|
|
|
|
class VectorField(VGroup):
|
|
CONFIG = {
|
|
"step_multiple": 0.5,
|
|
"magnitude_range": (0, 2),
|
|
"color_map": "3b1b_colormap",
|
|
# Takes in actual norm, spits out displayed norm
|
|
"length_func": lambda norm: 0.45 * sigmoid(norm),
|
|
"opacity": 1.0,
|
|
"vector_config": {},
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
func: Callable[[float, float], Sequence[float]],
|
|
coordinate_system: CoordinateSystem,
|
|
**kwargs
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.func = func
|
|
self.coordinate_system = coordinate_system
|
|
self.value_to_rgb = get_rgb_gradient_function(
|
|
*self.magnitude_range, self.color_map,
|
|
)
|
|
|
|
samples = get_sample_points_from_coordinate_system(
|
|
coordinate_system, self.step_multiple
|
|
)
|
|
self.add(*(
|
|
self.get_vector(coords)
|
|
for coords in samples
|
|
))
|
|
|
|
def get_vector(self, coords: Iterable[float], **kwargs) -> Arrow:
|
|
vector_config = merge_dicts_recursively(
|
|
self.vector_config,
|
|
kwargs
|
|
)
|
|
|
|
output = np.array(self.func(*coords))
|
|
norm = get_norm(output)
|
|
if norm > 0:
|
|
output *= self.length_func(norm) / norm
|
|
|
|
origin = self.coordinate_system.get_origin()
|
|
_input = self.coordinate_system.c2p(*coords)
|
|
_output = self.coordinate_system.c2p(*output)
|
|
|
|
vect = Arrow(
|
|
origin, _output, buff=0,
|
|
**vector_config
|
|
)
|
|
vect.shift(_input - origin)
|
|
vect.set_rgba_array([[*self.value_to_rgb(norm), self.opacity]])
|
|
return vect
|
|
|
|
|
|
class StreamLines(VGroup):
|
|
CONFIG = {
|
|
"step_multiple": 0.5,
|
|
"n_repeats": 1,
|
|
"noise_factor": None,
|
|
# Config for drawing lines
|
|
"dt": 0.05,
|
|
"arc_len": 3,
|
|
"max_time_steps": 200,
|
|
"n_samples_per_line": 10,
|
|
"cutoff_norm": 15,
|
|
# Style info
|
|
"stroke_width": 1,
|
|
"stroke_color": WHITE,
|
|
"stroke_opacity": 1,
|
|
"color_by_magnitude": True,
|
|
"magnitude_range": (0, 2.0),
|
|
"taper_stroke_width": False,
|
|
"color_map": "3b1b_colormap",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
func: Callable[[float, float], Sequence[float]],
|
|
coordinate_system: CoordinateSystem,
|
|
**kwargs
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.func = func
|
|
self.coordinate_system = coordinate_system
|
|
self.draw_lines()
|
|
self.init_style()
|
|
|
|
def point_func(self, point: np.ndarray) -> np.ndarray:
|
|
in_coords = self.coordinate_system.p2c(point)
|
|
out_coords = self.func(*in_coords)
|
|
return self.coordinate_system.c2p(*out_coords)
|
|
|
|
def draw_lines(self) -> None:
|
|
lines = []
|
|
origin = self.coordinate_system.get_origin()
|
|
for point in self.get_start_points():
|
|
points = [point]
|
|
total_arc_len = 0
|
|
time = 0
|
|
for x in range(self.max_time_steps):
|
|
time += self.dt
|
|
last_point = points[-1]
|
|
new_point = last_point + self.dt * (self.point_func(last_point) - origin)
|
|
points.append(new_point)
|
|
total_arc_len += get_norm(new_point - last_point)
|
|
if get_norm(last_point) > self.cutoff_norm:
|
|
break
|
|
if total_arc_len > self.arc_len:
|
|
break
|
|
line = VMobject()
|
|
line.virtual_time = time
|
|
step = max(1, int(len(points) / self.n_samples_per_line))
|
|
line.set_points_as_corners(points[::step])
|
|
line.make_approximately_smooth()
|
|
lines.append(line)
|
|
self.set_submobjects(lines)
|
|
|
|
def get_start_points(self) -> np.ndarray:
|
|
cs = self.coordinate_system
|
|
sample_coords = get_sample_points_from_coordinate_system(
|
|
cs, self.step_multiple,
|
|
)
|
|
|
|
noise_factor = self.noise_factor
|
|
if noise_factor is None:
|
|
noise_factor = cs.x_range[2] * self.step_multiple * 0.5
|
|
|
|
return np.array([
|
|
cs.c2p(*coords) + noise_factor * np.random.random(3)
|
|
for n in range(self.n_repeats)
|
|
for coords in sample_coords
|
|
])
|
|
|
|
def init_style(self) -> None:
|
|
if self.color_by_magnitude:
|
|
values_to_rgbs = get_vectorized_rgb_gradient_function(
|
|
*self.magnitude_range, self.color_map,
|
|
)
|
|
cs = self.coordinate_system
|
|
for line in self.submobjects:
|
|
norms = [
|
|
get_norm(self.func(*cs.p2c(point)))
|
|
for point in line.get_points()
|
|
]
|
|
rgbs = values_to_rgbs(norms)
|
|
rgbas = np.zeros((len(rgbs), 4))
|
|
rgbas[:, :3] = rgbs
|
|
rgbas[:, 3] = self.stroke_opacity
|
|
line.set_rgba_array(rgbas, "stroke_rgba")
|
|
else:
|
|
self.set_stroke(self.stroke_color, opacity=self.stroke_opacity)
|
|
|
|
if self.taper_stroke_width:
|
|
width = [0, self.stroke_width, 0]
|
|
else:
|
|
width = self.stroke_width
|
|
self.set_stroke(width=width)
|
|
|
|
|
|
class AnimatedStreamLines(VGroup):
|
|
CONFIG = {
|
|
"lag_range": 4,
|
|
"line_anim_class": VShowPassingFlash,
|
|
"line_anim_config": {
|
|
# "run_time": 4,
|
|
"rate_func": linear,
|
|
"time_width": 0.5,
|
|
},
|
|
}
|
|
|
|
def __init__(self, stream_lines: StreamLines, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.stream_lines = stream_lines
|
|
for line in stream_lines:
|
|
line.anim = self.line_anim_class(
|
|
line,
|
|
run_time=line.virtual_time,
|
|
**self.line_anim_config,
|
|
)
|
|
line.anim.begin()
|
|
line.time = -self.lag_range * np.random.random()
|
|
self.add(line.anim.mobject)
|
|
|
|
self.add_updater(lambda m, dt: m.update(dt))
|
|
|
|
def update(self, dt: float) -> None:
|
|
stream_lines = self.stream_lines
|
|
for line in stream_lines:
|
|
line.time += dt
|
|
adjusted_time = max(line.time, 0) % line.anim.run_time
|
|
line.anim.update(adjusted_time / line.anim.run_time)
|
|
|
|
|
|
# TODO: This class should be deleted
|
|
class ShowPassingFlashWithThinningStrokeWidth(AnimationGroup):
|
|
CONFIG = {
|
|
"n_segments": 10,
|
|
"time_width": 0.1,
|
|
"remover": True
|
|
}
|
|
|
|
def __init__(self, vmobject: VMobject, **kwargs):
|
|
digest_config(self, kwargs)
|
|
max_stroke_width = vmobject.get_stroke_width()
|
|
max_time_width = kwargs.pop("time_width", self.time_width)
|
|
AnimationGroup.__init__(self, *[
|
|
VShowPassingFlash(
|
|
vmobject.copy().set_stroke(width=stroke_width),
|
|
time_width=time_width,
|
|
**kwargs
|
|
)
|
|
for stroke_width, time_width in zip(
|
|
np.linspace(0, max_stroke_width, self.n_segments),
|
|
np.linspace(max_time_width, 0, self.n_segments)
|
|
)
|
|
])
|