mirror of
https://github.com/3b1b/manim.git
synced 2025-04-13 09:47:07 +00:00
147 lines
No EOL
3.8 KiB
GLSL
147 lines
No EOL
3.8 KiB
GLSL
#version 330
|
|
|
|
uniform vec4 color0;
|
|
uniform vec4 color1;
|
|
uniform vec4 color2;
|
|
uniform vec4 color3;
|
|
uniform vec4 color4;
|
|
|
|
uniform vec2 coef0;
|
|
uniform vec2 coef1;
|
|
uniform vec2 coef2;
|
|
uniform vec2 coef3;
|
|
uniform vec2 coef4;
|
|
uniform vec2 coef5;
|
|
|
|
uniform vec2 root0;
|
|
uniform vec2 root1;
|
|
uniform vec2 root2;
|
|
uniform vec2 root3;
|
|
uniform vec2 root4;
|
|
|
|
uniform float n_roots;
|
|
uniform float n_steps;
|
|
uniform float julia_highlight;
|
|
uniform float saturation_factor;
|
|
uniform float black_for_cycles;
|
|
uniform float is_parameter_space;
|
|
|
|
in vec3 xyz_coords;
|
|
|
|
out vec4 frag_color;
|
|
|
|
#INSERT finalize_color.glsl
|
|
#INSERT complex_functions.glsl
|
|
|
|
const int MAX_DEGREE = 5;
|
|
const float CLOSE_ENOUGH = 1e-3;
|
|
|
|
|
|
vec2 poly(vec2 z, vec2[MAX_DEGREE + 1] coefs){
|
|
vec2 result = vec2(0.0);
|
|
for(int n = 0; n < int(n_roots) + 1; n++){
|
|
result += complex_mult(coefs[n], complex_pow(z, n));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
vec2 dpoly(vec2 z, vec2[MAX_DEGREE + 1] coefs){
|
|
vec2 result = vec2(0.0);
|
|
for(int n = 1; n < int(n_roots) + 1; n++){
|
|
result += n * complex_mult(coefs[n], complex_pow(z, n - 1));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
vec2 seek_root(vec2 z, vec2[MAX_DEGREE + 1] coefs, int max_steps, out float n_iters){
|
|
float last_len;
|
|
float curr_len;
|
|
float threshold = CLOSE_ENOUGH;
|
|
|
|
for(int i = 0; i < max_steps; i++){
|
|
last_len = curr_len;
|
|
n_iters = float(i);
|
|
vec2 step = complex_div(poly(z, coefs), dpoly(z, coefs));
|
|
curr_len = length(step);
|
|
if(curr_len < threshold){
|
|
break;
|
|
}
|
|
z = z - step;
|
|
}
|
|
n_iters -= log(curr_len) / log(threshold);
|
|
|
|
return z;
|
|
}
|
|
|
|
|
|
void main() {
|
|
vec2[MAX_DEGREE + 1] coefs = vec2[MAX_DEGREE + 1](coef0, coef1, coef2, coef3, coef4, coef5);
|
|
vec2[MAX_DEGREE] roots = vec2[MAX_DEGREE](root0, root1, root2, root3, root4);
|
|
vec4[MAX_DEGREE] colors = vec4[MAX_DEGREE](color0, color1, color2, color3, color4);
|
|
|
|
vec2 z = xyz_coords.xy;
|
|
|
|
if(is_parameter_space > 0){
|
|
// In this case, pixel should correspond to one of the roots
|
|
roots[2] = xyz_coords.xy;
|
|
vec2 r0 = roots[0];
|
|
vec2 r1 = roots[1];
|
|
vec2 r2 = roots[2];
|
|
|
|
// It is assumed that the polynomial is cubid...
|
|
coefs[0] = -complex_mult(complex_mult(r0, r1), r2);
|
|
coefs[1] = complex_mult(r0, r1) + complex_mult(r0, r2) + complex_mult(r1, r2);
|
|
coefs[2] = -(r0 + r1 + r2);
|
|
coefs[3] = vec2(1.0, 0.0);
|
|
|
|
// Seed value is always center of the roots
|
|
z = -coefs[2] / 3.0;
|
|
}
|
|
|
|
float n_iters;
|
|
vec2 found_root = seek_root(z, coefs, int(n_steps), n_iters);
|
|
|
|
vec4 color = vec4(0.0);
|
|
float min_dist = 1e10;
|
|
float dist;
|
|
for(int i = 0; i < int(n_roots); i++){
|
|
dist = distance(roots[i], found_root);
|
|
if(dist < min_dist){
|
|
min_dist = dist;
|
|
color = colors[i];
|
|
}
|
|
}
|
|
color *= 1.0 + (0.01 * saturation_factor) * (n_iters - 2 * saturation_factor);
|
|
|
|
if(black_for_cycles > 0 && min_dist > CLOSE_ENOUGH){
|
|
color = vec4(0.0, 0.0, 0.0, 1.0);
|
|
}
|
|
|
|
if(julia_highlight > 0.0){
|
|
float radius = julia_highlight;
|
|
vec2[4] samples = vec2[4](
|
|
z + vec2(radius, 0.0),
|
|
z + vec2(-radius, 0.0),
|
|
z + vec2(0.0, radius),
|
|
z + vec2(0.0, -radius)
|
|
);
|
|
for(int i = 0; i < 4; i++){
|
|
for(int j = 0; j < n_steps; j++){
|
|
vec2 z = samples[i];
|
|
z = z - complex_div(poly(z, coefs), dpoly(z, coefs));
|
|
samples[i] = z;
|
|
}
|
|
}
|
|
float max_dist = 0.0;
|
|
for(int i = 0; i < 4; i++){
|
|
max_dist = max(max_dist, distance(samples[i], samples[(i + 1) % 4]));
|
|
}
|
|
color *= 1.0 * smoothstep(0, 0.1, max_dist);
|
|
}
|
|
|
|
frag_color = finalize_color(
|
|
color,
|
|
xyz_coords,
|
|
vec3(0.0, 0.0, 1.0)
|
|
);
|
|
} |