3b1b-manim/manimlib/utils/iterables.py
2024-09-21 12:15:29 -04:00

173 lines
4.7 KiB
Python

from __future__ import annotations
from colour import Color
import numpy as np
import random
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from typing import Callable, Iterable, Sequence, TypeVar
T = TypeVar("T")
S = TypeVar("S")
def remove_list_redundancies(lst: Sequence[T]) -> list[T]:
"""
Remove duplicate elements while preserving order.
Keeps the last occurrence of each element
"""
return list(reversed(dict.fromkeys(reversed(lst))))
def list_update(l1: Iterable[T], l2: Iterable[T]) -> list[T]:
"""
Used instead of list(set(l1).update(l2)) to maintain order,
making sure duplicates are removed from l1, not l2.
"""
return remove_list_redundancies([*l1, *l2])
def list_difference_update(l1: Iterable[T], l2: Iterable[T]) -> list[T]:
return [e for e in l1 if e not in l2]
def adjacent_n_tuples(objects: Sequence[T], n: int) -> zip[tuple[T, ...]]:
return zip(*[
[*objects[k:], *objects[:k]]
for k in range(n)
])
def adjacent_pairs(objects: Sequence[T]) -> zip[tuple[T, T]]:
return adjacent_n_tuples(objects, 2)
def batch_by_property(
items: Iterable[T],
property_func: Callable[[T], S]
) -> list[tuple[T, S]]:
"""
Takes in a list, and returns a list of tuples, (batch, prop)
such that all items in a batch have the same output when
put into property_func, and such that chaining all these
batches together would give the original list (i.e. order is
preserved)
"""
batch_prop_pairs = []
curr_batch = []
curr_prop = None
for item in items:
prop = property_func(item)
if prop != curr_prop:
# Add current batch
if len(curr_batch) > 0:
batch_prop_pairs.append((curr_batch, curr_prop))
# Redefine curr
curr_prop = prop
curr_batch = [item]
else:
curr_batch.append(item)
if len(curr_batch) > 0:
batch_prop_pairs.append((curr_batch, curr_prop))
return batch_prop_pairs
def listify(obj: object) -> list:
if isinstance(obj, str):
return [obj]
try:
return list(obj)
except TypeError:
return [obj]
def shuffled(iterable: Iterable) -> list:
as_list = list(iterable)
random.shuffle(as_list)
return as_list
def resize_array(nparray: np.ndarray, length: int) -> np.ndarray:
if len(nparray) == length:
return nparray
return np.resize(nparray, (length, *nparray.shape[1:]))
def resize_preserving_order(nparray: np.ndarray, length: int) -> np.ndarray:
if len(nparray) == 0:
return np.resize(nparray, length)
if len(nparray) == length:
return nparray
indices = np.arange(length) * len(nparray) // length
return nparray[indices]
def resize_with_interpolation(nparray: np.ndarray, length: int) -> np.ndarray:
if len(nparray) == length:
return nparray
if len(nparray) == 1 or array_is_constant(nparray):
return nparray[:1].repeat(length, axis=0)
if length == 0:
return np.zeros((0, *nparray.shape[1:]))
cont_indices = np.linspace(0, len(nparray) - 1, length)
return np.array([
(1 - a) * nparray[lh] + a * nparray[rh]
for ci in cont_indices
for lh, rh, a in [(int(ci), int(np.ceil(ci)), ci % 1)]
])
def make_even(
iterable_1: Sequence[T],
iterable_2: Sequence[S]
) -> tuple[Sequence[T], Sequence[S]]:
len1 = len(iterable_1)
len2 = len(iterable_2)
if len1 == len2:
return iterable_1, iterable_2
new_len = max(len1, len2)
return (
[iterable_1[(n * len1) // new_len] for n in range(new_len)],
[iterable_2[(n * len2) // new_len] for n in range(new_len)]
)
def arrays_match(arr1: np.ndarray, arr2: np.ndarray) -> bool:
return arr1.shape == arr2.shape and (arr1 == arr2).all()
def array_is_constant(arr: np.ndarray) -> bool:
return len(arr) > 0 and (arr == arr[0]).all()
def cartesian_product(*arrays: np.ndarray):
"""
Copied from https://stackoverflow.com/a/11146645
"""
la = len(arrays)
dtype = np.result_type(*arrays)
arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
for i, a in enumerate(np.ix_(*arrays)):
arr[..., i] = a
return arr.reshape(-1, la)
def hash_obj(obj: object) -> int:
if isinstance(obj, dict):
return hash(tuple(sorted([
(hash_obj(k), hash_obj(v)) for k, v in obj.items()
])))
if isinstance(obj, set):
return hash(tuple(sorted(hash_obj(e) for e in obj)))
if isinstance(obj, (tuple, list)):
return hash(tuple(hash_obj(e) for e in obj))
if isinstance(obj, Color):
return hash(obj.get_rgb())
return hash(obj)