3b1b-manim/manimlib/camera/camera_frame.py
Grant Sanderson 744e695340
Misc. clean up (#2269)
* Comment tweak

* Directly print traceback

Since the shell.showtraceback is giving some issues

* Make InteracrtiveSceneEmbed into a class

This way it can keep track of it's internal shell; use of get_ipython has a finicky relationship with reloading.

* Move remaining checkpoint_paste logic into scene_embed.py

This involved making a few context managers for Scene: temp_record, temp_skip, temp_progress_bar, which seem useful in and of themselves.

* Change null key to be the empty string

* Ensure temporary svg paths for Text are deleted

* Remove unused dict_ops.py functions

* Remove break_into_partial_movies from file_writer configuration

* Rewrite guarantee_existence using Path

* Clean up SceneFileWriter

It had a number of vestigial functions no longer used, and some setup that could be made more organized.

* Remove --save_pngs CLI arg (which did nothing)

* Add --subdivide CLI arg

* Remove add_extension_if_not_present

* Remove get_sorted_integer_files

* Have find_file return Path

* Minor clean up

* Clean up num_tex_symbols

* Fix find_file

* Minor cleanup for extract_scene.py

* Add preview_frame_while_skipping option to scene config

* Use shell.showtraceback function

* Move keybindings to config, instead of in-place constants

* Replace DEGREES -> DEG
2024-12-12 08:39:54 -08:00

266 lines
8.6 KiB
Python

from __future__ import annotations
import math
import warnings
import numpy as np
from scipy.spatial.transform import Rotation
from manimlib.constants import DEG, RADIANS
from manimlib.constants import FRAME_SHAPE
from manimlib.constants import DOWN, LEFT, ORIGIN, OUT, RIGHT, UP
from manimlib.constants import PI
from manimlib.mobject.mobject import Mobject
from manimlib.utils.space_ops import normalize
from manimlib.utils.simple_functions import clip
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from manimlib.typing import Vect3
class CameraFrame(Mobject):
def __init__(
self,
frame_shape: tuple[float, float] = FRAME_SHAPE,
center_point: Vect3 = ORIGIN,
# Field of view in the y direction
fovy: float = 45 * DEG,
euler_axes: str = "zxz",
# This keeps it ordered first in a scene
z_index=-1,
**kwargs,
):
super().__init__(z_index=z_index, **kwargs)
self.uniforms["orientation"] = Rotation.identity().as_quat()
self.uniforms["fovy"] = fovy
self.default_orientation = Rotation.identity()
self.view_matrix = np.identity(4)
self.id4x4 = np.identity(4)
self.camera_location = OUT # This will be updated by set_points
self.euler_axes = euler_axes
self.set_points(np.array([ORIGIN, LEFT, RIGHT, DOWN, UP]))
self.set_width(frame_shape[0], stretch=True)
self.set_height(frame_shape[1], stretch=True)
self.move_to(center_point)
def set_orientation(self, rotation: Rotation):
self.uniforms["orientation"][:] = rotation.as_quat()
return self
def get_orientation(self):
return Rotation.from_quat(self.uniforms["orientation"])
def make_orientation_default(self):
self.default_orientation = self.get_orientation()
return self
def to_default_state(self):
self.set_shape(*FRAME_SHAPE)
self.center()
self.set_orientation(self.default_orientation)
return self
def get_euler_angles(self) -> np.ndarray:
orientation = self.get_orientation()
if np.isclose(orientation.as_quat(), [0, 0, 0, 1]).all():
return np.zeros(3)
with warnings.catch_warnings():
warnings.simplefilter('ignore', UserWarning) # Ignore UserWarnings
angles = orientation.as_euler(self.euler_axes)[::-1]
# Handle Gimble lock case
if self.euler_axes == "zxz":
if np.isclose(angles[1], 0, atol=1e-2):
angles[0] = angles[0] + angles[2]
angles[2] = 0
if np.isclose(angles[1], PI, atol=1e-2):
angles[0] = angles[0] - angles[2]
angles[2] = 0
return angles
def get_theta(self):
return self.get_euler_angles()[0]
def get_phi(self):
return self.get_euler_angles()[1]
def get_gamma(self):
return self.get_euler_angles()[2]
def get_scale(self):
return self.get_height() / FRAME_SHAPE[1]
def get_inverse_camera_rotation_matrix(self):
return self.get_orientation().as_matrix().T
def get_view_matrix(self, refresh=False):
"""
Returns a 4x4 for the affine transformation mapping a point
into the camera's internal coordinate system
"""
if self._data_has_changed:
shift = self.id4x4.copy()
rotation = self.id4x4.copy()
scale = self.get_scale()
shift[:3, 3] = -self.get_center()
rotation[:3, :3] = self.get_inverse_camera_rotation_matrix()
np.dot(rotation, shift, out=self.view_matrix)
if scale > 0:
self.view_matrix[:3, :4] /= scale
return self.view_matrix
def get_inv_view_matrix(self):
return np.linalg.inv(self.get_view_matrix())
@Mobject.affects_data
def interpolate(self, *args, **kwargs):
super().interpolate(*args, **kwargs)
@Mobject.affects_data
def rotate(self, angle: float, axis: np.ndarray = OUT, **kwargs):
rot = Rotation.from_rotvec(angle * normalize(axis))
self.set_orientation(rot * self.get_orientation())
return self
def set_euler_angles(
self,
theta: float | None = None,
phi: float | None = None,
gamma: float | None = None,
units: float = RADIANS
):
eulers = self.get_euler_angles() # theta, phi, gamma
for i, var in enumerate([theta, phi, gamma]):
if var is not None:
eulers[i] = var * units
if all(eulers == 0):
rot = Rotation.identity()
else:
rot = Rotation.from_euler(self.euler_axes, eulers[::-1])
self.set_orientation(rot)
return self
def increment_euler_angles(
self,
dtheta: float = 0,
dphi: float = 0,
dgamma: float = 0,
units: float = RADIANS
):
angles = self.get_euler_angles()
new_angles = angles + np.array([dtheta, dphi, dgamma]) * units
# Limit range for phi
if self.euler_axes == "zxz":
new_angles[1] = clip(new_angles[1], 0, PI)
elif self.euler_axes == "zxy":
new_angles[1] = clip(new_angles[1], -PI / 2, PI / 2)
new_rot = Rotation.from_euler(self.euler_axes, new_angles[::-1])
self.set_orientation(new_rot)
return self
def set_euler_axes(self, seq: str):
self.euler_axes = seq
def reorient(
self,
theta_degrees: float | None = None,
phi_degrees: float | None = None,
gamma_degrees: float | None = None,
center: Vect3 | tuple[float, float, float] | None = None,
height: float | None = None
):
"""
Shortcut for set_euler_angles, defaulting to taking
in angles in degrees
"""
self.set_euler_angles(theta_degrees, phi_degrees, gamma_degrees, units=DEG)
if center is not None:
self.move_to(np.array(center))
if height is not None:
self.set_height(height)
return self
def set_theta(self, theta: float):
return self.set_euler_angles(theta=theta)
def set_phi(self, phi: float):
return self.set_euler_angles(phi=phi)
def set_gamma(self, gamma: float):
return self.set_euler_angles(gamma=gamma)
def increment_theta(self, dtheta: float, units=RADIANS):
self.increment_euler_angles(dtheta=dtheta, units=units)
return self
def increment_phi(self, dphi: float, units=RADIANS):
self.increment_euler_angles(dphi=dphi, units=units)
return self
def increment_gamma(self, dgamma: float, units=RADIANS):
self.increment_euler_angles(dgamma=dgamma, units=units)
return self
def add_ambient_rotation(self, angular_speed=1 * DEG):
self.add_updater(lambda m, dt: m.increment_theta(angular_speed * dt))
return self
@Mobject.affects_data
def set_focal_distance(self, focal_distance: float):
self.uniforms["fovy"] = 2 * math.atan(0.5 * self.get_height() / focal_distance)
return self
@Mobject.affects_data
def set_field_of_view(self, field_of_view: float):
self.uniforms["fovy"] = field_of_view
return self
def get_shape(self):
return (self.get_width(), self.get_height())
def get_aspect_ratio(self):
width, height = self.get_shape()
return width / height
def get_center(self) -> np.ndarray:
# Assumes first point is at the center
return self.get_points()[0]
def get_width(self) -> float:
points = self.get_points()
return points[2, 0] - points[1, 0]
def get_height(self) -> float:
points = self.get_points()
return points[4, 1] - points[3, 1]
def get_focal_distance(self) -> float:
return 0.5 * self.get_height() / math.tan(0.5 * self.uniforms["fovy"])
def get_field_of_view(self) -> float:
return self.uniforms["fovy"]
def get_implied_camera_location(self) -> np.ndarray:
if self._data_has_changed:
to_camera = self.get_inverse_camera_rotation_matrix()[2]
dist = self.get_focal_distance()
self.camera_location = self.get_center() + dist * to_camera
return self.camera_location
def to_fixed_frame_point(self, point: Vect3, relative: bool = False):
view = self.get_view_matrix()
point4d = [*point, 0 if relative else 1]
return np.dot(point4d, view.T)[:3]
def from_fixed_frame_point(self, point: Vect3, relative: bool = False):
inv_view = self.get_inv_view_matrix()
point4d = [*point, 0 if relative else 1]
return np.dot(point4d, inv_view.T)[:3]