3b1b-manim/manimlib/mobject/mobject.py
Grant Sanderson 7a69807ce6 Remove mobject.save_to_file
This simply didn't work, and had no resilience to changes to the library. For cases where this might be useful, it's likely much better deliberately save specific data which is time-consuming to generate on the fly.
2024-12-09 16:24:50 -06:00

2328 lines
78 KiB
Python

from __future__ import annotations
import copy
from functools import wraps
import itertools as it
import os
import pickle
import random
import sys
import moderngl
import numbers
import numpy as np
from manimlib.constants import DEFAULT_MOBJECT_TO_EDGE_BUFFER
from manimlib.constants import DEFAULT_MOBJECT_TO_MOBJECT_BUFFER
from manimlib.constants import DOWN, IN, LEFT, ORIGIN, OUT, RIGHT, UP
from manimlib.constants import FRAME_X_RADIUS, FRAME_Y_RADIUS
from manimlib.constants import MED_SMALL_BUFF
from manimlib.constants import TAU
from manimlib.constants import WHITE
from manimlib.event_handler import EVENT_DISPATCHER
from manimlib.event_handler.event_listner import EventListener
from manimlib.event_handler.event_type import EventType
from manimlib.logger import log
from manimlib.shader_wrapper import ShaderWrapper
from manimlib.utils.color import color_gradient
from manimlib.utils.color import color_to_rgb
from manimlib.utils.color import get_colormap_list
from manimlib.utils.color import rgb_to_hex
from manimlib.utils.iterables import arrays_match
from manimlib.utils.iterables import array_is_constant
from manimlib.utils.iterables import batch_by_property
from manimlib.utils.iterables import list_update
from manimlib.utils.iterables import listify
from manimlib.utils.iterables import resize_array
from manimlib.utils.iterables import resize_preserving_order
from manimlib.utils.iterables import resize_with_interpolation
from manimlib.utils.bezier import integer_interpolate
from manimlib.utils.bezier import interpolate
from manimlib.utils.paths import straight_path
from manimlib.utils.shaders import get_colormap_code
from manimlib.utils.space_ops import angle_of_vector
from manimlib.utils.space_ops import get_norm
from manimlib.utils.space_ops import rotation_matrix_transpose
from typing import TYPE_CHECKING
from typing import TypeVar, Generic, Iterable
SubmobjectType = TypeVar('SubmobjectType', bound='Mobject')
if TYPE_CHECKING:
from typing import Callable, Iterator, Union, Tuple, Optional, Any
import numpy.typing as npt
from manimlib.typing import ManimColor, Vect3, Vect4, Vect3Array, UniformDict, Self
from moderngl.context import Context
T = TypeVar('T')
TimeBasedUpdater = Callable[["Mobject", float], "Mobject" | None]
NonTimeUpdater = Callable[["Mobject"], "Mobject" | None]
Updater = Union[TimeBasedUpdater, NonTimeUpdater]
class Mobject(object):
"""
Mathematical Object
"""
dim: int = 3
shader_folder: str = ""
render_primitive: int = moderngl.TRIANGLE_STRIP
# Must match in attributes of vert shader
data_dtype: np.dtype = np.dtype([
('point', np.float32, (3,)),
('rgba', np.float32, (4,)),
])
aligned_data_keys = ['point']
pointlike_data_keys = ['point']
def __init__(
self,
color: ManimColor = WHITE,
opacity: float = 1.0,
shading: Tuple[float, float, float] = (0.0, 0.0, 0.0),
# For shaders
texture_paths: dict[str, str] | None = None,
# If true, the mobject will not get rotated according to camera position
is_fixed_in_frame: bool = False,
depth_test: bool = False,
z_index: int = 0,
):
self.color = color
self.opacity = opacity
self.shading = shading
self.texture_paths = texture_paths
self.depth_test = depth_test
self.z_index = z_index
# Internal state
self.submobjects: list[Mobject] = []
self.parents: list[Mobject] = []
self.family: list[Mobject] | None = [self]
self.locked_data_keys: set[str] = set()
self.const_data_keys: set[str] = set()
self.locked_uniform_keys: set[str] = set()
self.saved_state = None
self.target = None
self.bounding_box: Vect3Array = np.zeros((3, 3))
self.shader_wrapper: Optional[ShaderWrapper] = None
self._is_animating: bool = False
self._needs_new_bounding_box: bool = True
self._data_has_changed: bool = True
self.shader_code_replacements: dict[str, str] = dict()
self.init_data()
self.init_uniforms()
self.init_updaters()
self.init_event_listners()
self.init_points()
self.init_colors()
if self.depth_test:
self.apply_depth_test()
if is_fixed_in_frame:
self.fix_in_frame()
def __str__(self):
return self.__class__.__name__
def __add__(self, other: Mobject) -> Mobject:
assert isinstance(other, Mobject)
return self.get_group_class()(self, other)
def __mul__(self, other: int) -> Mobject:
assert isinstance(other, int)
return self.replicate(other)
def init_data(self, length: int = 0):
self.data = np.zeros(length, dtype=self.data_dtype)
self._data_defaults = np.ones(1, dtype=self.data.dtype)
def init_uniforms(self):
self.uniforms: UniformDict = {
"is_fixed_in_frame": 0.0,
"shading": np.array(self.shading, dtype=float),
"clip_plane": np.zeros(4),
}
def init_colors(self):
self.set_color(self.color, self.opacity)
def init_points(self):
# Typically implemented in subclass, unlpess purposefully left blank
pass
def set_uniforms(self, uniforms: dict) -> Self:
for key, value in uniforms.items():
if isinstance(value, np.ndarray):
value = value.copy()
self.uniforms[key] = value
return self
@property
def animate(self) -> _AnimationBuilder:
"""
Methods called with Mobject.animate.method() can be passed
into a Scene.play call, as if you were calling
ApplyMethod(mobject.method)
Borrowed from https://github.com/ManimCommunity/manim/
"""
return _AnimationBuilder(self)
@property
def always(self) -> _UpdaterBuilder:
"""
Methods called with mobject.always.method(*args, **kwargs)
will result in the call mobject.method(*args, **kwargs)
on every frame
"""
return _UpdaterBuilder(self)
@property
def f_always(self) -> _FunctionalUpdaterBuilder:
"""
Similar to Mobject.always, but with the intent that arguments
are functions returning the corresponding type fit for the method
Methods called with
mobject.f_always.method(
func1, func2, ...,
kwarg1=kw_func1,
kwarg2=kw_func2,
...
)
will result in the call
mobject.method(
func1(), func2(), ...,
kwarg1=kw_func1(),
kwarg2=kw_func2(),
...
)
on every frame
"""
return _FunctionalUpdaterBuilder(self)
def note_changed_data(self, recurse_up: bool = True) -> Self:
self._data_has_changed = True
if recurse_up:
for mob in self.parents:
mob.note_changed_data()
return self
@staticmethod
def affects_data(func: Callable[..., T]) -> Callable[..., T]:
@wraps(func)
def wrapper(self, *args, **kwargs):
result = func(self, *args, **kwargs)
self.note_changed_data()
return result
return wrapper
@staticmethod
def affects_family_data(func: Callable[..., T]) -> Callable[..., T]:
@wraps(func)
def wrapper(self, *args, **kwargs):
result = func(self, *args, **kwargs)
for mob in self.family_members_with_points():
mob.note_changed_data()
return result
return wrapper
# Only these methods should directly affect points
@affects_data
def set_data(self, data: np.ndarray) -> Self:
assert data.dtype == self.data.dtype
self.resize_points(len(data))
self.data[:] = data
return self
@affects_data
def resize_points(
self,
new_length: int,
resize_func: Callable[[np.ndarray, int], np.ndarray] = resize_array
) -> Self:
if new_length == 0:
if len(self.data) > 0:
self._data_defaults[:1] = self.data[:1]
elif self.get_num_points() == 0:
self.data = self._data_defaults.copy()
self.data = resize_func(self.data, new_length)
self.refresh_bounding_box()
return self
@affects_data
def set_points(self, points: Vect3Array | list[Vect3]) -> Self:
self.resize_points(len(points), resize_func=resize_preserving_order)
self.data["point"][:] = points
return self
@affects_data
def append_points(self, new_points: Vect3Array) -> Self:
n = self.get_num_points()
self.resize_points(n + len(new_points))
# Have most data default to the last value
self.data[n:] = self.data[n - 1]
# Then read in new points
self.data["point"][n:] = new_points
self.refresh_bounding_box()
return self
@affects_family_data
def reverse_points(self) -> Self:
for mob in self.get_family():
mob.data[:] = mob.data[::-1]
return self
@affects_family_data
def apply_points_function(
self,
func: Callable[[np.ndarray], np.ndarray],
about_point: Vect3 | None = None,
about_edge: Vect3 = ORIGIN,
works_on_bounding_box: bool = False
) -> Self:
if about_point is None and about_edge is not None:
about_point = self.get_bounding_box_point(about_edge)
for mob in self.get_family():
arrs = []
if mob.has_points():
for key in mob.pointlike_data_keys:
arrs.append(mob.data[key])
if works_on_bounding_box:
arrs.append(mob.get_bounding_box())
for arr in arrs:
if about_point is None:
arr[:] = func(arr)
else:
arr[:] = func(arr - about_point) + about_point
if not works_on_bounding_box:
self.refresh_bounding_box(recurse_down=True)
else:
for parent in self.parents:
parent.refresh_bounding_box()
return self
# Others related to points
def match_points(self, mobject: Mobject) -> Self:
self.set_points(mobject.get_points())
return self
def get_points(self) -> Vect3Array:
return self.data["point"]
def clear_points(self) -> Self:
self.resize_points(0)
return self
def get_num_points(self) -> int:
return len(self.get_points())
def get_all_points(self) -> Vect3Array:
if self.submobjects:
return np.vstack([sm.get_points() for sm in self.get_family()])
else:
return self.get_points()
def has_points(self) -> bool:
return len(self.get_points()) > 0
def get_bounding_box(self) -> Vect3Array:
if self._needs_new_bounding_box:
self.bounding_box[:] = self.compute_bounding_box()
self._needs_new_bounding_box = False
return self.bounding_box
def compute_bounding_box(self) -> Vect3Array:
all_points = np.vstack([
self.get_points(),
*(
mob.get_bounding_box()
for mob in self.get_family()[1:]
if mob.has_points()
)
])
if len(all_points) == 0:
return np.zeros((3, self.dim))
else:
# Lower left and upper right corners
mins = all_points.min(0)
maxs = all_points.max(0)
mids = (mins + maxs) / 2
return np.array([mins, mids, maxs])
def refresh_bounding_box(
self,
recurse_down: bool = False,
recurse_up: bool = True
) -> Self:
for mob in self.get_family(recurse_down):
mob._needs_new_bounding_box = True
if recurse_up:
for parent in self.parents:
parent.refresh_bounding_box()
return self
def are_points_touching(
self,
points: Vect3Array,
buff: float = 0
) -> np.ndarray:
bb = self.get_bounding_box()
mins = (bb[0] - buff)
maxs = (bb[2] + buff)
return ((points >= mins) * (points <= maxs)).all(1)
def is_point_touching(
self,
point: Vect3,
buff: float = 0
) -> bool:
return self.are_points_touching(np.array(point, ndmin=2), buff)[0]
def is_touching(self, mobject: Mobject, buff: float = 1e-2) -> bool:
bb1 = self.get_bounding_box()
bb2 = mobject.get_bounding_box()
return not any((
(bb2[2] < bb1[0] - buff).any(), # E.g. Right of mobject is left of self's left
(bb2[0] > bb1[2] + buff).any(), # E.g. Left of mobject is right of self's right
))
# Family matters
def __getitem__(self, value: int | slice) -> Mobject:
if isinstance(value, slice):
GroupClass = self.get_group_class()
return GroupClass(*self.split().__getitem__(value))
return self.split().__getitem__(value)
def __iter__(self) -> Iterator[Self]:
return iter(self.split())
def __len__(self) -> int:
return len(self.split())
def split(self) -> list[Self]:
return self.submobjects
@affects_data
def note_changed_family(self, only_changed_order=False) -> Self:
self.family = None
if not only_changed_order:
self.refresh_has_updater_status()
self.refresh_bounding_box()
for parent in self.parents:
parent.note_changed_family()
return self
def get_family(self, recurse: bool = True) -> list[Mobject]:
if not recurse:
return [self]
if self.family is None:
# Reconstruct and save
sub_families = (sm.get_family() for sm in self.submobjects)
self.family = [self, *it.chain(*sub_families)]
return self.family
def family_members_with_points(self) -> list[Mobject]:
return [m for m in self.get_family() if len(m.data) > 0]
def get_ancestors(self, extended: bool = False) -> list[Mobject]:
"""
Returns parents, grandparents, etc.
Order of result should be from higher members of the hierarchy down.
If extended is set to true, it includes the ancestors of all family members,
e.g. any other parents of a submobject
"""
ancestors = []
to_process = list(self.get_family(recurse=extended))
excluded = set(to_process)
while to_process:
for p in to_process.pop().parents:
if p not in excluded:
ancestors.append(p)
to_process.append(p)
# Ensure mobjects highest in the hierarchy show up first
ancestors.reverse()
# Remove list redundancies while preserving order
return list(dict.fromkeys(ancestors))
def add(self, *mobjects: Mobject) -> Self:
if self in mobjects:
raise Exception("Mobject cannot contain self")
for mobject in mobjects:
if mobject not in self.submobjects:
self.submobjects.append(mobject)
if self not in mobject.parents:
mobject.parents.append(self)
self.note_changed_family()
return self
def remove(
self,
*to_remove: Mobject,
reassemble: bool = True,
recurse: bool = True
) -> Self:
for parent in self.get_family(recurse):
for child in to_remove:
if child in parent.submobjects:
parent.submobjects.remove(child)
if parent in child.parents:
child.parents.remove(parent)
if reassemble:
parent.note_changed_family()
return self
def clear(self) -> Self:
self.remove(*self.submobjects, recurse=False)
return self
def add_to_back(self, *mobjects: Mobject) -> Self:
self.set_submobjects(list_update(mobjects, self.submobjects))
return self
def replace_submobject(self, index: int, new_submob: Mobject) -> Self:
old_submob = self.submobjects[index]
if self in old_submob.parents:
old_submob.parents.remove(self)
self.submobjects[index] = new_submob
new_submob.parents.append(self)
self.note_changed_family()
return self
def insert_submobject(self, index: int, new_submob: Mobject) -> Self:
self.submobjects.insert(index, new_submob)
self.note_changed_family()
return self
def set_submobjects(self, submobject_list: list[Mobject]) -> Self:
if self.submobjects == submobject_list:
return self
self.clear()
self.add(*submobject_list)
return self
def digest_mobject_attrs(self) -> Self:
"""
Ensures all attributes which are mobjects are included
in the submobjects list.
"""
mobject_attrs = [x for x in list(self.__dict__.values()) if isinstance(x, Mobject)]
self.set_submobjects(list_update(self.submobjects, mobject_attrs))
return self
# Submobject organization
def arrange(
self,
direction: Vect3 = RIGHT,
center: bool = True,
**kwargs
) -> Self:
for m1, m2 in zip(self.submobjects, self.submobjects[1:]):
m2.next_to(m1, direction, **kwargs)
if center:
self.center()
return self
def arrange_in_grid(
self,
n_rows: int | None = None,
n_cols: int | None = None,
buff: float | None = None,
h_buff: float | None = None,
v_buff: float | None = None,
buff_ratio: float | None = None,
h_buff_ratio: float = 0.5,
v_buff_ratio: float = 0.5,
aligned_edge: Vect3 = ORIGIN,
fill_rows_first: bool = True
) -> Self:
submobs = self.submobjects
n_submobs = len(submobs)
if n_rows is None:
n_rows = int(np.sqrt(n_submobs)) if n_cols is None else n_submobs // n_cols
if n_cols is None:
n_cols = n_submobs // n_rows
if buff is not None:
h_buff = buff
v_buff = buff
else:
if buff_ratio is not None:
v_buff_ratio = buff_ratio
h_buff_ratio = buff_ratio
if h_buff is None:
h_buff = h_buff_ratio * self[0].get_width()
if v_buff is None:
v_buff = v_buff_ratio * self[0].get_height()
x_unit = h_buff + max([sm.get_width() for sm in submobs])
y_unit = v_buff + max([sm.get_height() for sm in submobs])
for index, sm in enumerate(submobs):
if fill_rows_first:
x, y = index % n_cols, index // n_cols
else:
x, y = index // n_rows, index % n_rows
sm.move_to(ORIGIN, aligned_edge)
sm.shift(x * x_unit * RIGHT + y * y_unit * DOWN)
self.center()
return self
def arrange_to_fit_dim(self, length: float, dim: int, about_edge=ORIGIN) -> Self:
ref_point = self.get_bounding_box_point(about_edge)
n_submobs = len(self.submobjects)
if n_submobs <= 1:
return
total_length = sum(sm.length_over_dim(dim) for sm in self.submobjects)
buff = (length - total_length) / (n_submobs - 1)
vect = np.zeros(self.dim)
vect[dim] = 1
x = 0
for submob in self.submobjects:
submob.set_coord(x, dim, -vect)
x += submob.length_over_dim(dim) + buff
self.move_to(ref_point, about_edge)
return self
def arrange_to_fit_width(self, width: float, about_edge=ORIGIN) -> Self:
return self.arrange_to_fit_dim(width, 0, about_edge)
def arrange_to_fit_height(self, height: float, about_edge=ORIGIN) -> Self:
return self.arrange_to_fit_dim(height, 1, about_edge)
def arrange_to_fit_depth(self, depth: float, about_edge=ORIGIN) -> Self:
return self.arrange_to_fit_dim(depth, 2, about_edge)
def sort(
self,
point_to_num_func: Callable[[np.ndarray], float] = lambda p: p[0],
submob_func: Callable[[Mobject]] | None = None
) -> Self:
if submob_func is not None:
self.submobjects.sort(key=submob_func)
else:
self.submobjects.sort(key=lambda m: point_to_num_func(m.get_center()))
self.note_changed_family(only_changed_order=True)
return self
def shuffle(self, recurse: bool = False) -> Self:
if recurse:
for submob in self.submobjects:
submob.shuffle(recurse=True)
random.shuffle(self.submobjects)
self.note_changed_family(only_changed_order=True)
return self
def reverse_submobjects(self) -> Self:
self.submobjects.reverse()
self.note_changed_family(only_changed_order=True)
return self
# Copying and serialization
@staticmethod
def stash_mobject_pointers(func: Callable[..., T]) -> Callable[..., T]:
@wraps(func)
def wrapper(self, *args, **kwargs):
uncopied_attrs = ["parents", "target", "saved_state"]
stash = dict()
for attr in uncopied_attrs:
if hasattr(self, attr):
value = getattr(self, attr)
stash[attr] = value
null_value = [] if isinstance(value, list) else None
setattr(self, attr, null_value)
result = func(self, *args, **kwargs)
self.__dict__.update(stash)
return result
return wrapper
@stash_mobject_pointers
def serialize(self) -> bytes:
return pickle.dumps(self)
def deserialize(self, data: bytes) -> Self:
self.become(pickle.loads(data))
return self
@stash_mobject_pointers
def deepcopy(self) -> Self:
return copy.deepcopy(self)
def copy(self, deep: bool = False) -> Self:
if deep:
return self.deepcopy()
result = copy.copy(self)
result.parents = []
result.target = None
result.saved_state = None
# copy.copy is only a shallow copy, so the internal
# data which are numpy arrays or other mobjects still
# need to be further copied.
result.uniforms = {
key: value.copy() if isinstance(value, np.ndarray) else value
for key, value in self.uniforms.items()
}
# Instead of adding using result.add, which does some checks for updating
# updater statues and bounding box, just directly modify the family-related
# lists
result.submobjects = [sm.copy() for sm in self.submobjects]
for sm in result.submobjects:
sm.parents = [result]
result.family = [result, *it.chain(*(sm.get_family() for sm in result.submobjects))]
# Similarly, instead of calling match_updaters, since we know the status
# won't have changed, just directly match.
result.updaters = list(self.updaters)
result._data_has_changed = True
result.shader_wrapper = None
family = self.get_family()
for attr, value in self.__dict__.items():
if isinstance(value, Mobject) and value is not self:
if value in family:
setattr(result, attr, result.family[family.index(value)])
elif isinstance(value, np.ndarray):
setattr(result, attr, value.copy())
return result
def generate_target(self, use_deepcopy: bool = False) -> Self:
self.target = self.copy(deep=use_deepcopy)
self.target.saved_state = self.saved_state
return self.target
def save_state(self, use_deepcopy: bool = False) -> Self:
self.saved_state = self.copy(deep=use_deepcopy)
self.saved_state.target = self.target
return self
def restore(self) -> Self:
if not hasattr(self, "saved_state") or self.saved_state is None:
raise Exception("Trying to restore without having saved")
self.become(self.saved_state)
return self
def become(self, mobject: Mobject, match_updaters=False) -> Self:
"""
Edit all data and submobjects to be idential
to another mobject
"""
self.align_family(mobject)
family1 = self.get_family()
family2 = mobject.get_family()
for sm1, sm2 in zip(family1, family2):
sm1.set_data(sm2.data)
sm1.set_uniforms(sm2.uniforms)
sm1.bounding_box[:] = sm2.bounding_box
sm1.shader_folder = sm2.shader_folder
sm1.texture_paths = sm2.texture_paths
sm1.depth_test = sm2.depth_test
sm1.render_primitive = sm2.render_primitive
sm1._needs_new_bounding_box = sm2._needs_new_bounding_box
# Make sure named family members carry over
for attr, value in list(mobject.__dict__.items()):
if isinstance(value, Mobject) and value in family2:
setattr(self, attr, family1[family2.index(value)])
if match_updaters:
self.match_updaters(mobject)
return self
def looks_identical(self, mobject: Mobject) -> bool:
fam1 = self.family_members_with_points()
fam2 = mobject.family_members_with_points()
if len(fam1) != len(fam2):
return False
for m1, m2 in zip(fam1, fam2):
if m1.get_num_points() != m2.get_num_points():
return False
if not m1.data.dtype == m2.data.dtype:
return False
for key in m1.data.dtype.names:
if not np.isclose(m1.data[key], m2.data[key]).all():
return False
if set(m1.uniforms).difference(m2.uniforms):
return False
for key in m1.uniforms:
value1 = m1.uniforms[key]
value2 = m2.uniforms[key]
if isinstance(value1, np.ndarray) and isinstance(value2, np.ndarray) and not value1.size == value2.size:
return False
if not np.isclose(value1, value2).all():
return False
return True
def has_same_shape_as(self, mobject: Mobject) -> bool:
# Normalize both point sets by centering and making height 1
points1, points2 = (
(m.get_all_points() - m.get_center()) / m.get_height()
for m in (self, mobject)
)
if len(points1) != len(points2):
return False
return bool(np.isclose(points1, points2, atol=self.get_width() * 1e-2).all())
# Creating new Mobjects from this one
def replicate(self, n: int) -> Self:
group_class = self.get_group_class()
return group_class(*(self.copy() for _ in range(n)))
def get_grid(
self,
n_rows: int,
n_cols: int,
height: float | None = None,
width: float | None = None,
group_by_rows: bool = False,
group_by_cols: bool = False,
**kwargs
) -> Self:
"""
Returns a new mobject containing multiple copies of this one
arranged in a grid
"""
total = n_rows * n_cols
grid = self.replicate(total)
if group_by_cols:
kwargs["fill_rows_first"] = False
grid.arrange_in_grid(n_rows, n_cols, **kwargs)
if height is not None:
grid.set_height(height)
if width is not None:
grid.set_height(width)
group_class = self.get_group_class()
if group_by_rows:
return group_class(*(grid[n:n + n_cols] for n in range(0, total, n_cols)))
elif group_by_cols:
return group_class(*(grid[n:n + n_rows] for n in range(0, total, n_rows)))
else:
return grid
# Updating
def init_updaters(self):
self.updaters: list[Updater] = list()
self._has_updaters_in_family: Optional[bool] = False
self.updating_suspended: bool = False
def update(self, dt: float = 0, recurse: bool = True) -> Self:
if not self.has_updaters() or self.updating_suspended:
return self
if recurse:
for submob in self.submobjects:
submob.update(dt, recurse)
for updater in self.updaters:
# This is hacky, but if an updater takes dt as an arg,
# it will be passed the change in time from here
if "dt" in updater.__code__.co_varnames:
updater(self, dt=dt)
else:
updater(self)
return self
def get_updaters(self) -> list[Updater]:
return self.updaters
def add_updater(self, update_func: Updater, call: bool = True) -> Self:
self.updaters.append(update_func)
if call:
self.update(dt=0)
self.refresh_has_updater_status()
return self
def insert_updater(self, update_func: Updater, index=0):
self.updaters.insert(index, update_func)
self.refresh_has_updater_status()
return self
def remove_updater(self, update_func: Updater) -> Self:
while update_func in self.updaters:
self.updaters.remove(update_func)
self.refresh_has_updater_status()
return self
def clear_updaters(self, recurse: bool = True) -> Self:
for mob in self.get_family(recurse):
mob.updaters = []
mob._has_updaters_in_family = False
for parent in self.get_ancestors():
parent._has_updaters_in_family = False
return self
def match_updaters(self, mobject: Mobject) -> Self:
self.updaters = list(mobject.updaters)
self.refresh_has_updater_status()
return self
def suspend_updating(self, recurse: bool = True) -> Self:
self.updating_suspended = True
if recurse:
for submob in self.submobjects:
submob.suspend_updating(recurse)
return self
def resume_updating(self, recurse: bool = True, call_updater: bool = True) -> Self:
self.updating_suspended = False
if recurse:
for submob in self.submobjects:
submob.resume_updating(recurse)
for parent in self.parents:
parent.resume_updating(recurse=False, call_updater=False)
if call_updater:
self.update(dt=0, recurse=recurse)
return self
def has_updaters(self) -> bool:
if self._has_updaters_in_family is None:
# Recompute and save
self._has_updaters_in_family = bool(self.updaters) or any(
sm.has_updaters() for sm in self.submobjects
)
return self._has_updaters_in_family
def refresh_has_updater_status(self) -> Self:
self._has_updaters_in_family = None
for parent in self.parents:
parent.refresh_has_updater_status()
return self
# Check if mark as static or not for camera
def is_changing(self) -> bool:
return self._is_animating or self.has_updaters()
def set_animating_status(self, is_animating: bool, recurse: bool = True) -> Self:
for mob in (*self.get_family(recurse), *self.get_ancestors()):
mob._is_animating = is_animating
return self
# Transforming operations
def shift(self, vector: Vect3) -> Self:
self.apply_points_function(
lambda points: points + vector,
about_edge=None,
works_on_bounding_box=True,
)
return self
def scale(
self,
scale_factor: float | npt.ArrayLike,
min_scale_factor: float = 1e-8,
about_point: Vect3 | None = None,
about_edge: Vect3 = ORIGIN
) -> Self:
"""
Default behavior is to scale about the center of the mobject.
The argument about_edge can be a vector, indicating which side of
the mobject to scale about, e.g., mob.scale(about_edge = RIGHT)
scales about mob.get_right().
Otherwise, if about_point is given a value, scaling is done with
respect to that point.
"""
if isinstance(scale_factor, numbers.Number):
scale_factor = max(scale_factor, min_scale_factor)
else:
scale_factor = np.array(scale_factor).clip(min=min_scale_factor)
self.apply_points_function(
lambda points: scale_factor * points,
about_point=about_point,
about_edge=about_edge,
works_on_bounding_box=True,
)
for mob in self.get_family():
mob._handle_scale_side_effects(scale_factor)
return self
def _handle_scale_side_effects(self, scale_factor):
# In case subclasses, such as DecimalNumber, need to make
# any other changes when the size gets altered
pass
def stretch(self, factor: float, dim: int, **kwargs) -> Self:
def func(points):
points[:, dim] *= factor
return points
self.apply_points_function(func, works_on_bounding_box=True, **kwargs)
return self
def rotate_about_origin(self, angle: float, axis: Vect3 = OUT) -> Self:
return self.rotate(angle, axis, about_point=ORIGIN)
def rotate(
self,
angle: float,
axis: Vect3 = OUT,
about_point: Vect3 | None = None,
**kwargs
) -> Self:
rot_matrix_T = rotation_matrix_transpose(angle, axis)
self.apply_points_function(
lambda points: np.dot(points, rot_matrix_T),
about_point,
**kwargs
)
return self
def flip(self, axis: Vect3 = UP, **kwargs) -> Self:
return self.rotate(TAU / 2, axis, **kwargs)
def apply_function(self, function: Callable[[np.ndarray], np.ndarray], **kwargs) -> Self:
# Default to applying matrix about the origin, not mobjects center
if len(kwargs) == 0:
kwargs["about_point"] = ORIGIN
self.apply_points_function(
lambda points: np.array([function(p) for p in points]),
**kwargs
)
return self
def apply_function_to_position(self, function: Callable[[np.ndarray], np.ndarray]) -> Self:
self.move_to(function(self.get_center()))
return self
def apply_function_to_submobject_positions(
self,
function: Callable[[np.ndarray], np.ndarray]
) -> Self:
for submob in self.submobjects:
submob.apply_function_to_position(function)
return self
def apply_matrix(self, matrix: npt.ArrayLike, **kwargs) -> Self:
# Default to applying matrix about the origin, not mobjects center
if ("about_point" not in kwargs) and ("about_edge" not in kwargs):
kwargs["about_point"] = ORIGIN
full_matrix = np.identity(self.dim)
matrix = np.array(matrix)
full_matrix[:matrix.shape[0], :matrix.shape[1]] = matrix
self.apply_points_function(
lambda points: np.dot(points, full_matrix.T),
**kwargs
)
return self
def apply_complex_function(self, function: Callable[[complex], complex], **kwargs) -> Self:
def R3_func(point):
x, y, z = point
xy_complex = function(complex(x, y))
return [
xy_complex.real,
xy_complex.imag,
z
]
return self.apply_function(R3_func, **kwargs)
def wag(
self,
direction: Vect3 = RIGHT,
axis: Vect3 = DOWN,
wag_factor: float = 1.0
) -> Self:
for mob in self.family_members_with_points():
alphas = np.dot(mob.get_points(), np.transpose(axis))
alphas -= min(alphas)
alphas /= max(alphas)
alphas = alphas**wag_factor
mob.set_points(mob.get_points() + np.dot(
alphas.reshape((len(alphas), 1)),
np.array(direction).reshape((1, mob.dim))
))
return self
# Positioning methods
def center(self) -> Self:
self.shift(-self.get_center())
return self
def align_on_border(
self,
direction: Vect3,
buff: float = DEFAULT_MOBJECT_TO_EDGE_BUFFER
) -> Self:
"""
Direction just needs to be a vector pointing towards side or
corner in the 2d plane.
"""
target_point = np.sign(direction) * (FRAME_X_RADIUS, FRAME_Y_RADIUS, 0)
point_to_align = self.get_bounding_box_point(direction)
shift_val = target_point - point_to_align - buff * np.array(direction)
shift_val = shift_val * abs(np.sign(direction))
self.shift(shift_val)
return self
def to_corner(
self,
corner: Vect3 = LEFT + DOWN,
buff: float = DEFAULT_MOBJECT_TO_EDGE_BUFFER
) -> Self:
return self.align_on_border(corner, buff)
def to_edge(
self,
edge: Vect3 = LEFT,
buff: float = DEFAULT_MOBJECT_TO_EDGE_BUFFER
) -> Self:
return self.align_on_border(edge, buff)
def next_to(
self,
mobject_or_point: Mobject | Vect3,
direction: Vect3 = RIGHT,
buff: float = DEFAULT_MOBJECT_TO_MOBJECT_BUFFER,
aligned_edge: Vect3 = ORIGIN,
submobject_to_align: Mobject | None = None,
index_of_submobject_to_align: int | slice | None = None,
coor_mask: Vect3 = np.array([1, 1, 1]),
) -> Self:
if isinstance(mobject_or_point, Mobject):
mob = mobject_or_point
if index_of_submobject_to_align is not None:
target_aligner = mob[index_of_submobject_to_align]
else:
target_aligner = mob
target_point = target_aligner.get_bounding_box_point(
aligned_edge + direction
)
else:
target_point = mobject_or_point
if submobject_to_align is not None:
aligner = submobject_to_align
elif index_of_submobject_to_align is not None:
aligner = self[index_of_submobject_to_align]
else:
aligner = self
point_to_align = aligner.get_bounding_box_point(aligned_edge - direction)
self.shift((target_point - point_to_align + buff * direction) * coor_mask)
return self
def shift_onto_screen(self, **kwargs) -> Self:
space_lengths = [FRAME_X_RADIUS, FRAME_Y_RADIUS]
for vect in UP, DOWN, LEFT, RIGHT:
dim = np.argmax(np.abs(vect))
buff = kwargs.get("buff", DEFAULT_MOBJECT_TO_EDGE_BUFFER)
max_val = space_lengths[dim] - buff
edge_center = self.get_edge_center(vect)
if np.dot(edge_center, vect) > max_val:
self.to_edge(vect, **kwargs)
return self
def is_off_screen(self) -> bool:
if self.get_left()[0] > FRAME_X_RADIUS:
return True
if self.get_right()[0] < -FRAME_X_RADIUS:
return True
if self.get_bottom()[1] > FRAME_Y_RADIUS:
return True
if self.get_top()[1] < -FRAME_Y_RADIUS:
return True
return False
def stretch_about_point(self, factor: float, dim: int, point: Vect3) -> Self:
return self.stretch(factor, dim, about_point=point)
def stretch_in_place(self, factor: float, dim: int) -> Self:
# Now redundant with stretch
return self.stretch(factor, dim)
def rescale_to_fit(self, length: float, dim: int, stretch: bool = False, **kwargs) -> Self:
old_length = self.length_over_dim(dim)
if old_length == 0:
return self
if stretch:
self.stretch(length / old_length, dim, **kwargs)
else:
self.scale(length / old_length, **kwargs)
return self
def stretch_to_fit_width(self, width: float, **kwargs) -> Self:
return self.rescale_to_fit(width, 0, stretch=True, **kwargs)
def stretch_to_fit_height(self, height: float, **kwargs) -> Self:
return self.rescale_to_fit(height, 1, stretch=True, **kwargs)
def stretch_to_fit_depth(self, depth: float, **kwargs) -> Self:
return self.rescale_to_fit(depth, 2, stretch=True, **kwargs)
def set_width(self, width: float, stretch: bool = False, **kwargs) -> Self:
return self.rescale_to_fit(width, 0, stretch=stretch, **kwargs)
def set_height(self, height: float, stretch: bool = False, **kwargs) -> Self:
return self.rescale_to_fit(height, 1, stretch=stretch, **kwargs)
def set_depth(self, depth: float, stretch: bool = False, **kwargs) -> Self:
return self.rescale_to_fit(depth, 2, stretch=stretch, **kwargs)
def set_max_width(self, max_width: float, **kwargs) -> Self:
if self.get_width() > max_width:
self.set_width(max_width, **kwargs)
return self
def set_max_height(self, max_height: float, **kwargs) -> Self:
if self.get_height() > max_height:
self.set_height(max_height, **kwargs)
return self
def set_max_depth(self, max_depth: float, **kwargs) -> Self:
if self.get_depth() > max_depth:
self.set_depth(max_depth, **kwargs)
return self
def set_min_width(self, min_width: float, **kwargs) -> Self:
if self.get_width() < min_width:
self.set_width(min_width, **kwargs)
return self
def set_min_height(self, min_height: float, **kwargs) -> Self:
if self.get_height() < min_height:
self.set_height(min_height, **kwargs)
return self
def set_min_depth(self, min_depth: float, **kwargs) -> Self:
if self.get_depth() < min_depth:
self.set_depth(min_depth, **kwargs)
return self
def set_shape(
self,
width: Optional[float] = None,
height: Optional[float] = None,
depth: Optional[float] = None,
**kwargs
) -> Self:
if width is not None:
self.set_width(width, stretch=True, **kwargs)
if height is not None:
self.set_height(height, stretch=True, **kwargs)
if depth is not None:
self.set_depth(depth, stretch=True, **kwargs)
return self
def set_coord(self, value: float, dim: int, direction: Vect3 = ORIGIN) -> Self:
curr = self.get_coord(dim, direction)
shift_vect = np.zeros(self.dim)
shift_vect[dim] = value - curr
self.shift(shift_vect)
return self
def set_x(self, x: float, direction: Vect3 = ORIGIN) -> Self:
return self.set_coord(x, 0, direction)
def set_y(self, y: float, direction: Vect3 = ORIGIN) -> Self:
return self.set_coord(y, 1, direction)
def set_z(self, z: float, direction: Vect3 = ORIGIN) -> Self:
return self.set_coord(z, 2, direction)
def set_z_index(self, z_index: int) -> Self:
self.z_index = z_index
return self
def space_out_submobjects(self, factor: float = 1.5, **kwargs) -> Self:
self.scale(factor, **kwargs)
for submob in self.submobjects:
submob.scale(1. / factor)
return self
def move_to(
self,
point_or_mobject: Mobject | Vect3,
aligned_edge: Vect3 = ORIGIN,
coor_mask: Vect3 = np.array([1, 1, 1])
) -> Self:
if isinstance(point_or_mobject, Mobject):
target = point_or_mobject.get_bounding_box_point(aligned_edge)
else:
target = point_or_mobject
point_to_align = self.get_bounding_box_point(aligned_edge)
self.shift((target - point_to_align) * coor_mask)
return self
def replace(self, mobject: Mobject, dim_to_match: int = 0, stretch: bool = False) -> Self:
if not mobject.get_num_points() and not mobject.submobjects:
self.scale(0)
return self
if stretch:
for i in range(self.dim):
self.rescale_to_fit(mobject.length_over_dim(i), i, stretch=True)
else:
self.rescale_to_fit(
mobject.length_over_dim(dim_to_match),
dim_to_match,
stretch=False
)
self.shift(mobject.get_center() - self.get_center())
return self
def surround(
self,
mobject: Mobject,
dim_to_match: int = 0,
stretch: bool = False,
buff: float = MED_SMALL_BUFF
) -> Self:
self.replace(mobject, dim_to_match, stretch)
length = mobject.length_over_dim(dim_to_match)
self.scale((length + buff) / length)
return self
def put_start_and_end_on(self, start: Vect3, end: Vect3) -> Self:
curr_start, curr_end = self.get_start_and_end()
curr_vect = curr_end - curr_start
if np.all(curr_vect == 0):
raise Exception("Cannot position endpoints of closed loop")
target_vect = end - start
self.scale(
get_norm(target_vect) / get_norm(curr_vect),
about_point=curr_start,
)
self.rotate(
angle_of_vector(target_vect) - angle_of_vector(curr_vect),
)
self.rotate(
np.arctan2(curr_vect[2], get_norm(curr_vect[:2])) - np.arctan2(target_vect[2], get_norm(target_vect[:2])),
axis=np.array([-target_vect[1], target_vect[0], 0]),
)
self.shift(start - self.get_start())
return self
# Color functions
@affects_family_data
def set_rgba_array(
self,
rgba_array: npt.ArrayLike,
name: str = "rgba",
recurse: bool = False
) -> Self:
for mob in self.get_family(recurse):
data = mob.data if mob.get_num_points() > 0 else mob._data_defaults
data[name][:] = rgba_array
return self
def set_color_by_rgba_func(
self,
func: Callable[[Vect3], Vect4],
recurse: bool = True
) -> Self:
"""
Func should take in a point in R3 and output an rgba value
"""
for mob in self.get_family(recurse):
rgba_array = [func(point) for point in mob.get_points()]
mob.set_rgba_array(rgba_array)
return self
def set_color_by_rgb_func(
self,
func: Callable[[Vect3], Vect3],
opacity: float = 1,
recurse: bool = True
) -> Self:
"""
Func should take in a point in R3 and output an rgb value
"""
for mob in self.get_family(recurse):
rgba_array = [[*func(point), opacity] for point in mob.get_points()]
mob.set_rgba_array(rgba_array)
return self
@affects_family_data
def set_rgba_array_by_color(
self,
color: ManimColor | Iterable[ManimColor] | None = None,
opacity: float | Iterable[float] | None = None,
name: str = "rgba",
recurse: bool = True
) -> Self:
for mob in self.get_family(recurse):
data = mob.data if mob.has_points() > 0 else mob._data_defaults
if color is not None:
rgbs = np.array(list(map(color_to_rgb, listify(color))))
if 1 < len(rgbs):
rgbs = resize_with_interpolation(rgbs, len(data))
data[name][:, :3] = rgbs
if opacity is not None:
if not isinstance(opacity, (float, int)):
opacity = resize_with_interpolation(np.array(opacity), len(data))
data[name][:, 3] = opacity
return self
def set_color(
self,
color: ManimColor | Iterable[ManimColor] | None,
opacity: float | Iterable[float] | None = None,
recurse: bool = True
) -> Self:
self.set_rgba_array_by_color(color, opacity, recurse=False)
# Recurse to submobjects differently from how set_rgba_array_by_color
# in case they implement set_color differently
if recurse:
for submob in self.submobjects:
submob.set_color(color, recurse=True)
return self
def set_opacity(
self,
opacity: float | Iterable[float] | None,
recurse: bool = True
) -> Self:
self.set_rgba_array_by_color(color=None, opacity=opacity, recurse=False)
if recurse:
for submob in self.submobjects:
submob.set_opacity(opacity, recurse=True)
return self
def get_color(self) -> str:
return rgb_to_hex(self.data["rgba"][0, :3])
def get_opacity(self) -> float:
return float(self.data["rgba"][0, 3])
def get_opacities(self) -> float:
return self.data["rgba"][:, 3]
def set_color_by_gradient(self, *colors: ManimColor) -> Self:
if self.has_points():
self.set_color(colors)
else:
self.set_submobject_colors_by_gradient(*colors)
return self
def set_submobject_colors_by_gradient(self, *colors: ManimColor) -> Self:
if len(colors) == 0:
raise Exception("Need at least one color")
elif len(colors) == 1:
return self.set_color(*colors)
# mobs = self.family_members_with_points()
mobs = self.submobjects
new_colors = color_gradient(colors, len(mobs))
for mob, color in zip(mobs, new_colors):
mob.set_color(color)
return self
def fade(self, darkness: float = 0.5, recurse: bool = True) -> Self:
self.set_opacity(1.0 - darkness, recurse=recurse)
def get_shading(self) -> np.ndarray:
return self.uniforms["shading"]
def set_shading(
self,
reflectiveness: float | None = None,
gloss: float | None = None,
shadow: float | None = None,
recurse: bool = True
) -> Self:
"""
Larger reflectiveness makes things brighter when facing the light
Larger shadow makes faces opposite the light darker
Makes parts bright where light gets reflected toward the camera
"""
for mob in self.get_family(recurse):
shading = mob.uniforms["shading"]
for i, value in enumerate([reflectiveness, gloss, shadow]):
if value is not None:
shading[i] = value
mob.set_uniform(shading=shading, recurse=False)
return self
def get_reflectiveness(self) -> float:
return self.get_shading()[0]
def get_gloss(self) -> float:
return self.get_shading()[1]
def get_shadow(self) -> float:
return self.get_shading()[2]
def set_reflectiveness(self, reflectiveness: float, recurse: bool = True) -> Self:
self.set_shading(reflectiveness=reflectiveness, recurse=recurse)
return self
def set_gloss(self, gloss: float, recurse: bool = True) -> Self:
self.set_shading(gloss=gloss, recurse=recurse)
return self
def set_shadow(self, shadow: float, recurse: bool = True) -> Self:
self.set_shading(shadow=shadow, recurse=recurse)
return self
# Background rectangle
def add_background_rectangle(
self,
color: ManimColor | None = None,
opacity: float = 1.0,
**kwargs
) -> Self:
from manimlib.mobject.shape_matchers import BackgroundRectangle
self.background_rectangle = BackgroundRectangle(
self, color=color,
fill_opacity=opacity,
**kwargs
)
self.add_to_back(self.background_rectangle)
return self
def add_background_rectangle_to_submobjects(self, **kwargs) -> Self:
for submobject in self.submobjects:
submobject.add_background_rectangle(**kwargs)
return self
def add_background_rectangle_to_family_members_with_points(self, **kwargs) -> Self:
for mob in self.family_members_with_points():
mob.add_background_rectangle(**kwargs)
return self
# Getters
def get_bounding_box_point(self, direction: Vect3) -> Vect3:
bb = self.get_bounding_box()
indices = (np.sign(direction) + 1).astype(int)
return np.array([
bb[indices[i]][i]
for i in range(3)
])
def get_edge_center(self, direction: Vect3) -> Vect3:
return self.get_bounding_box_point(direction)
def get_corner(self, direction: Vect3) -> Vect3:
return self.get_bounding_box_point(direction)
def get_all_corners(self):
bb = self.get_bounding_box()
return np.array([
[bb[indices[-i + 1]][i] for i in range(3)]
for indices in it.product([0, 2], repeat=3)
])
def get_center(self) -> Vect3:
return self.get_bounding_box()[1]
def get_center_of_mass(self) -> Vect3:
return self.get_all_points().mean(0)
def get_boundary_point(self, direction: Vect3) -> Vect3:
all_points = self.get_all_points()
boundary_directions = all_points - self.get_center()
norms = np.linalg.norm(boundary_directions, axis=1)
boundary_directions /= np.repeat(norms, 3).reshape((len(norms), 3))
index = np.argmax(np.dot(boundary_directions, np.array(direction).T))
return all_points[index]
def get_continuous_bounding_box_point(self, direction: Vect3) -> Vect3:
dl, center, ur = self.get_bounding_box()
corner_vect = (ur - center)
return center + direction / np.max(np.abs(np.true_divide(
direction, corner_vect,
out=np.zeros(len(direction)),
where=((corner_vect) != 0)
)))
def get_top(self) -> Vect3:
return self.get_edge_center(UP)
def get_bottom(self) -> Vect3:
return self.get_edge_center(DOWN)
def get_right(self) -> Vect3:
return self.get_edge_center(RIGHT)
def get_left(self) -> Vect3:
return self.get_edge_center(LEFT)
def get_zenith(self) -> Vect3:
return self.get_edge_center(OUT)
def get_nadir(self) -> Vect3:
return self.get_edge_center(IN)
def length_over_dim(self, dim: int) -> float:
bb = self.get_bounding_box()
return abs((bb[2] - bb[0])[dim])
def get_width(self) -> float:
return self.length_over_dim(0)
def get_height(self) -> float:
return self.length_over_dim(1)
def get_depth(self) -> float:
return self.length_over_dim(2)
def get_shape(self) -> Tuple[float]:
return tuple(self.length_over_dim(dim) for dim in range(3))
def get_coord(self, dim: int, direction: Vect3 = ORIGIN) -> float:
"""
Meant to generalize get_x, get_y, get_z
"""
return self.get_bounding_box_point(direction)[dim]
def get_x(self, direction=ORIGIN) -> float:
return self.get_coord(0, direction)
def get_y(self, direction=ORIGIN) -> float:
return self.get_coord(1, direction)
def get_z(self, direction=ORIGIN) -> float:
return self.get_coord(2, direction)
def get_start(self) -> Vect3:
self.throw_error_if_no_points()
return self.get_points()[0].copy()
def get_end(self) -> Vect3:
self.throw_error_if_no_points()
return self.get_points()[-1].copy()
def get_start_and_end(self) -> tuple[Vect3, Vect3]:
self.throw_error_if_no_points()
points = self.get_points()
return (points[0].copy(), points[-1].copy())
def point_from_proportion(self, alpha: float) -> Vect3:
points = self.get_points()
i, subalpha = integer_interpolate(0, len(points) - 1, alpha)
return interpolate(points[i], points[i + 1], subalpha)
def pfp(self, alpha):
"""Abbreviation for point_from_proportion"""
return self.point_from_proportion(alpha)
def get_pieces(self, n_pieces: int) -> Group:
template = self.copy()
template.set_submobjects([])
alphas = np.linspace(0, 1, n_pieces + 1)
return Group(*[
template.copy().pointwise_become_partial(
self, a1, a2
)
for a1, a2 in zip(alphas[:-1], alphas[1:])
])
def get_z_index_reference_point(self) -> Vect3:
# TODO, better place to define default z_index_group?
z_index_group = getattr(self, "z_index_group", self)
return z_index_group.get_center()
# Match other mobject properties
def match_color(self, mobject: Mobject) -> Self:
return self.set_color(mobject.get_color())
def match_style(self, mobject: Mobject) -> Self:
self.set_color(mobject.get_color())
self.set_opacity(mobject.get_opacity())
self.set_shading(*mobject.get_shading())
return self
def match_dim_size(self, mobject: Mobject, dim: int, **kwargs) -> Self:
return self.rescale_to_fit(
mobject.length_over_dim(dim), dim,
**kwargs
)
def match_width(self, mobject: Mobject, **kwargs) -> Self:
return self.match_dim_size(mobject, 0, **kwargs)
def match_height(self, mobject: Mobject, **kwargs) -> Self:
return self.match_dim_size(mobject, 1, **kwargs)
def match_depth(self, mobject: Mobject, **kwargs) -> Self:
return self.match_dim_size(mobject, 2, **kwargs)
def match_coord(
self,
mobject_or_point: Mobject | Vect3,
dim: int,
direction: Vect3 = ORIGIN
) -> Self:
if isinstance(mobject_or_point, Mobject):
coord = mobject_or_point.get_coord(dim, direction)
else:
coord = mobject_or_point[dim]
return self.set_coord(coord, dim=dim, direction=direction)
def match_x(
self,
mobject_or_point: Mobject | Vect3,
direction: Vect3 = ORIGIN
) -> Self:
return self.match_coord(mobject_or_point, 0, direction)
def match_y(
self,
mobject_or_point: Mobject | Vect3,
direction: Vect3 = ORIGIN
) -> Self:
return self.match_coord(mobject_or_point, 1, direction)
def match_z(
self,
mobject_or_point: Mobject | Vect3,
direction: Vect3 = ORIGIN
) -> Self:
return self.match_coord(mobject_or_point, 2, direction)
def align_to(
self,
mobject_or_point: Mobject | Vect3,
direction: Vect3 = ORIGIN
) -> Self:
"""
Examples:
mob1.align_to(mob2, UP) moves mob1 vertically so that its
top edge lines ups with mob2's top edge.
mob1.align_to(mob2, alignment_vect = RIGHT) moves mob1
horizontally so that it's center is directly above/below
the center of mob2
"""
if isinstance(mobject_or_point, Mobject):
point = mobject_or_point.get_bounding_box_point(direction)
else:
point = mobject_or_point
for dim in range(self.dim):
if direction[dim] != 0:
self.set_coord(point[dim], dim, direction)
return self
def get_group_class(self):
return Group
# Alignment
def is_aligned_with(self, mobject: Mobject) -> bool:
if len(self.data) != len(mobject.data):
return False
if len(self.submobjects) != len(mobject.submobjects):
return False
return all(
sm1.is_aligned_with(sm2)
for sm1, sm2 in zip(self.submobjects, mobject.submobjects)
)
def align_data_and_family(self, mobject: Mobject) -> Self:
self.align_family(mobject)
self.align_data(mobject)
return self
def align_data(self, mobject: Mobject) -> Self:
for mob1, mob2 in zip(self.get_family(), mobject.get_family()):
mob1.align_points(mob2)
return self
def align_points(self, mobject: Mobject) -> Self:
max_len = max(self.get_num_points(), mobject.get_num_points())
for mob in (self, mobject):
mob.resize_points(max_len, resize_func=resize_preserving_order)
return self
def align_family(self, mobject: Mobject) -> Self:
mob1 = self
mob2 = mobject
n1 = len(mob1)
n2 = len(mob2)
if n1 != n2:
mob1.add_n_more_submobjects(max(0, n2 - n1))
mob2.add_n_more_submobjects(max(0, n1 - n2))
# Recurse
for sm1, sm2 in zip(mob1.submobjects, mob2.submobjects):
sm1.align_family(sm2)
return self
def push_self_into_submobjects(self) -> Self:
copy = self.copy()
copy.set_submobjects([])
self.resize_points(0)
self.add(copy)
return self
def add_n_more_submobjects(self, n: int) -> Self:
if n == 0:
return self
curr = len(self.submobjects)
if curr == 0:
# If empty, simply add n point mobjects
null_mob = self.copy()
null_mob.set_points([self.get_center()])
self.set_submobjects([
null_mob.copy()
for k in range(n)
])
return self
target = curr + n
repeat_indices = (np.arange(target) * curr) // target
split_factors = [
(repeat_indices == i).sum()
for i in range(curr)
]
new_submobs = []
for submob, sf in zip(self.submobjects, split_factors):
new_submobs.append(submob)
for k in range(1, sf):
new_submobs.append(submob.invisible_copy())
self.set_submobjects(new_submobs)
return self
def invisible_copy(self) -> Self:
return self.copy().set_opacity(0)
# Interpolate
def interpolate(
self,
mobject1: Mobject,
mobject2: Mobject,
alpha: float,
path_func: Callable[[np.ndarray, np.ndarray, float], np.ndarray] = straight_path
) -> Self:
keys = [k for k in self.data.dtype.names if k not in self.locked_data_keys]
if keys:
self.note_changed_data()
for key in keys:
md1 = mobject1.data[key]
md2 = mobject2.data[key]
if key in self.const_data_keys:
md1 = md1[0]
md2 = md2[0]
if key in self.pointlike_data_keys:
self.data[key] = path_func(md1, md2, alpha)
else:
self.data[key] = (1 - alpha) * md1 + alpha * md2
for key in self.uniforms:
if key in self.locked_uniform_keys:
continue
if key not in mobject1.uniforms or key not in mobject2.uniforms:
continue
self.uniforms[key] = (1 - alpha) * mobject1.uniforms[key] + alpha * mobject2.uniforms[key]
self.bounding_box[:] = path_func(mobject1.bounding_box, mobject2.bounding_box, alpha)
return self
def pointwise_become_partial(self, mobject, a, b) -> Self:
"""
Set points in such a way as to become only
part of mobject.
Inputs 0 <= a < b <= 1 determine what portion
of mobject to become.
"""
# To be implemented in subclass
return self
# Locking data
def lock_data(self, keys: Iterable[str]) -> Self:
"""
To speed up some animations, particularly transformations,
it can be handy to acknowledge which pieces of data
won't change during the animation so that calls to
interpolate can skip this, and so that it's not
read into the shader_wrapper objects needlessly
"""
if self.has_updaters():
return self
self.locked_data_keys = set(keys)
return self
def lock_uniforms(self, keys: Iterable[str]) -> Self:
if self.has_updaters():
return self
self.locked_uniform_keys = set(keys)
return self
def lock_matching_data(self, mobject1: Mobject, mobject2: Mobject) -> Self:
tuples = zip(
self.get_family(),
mobject1.get_family(),
mobject2.get_family(),
)
for sm, sm1, sm2 in tuples:
if not sm.data.dtype == sm1.data.dtype == sm2.data.dtype:
continue
sm.lock_data(
key for key in sm.data.dtype.names
if arrays_match(sm1.data[key], sm2.data[key])
)
sm.lock_uniforms(
key for key in self.uniforms
if all(listify(mobject1.uniforms.get(key, 0) == mobject2.uniforms.get(key, 0)))
)
sm.const_data_keys = set(
key for key in sm.data.dtype.names
if key not in sm.locked_data_keys
if all(
array_is_constant(mob.data[key])
for mob in (sm, sm1, sm2)
)
)
return self
def unlock_data(self) -> Self:
for mob in self.get_family():
mob.locked_data_keys = set()
mob.const_data_keys = set()
mob.locked_uniform_keys = set()
return self
# Operations touching shader uniforms
@staticmethod
def affects_shader_info_id(func: Callable[..., T]) -> Callable[..., T]:
@wraps(func)
def wrapper(self, *args, **kwargs):
result = func(self, *args, **kwargs)
self.refresh_shader_wrapper_id()
return result
return wrapper
@affects_shader_info_id
def set_uniform(self, recurse: bool = True, **new_uniforms) -> Self:
for mob in self.get_family(recurse):
mob.uniforms.update(new_uniforms)
return self
@affects_shader_info_id
def fix_in_frame(self, recurse: bool = True) -> Self:
self.set_uniform(recurse, is_fixed_in_frame=1.0)
return self
@affects_shader_info_id
def unfix_from_frame(self, recurse: bool = True) -> Self:
self.set_uniform(recurse, is_fixed_in_frame=0.0)
return self
def is_fixed_in_frame(self) -> bool:
return bool(self.uniforms["is_fixed_in_frame"])
@affects_shader_info_id
def apply_depth_test(self, recurse: bool = True) -> Self:
for mob in self.get_family(recurse):
mob.depth_test = True
return self
@affects_shader_info_id
def deactivate_depth_test(self, recurse: bool = True) -> Self:
for mob in self.get_family(recurse):
mob.depth_test = False
return self
def set_clip_plane(
self,
vect: Vect3 | None = None,
threshold: float | None = None,
recurse=True
) -> Self:
for submob in self.get_family(recurse):
if vect is not None:
submob.uniforms["clip_plane"][:3] = vect
if threshold is not None:
submob.uniforms["clip_plane"][3] = threshold
return self
def deactivate_clip_plane(self) -> Self:
self.uniforms["clip_plane"][:] = 0
return self
# Shader code manipulation
@affects_data
def replace_shader_code(self, old: str, new: str) -> Self:
for mob in self.get_family():
mob.shader_code_replacements[old] = new
mob.shader_wrapper = None
return self
def set_color_by_code(self, glsl_code: str) -> Self:
"""
Takes a snippet of code and inserts it into a
context which has the following variables:
vec4 color, vec3 point, vec3 unit_normal.
The code should change the color variable
"""
self.replace_shader_code(
"///// INSERT COLOR FUNCTION HERE /////",
glsl_code
)
return self
def set_color_by_xyz_func(
self,
glsl_snippet: str,
min_value: float = -5.0,
max_value: float = 5.0,
colormap: str = "viridis"
) -> Self:
"""
Pass in a glsl expression in terms of x, y and z which returns
a float.
"""
# TODO, add a version of this which changes the point data instead
# of the shader code
for char in "xyz":
glsl_snippet = glsl_snippet.replace(char, "point." + char)
rgb_list = get_colormap_list(colormap)
self.set_color_by_code(
"color.rgb = float_to_color({}, {}, {}, {});".format(
glsl_snippet,
float(min_value),
float(max_value),
get_colormap_code(rgb_list)
)
)
return self
# For shader data
def init_shader_wrapper(self, ctx: Context):
self.shader_wrapper = ShaderWrapper(
ctx=ctx,
vert_data=self.data,
shader_folder=self.shader_folder,
mobject_uniforms=self.uniforms,
texture_paths=self.texture_paths,
depth_test=self.depth_test,
render_primitive=self.render_primitive,
code_replacements=self.shader_code_replacements,
)
def refresh_shader_wrapper_id(self):
for submob in self.get_family():
if submob.shader_wrapper is not None:
submob.shader_wrapper.depth_test = submob.depth_test
submob.shader_wrapper.refresh_id()
for mob in (self, *self.get_ancestors()):
mob._data_has_changed = True
return self
def get_shader_wrapper(self, ctx: Context) -> ShaderWrapper:
if self.shader_wrapper is None:
self.init_shader_wrapper(ctx)
return self.shader_wrapper
def get_shader_wrapper_list(self, ctx: Context) -> list[ShaderWrapper]:
family = self.family_members_with_points()
batches = batch_by_property(family, lambda sm: sm.get_shader_wrapper(ctx).get_id())
result = []
for submobs, sid in batches:
shader_wrapper = submobs[0].shader_wrapper
data_list = [sm.get_shader_data() for sm in submobs]
shader_wrapper.read_in(data_list)
result.append(shader_wrapper)
return result
def get_shader_data(self) -> np.ndarray:
indices = self.get_shader_vert_indices()
if indices is not None:
return self.data[indices]
else:
return self.data
def get_uniforms(self):
return self.uniforms
def get_shader_vert_indices(self) -> Optional[np.ndarray]:
return None
def render(self, ctx: Context, camera_uniforms: dict):
if self._data_has_changed:
self.shader_wrappers = self.get_shader_wrapper_list(ctx)
self._data_has_changed = False
for shader_wrapper in self.shader_wrappers:
shader_wrapper.update_program_uniforms(camera_uniforms)
shader_wrapper.pre_render()
shader_wrapper.render()
# Event Handlers
"""
Event handling follows the Event Bubbling model of DOM in javascript.
Return false to stop the event bubbling.
To learn more visit https://www.quirksmode.org/js/events_order.html
Event Callback Argument is a callable function taking two arguments:
1. Mobject
2. EventData
"""
def init_event_listners(self):
self.event_listners: list[EventListener] = []
def add_event_listner(
self,
event_type: EventType,
event_callback: Callable[[Mobject, dict[str]]]
):
event_listner = EventListener(self, event_type, event_callback)
self.event_listners.append(event_listner)
EVENT_DISPATCHER.add_listner(event_listner)
return self
def remove_event_listner(
self,
event_type: EventType,
event_callback: Callable[[Mobject, dict[str]]]
):
event_listner = EventListener(self, event_type, event_callback)
while event_listner in self.event_listners:
self.event_listners.remove(event_listner)
EVENT_DISPATCHER.remove_listner(event_listner)
return self
def clear_event_listners(self, recurse: bool = True):
self.event_listners = []
if recurse:
for submob in self.submobjects:
submob.clear_event_listners(recurse=recurse)
return self
def get_event_listners(self):
return self.event_listners
def get_family_event_listners(self):
return list(it.chain(*[sm.get_event_listners() for sm in self.get_family()]))
def get_has_event_listner(self):
return any(
mob.get_event_listners()
for mob in self.get_family()
)
def add_mouse_motion_listner(self, callback):
self.add_event_listner(EventType.MouseMotionEvent, callback)
def remove_mouse_motion_listner(self, callback):
self.remove_event_listner(EventType.MouseMotionEvent, callback)
def add_mouse_press_listner(self, callback):
self.add_event_listner(EventType.MousePressEvent, callback)
def remove_mouse_press_listner(self, callback):
self.remove_event_listner(EventType.MousePressEvent, callback)
def add_mouse_release_listner(self, callback):
self.add_event_listner(EventType.MouseReleaseEvent, callback)
def remove_mouse_release_listner(self, callback):
self.remove_event_listner(EventType.MouseReleaseEvent, callback)
def add_mouse_drag_listner(self, callback):
self.add_event_listner(EventType.MouseDragEvent, callback)
def remove_mouse_drag_listner(self, callback):
self.remove_event_listner(EventType.MouseDragEvent, callback)
def add_mouse_scroll_listner(self, callback):
self.add_event_listner(EventType.MouseScrollEvent, callback)
def remove_mouse_scroll_listner(self, callback):
self.remove_event_listner(EventType.MouseScrollEvent, callback)
def add_key_press_listner(self, callback):
self.add_event_listner(EventType.KeyPressEvent, callback)
def remove_key_press_listner(self, callback):
self.remove_event_listner(EventType.KeyPressEvent, callback)
def add_key_release_listner(self, callback):
self.add_event_listner(EventType.KeyReleaseEvent, callback)
def remove_key_release_listner(self, callback):
self.remove_event_listner(EventType.KeyReleaseEvent, callback)
# Errors
def throw_error_if_no_points(self):
if not self.has_points():
message = "Cannot call Mobject.{} " +\
"for a Mobject with no points"
caller_name = sys._getframe(1).f_code.co_name
raise Exception(message.format(caller_name))
class Group(Mobject, Generic[SubmobjectType]):
def __init__(self, *mobjects: SubmobjectType | Iterable[SubmobjectType], **kwargs):
super().__init__(**kwargs)
self._ingest_args(*mobjects)
def _ingest_args(self, *args: Mobject | Iterable[Mobject]):
if len(args) == 0:
return
if all(isinstance(mob, Mobject) for mob in args):
self.add(*args)
elif isinstance(args[0], Iterable):
self.add(*args[0])
else:
raise Exception(f"Invalid argument to Group of type {type(args[0])}")
def __add__(self, other: Mobject | Group) -> Self:
assert isinstance(other, Mobject)
return self.add(other)
# This is just here to make linters happy with references to things like Group(...)[0]
def __getitem__(self, index) -> SubmobjectType:
return super().__getitem__(index)
class Point(Mobject):
def __init__(
self,
location: Vect3 = ORIGIN,
artificial_width: float = 1e-6,
artificial_height: float = 1e-6,
**kwargs
):
self.artificial_width = artificial_width
self.artificial_height = artificial_height
super().__init__(**kwargs)
self.set_location(location)
def get_width(self) -> float:
return self.artificial_width
def get_height(self) -> float:
return self.artificial_height
def get_location(self) -> Vect3:
return self.get_points()[0].copy()
def get_bounding_box_point(self, *args, **kwargs) -> Vect3:
return self.get_location()
def set_location(self, new_loc: npt.ArrayLike) -> Self:
self.set_points(np.array(new_loc, ndmin=2, dtype=float))
return self
class _AnimationBuilder:
def __init__(self, mobject: Mobject):
self.mobject = mobject
self.overridden_animation = None
self.mobject.generate_target()
self.is_chaining = False
self.methods: list[Callable] = []
self.anim_args = {}
self.can_pass_args = True
def __getattr__(self, method_name: str):
method = getattr(self.mobject.target, method_name)
self.methods.append(method)
has_overridden_animation = hasattr(method, "_override_animate")
if (self.is_chaining and has_overridden_animation) or self.overridden_animation:
raise NotImplementedError(
"Method chaining is currently not supported for " + \
"overridden animations"
)
def update_target(*method_args, **method_kwargs):
if has_overridden_animation:
self.overridden_animation = method._override_animate(
self.mobject, *method_args, **method_kwargs
)
else:
method(*method_args, **method_kwargs)
return self
self.is_chaining = True
return update_target
def __call__(self, **kwargs):
return self.set_anim_args(**kwargs)
def set_anim_args(self, **kwargs):
'''
You can change the args of :class:`~manimlib.animation.transform.Transform`, such as
- ``run_time``
- ``time_span``
- ``rate_func``
- ``lag_ratio``
- ``path_arc``
- ``path_func``
and so on.
'''
if not self.can_pass_args:
raise ValueError(
"Animation arguments can only be passed by calling ``animate`` " + \
"or ``set_anim_args`` and can only be passed once",
)
self.anim_args = kwargs
self.can_pass_args = False
return self
def build(self):
from manimlib.animation.transform import _MethodAnimation
if self.overridden_animation:
return self.overridden_animation
return _MethodAnimation(self.mobject, self.methods, **self.anim_args)
def override_animate(method):
def decorator(animation_method):
method._override_animate = animation_method
return animation_method
return decorator
class _UpdaterBuilder:
def __init__(self, mobject: Mobject):
self.mobject = mobject
def __getattr__(self, method_name: str):
def add_updater(*method_args, **method_kwargs):
self.mobject.add_updater(
lambda m: getattr(m, method_name)(*method_args, **method_kwargs)
)
return self
return add_updater
class _FunctionalUpdaterBuilder:
def __init__(self, mobject: Mobject):
self.mobject = mobject
def __getattr__(self, method_name: str):
def add_updater(*method_args, **method_kwargs):
self.mobject.add_updater(
lambda m: getattr(m, method_name)(
*(arg() for arg in method_args),
**{
key: value()
for key, value in method_kwargs.items()
}
)
)
return self
return add_updater