mirror of
https://github.com/3b1b/manim.git
synced 2025-04-13 09:47:07 +00:00
610 lines
18 KiB
Python
610 lines
18 KiB
Python
import sys
|
|
import os.path
|
|
import cv2
|
|
|
|
from helpers import *
|
|
|
|
from mobject.tex_mobject import TexMobject
|
|
from mobject import Mobject, Group
|
|
from mobject.image_mobject import ImageMobject
|
|
from mobject.vectorized_mobject import *
|
|
|
|
from animation.animation import Animation
|
|
from animation.transform import *
|
|
from animation.simple_animations import *
|
|
from animation.playground import *
|
|
from animation.continual_animation import *
|
|
from topics.geometry import *
|
|
from topics.characters import *
|
|
from topics.functions import *
|
|
from topics.fractals import *
|
|
from topics.number_line import *
|
|
from topics.combinatorics import *
|
|
from topics.numerals import *
|
|
from topics.three_dimensions import *
|
|
from topics.objects import *
|
|
from topics.probability import *
|
|
from topics.complex_numbers import *
|
|
from topics.graph_scene import *
|
|
from topics.common_scenes import *
|
|
from scene import Scene
|
|
from scene.reconfigurable_scene import ReconfigurableScene
|
|
from scene.zoomed_scene import *
|
|
from camera import Camera
|
|
from mobject.svg_mobject import *
|
|
from mobject.tex_mobject import *
|
|
|
|
from nn.network import *
|
|
from nn.part1 import *
|
|
|
|
def get_training_image_group(train_in, train_out):
|
|
image = MNistMobject(train_in)
|
|
image.scale_to_fit_height(1)
|
|
arrow = Vector(RIGHT, color = BLUE, buff = 0)
|
|
output = np.argmax(train_out)
|
|
output_tex = TexMobject(str(output)).scale(1.5)
|
|
result = Group(image, arrow, output_tex)
|
|
result.arrange_submobjects(RIGHT)
|
|
result.to_edge(UP)
|
|
return result
|
|
|
|
########
|
|
|
|
class ShowLastVideo(TeacherStudentsScene):
|
|
def construct(self):
|
|
frame = ScreenRectangle()
|
|
frame.scale_to_fit_height(4.5)
|
|
frame.to_corner(UP+LEFT)
|
|
title = TextMobject("But what \\emph{is} a Neural Network")
|
|
title.move_to(frame)
|
|
title.to_edge(UP)
|
|
frame.next_to(title, DOWN)
|
|
|
|
assumption_words = TextMobject(
|
|
"I assume you've\\\\ watched this"
|
|
)
|
|
assumption_words.move_to(frame)
|
|
assumption_words.to_edge(RIGHT)
|
|
arrow = Arrow(RIGHT, LEFT, color = BLUE)
|
|
arrow.next_to(assumption_words, LEFT)
|
|
|
|
|
|
self.play(
|
|
ShowCreation(frame),
|
|
self.teacher.change, "raise_right_hand"
|
|
)
|
|
self.play(
|
|
Write(title),
|
|
self.get_student_changes(*["thinking"]*3)
|
|
)
|
|
self.play(
|
|
Animation(title),
|
|
GrowArrow(arrow),
|
|
FadeIn(assumption_words)
|
|
)
|
|
self.dither(5)
|
|
|
|
class PreviewLearning(NetworkScene):
|
|
CONFIG = {
|
|
"layer_sizes" : DEFAULT_LAYER_SIZES,
|
|
"network_mob_config" : {
|
|
"neuron_to_neuron_buff" : SMALL_BUFF,
|
|
"layer_to_layer_buff" : 2,
|
|
"edge_stroke_width" : 1,
|
|
"neuron_stroke_color" : WHITE,
|
|
"neuron_stroke_width" : 2,
|
|
"neuron_fill_color" : WHITE,
|
|
"average_shown_activation_of_large_layer" : False,
|
|
"edge_propogation_color" : GREEN,
|
|
"edge_propogation_time" : 2,
|
|
"include_output_labels" : True,
|
|
},
|
|
"n_examples" : 15,
|
|
"max_stroke_width" : 3,
|
|
"stroke_width_exp" : 3,
|
|
"eta" : 3.0,
|
|
"positive_change_color" : average_color(*2*[GREEN] + [YELLOW]),
|
|
"negative_change_color" : average_color(*2*[RED] + [YELLOW]),
|
|
}
|
|
def construct(self):
|
|
self.initialize_network()
|
|
self.add_training_words()
|
|
self.show_training()
|
|
|
|
def initialize_network(self):
|
|
self.network_mob.scale(0.7)
|
|
self.network_mob.to_edge(DOWN)
|
|
self.color_network_edges()
|
|
|
|
def add_training_words(self):
|
|
words = TextMobject("Training in \\\\ progress$\\dots$")
|
|
words.scale(1.5)
|
|
words.to_corner(UP+LEFT)
|
|
|
|
self.add(words)
|
|
|
|
def show_training(self):
|
|
training_data, validation_data, test_data = load_data_wrapper()
|
|
for train_in, train_out in training_data[:self.n_examples]:
|
|
image = get_training_image_group(train_in, train_out)
|
|
self.activate_network(train_in, FadeIn(image))
|
|
self.backprop_one_example(
|
|
train_in, train_out,
|
|
FadeOut(image), self.network_mob.layers.restore
|
|
)
|
|
|
|
def activate_network(self, train_in, *added_anims):
|
|
network_mob = self.network_mob
|
|
layers = network_mob.layers
|
|
layers.save_state()
|
|
activations = self.network.get_activation_of_all_layers(train_in)
|
|
active_layers = [
|
|
self.network_mob.get_active_layer(i, vect)
|
|
for i, vect in enumerate(activations)
|
|
]
|
|
all_edges = VGroup(*it.chain(*network_mob.edge_groups))
|
|
edge_animation = LaggedStart(
|
|
ShowCreationThenDestruction,
|
|
all_edges.copy().set_fill(YELLOW),
|
|
run_time = 1.5,
|
|
lag_ratio = 0.3,
|
|
remover = True,
|
|
)
|
|
layer_animation = Transform(
|
|
VGroup(*layers), VGroup(*active_layers),
|
|
run_time = 1.5,
|
|
submobject_mode = "lagged_start",
|
|
rate_func = None,
|
|
)
|
|
|
|
self.play(edge_animation, layer_animation, *added_anims)
|
|
|
|
def backprop_one_example(self, train_in, train_out, *added_outro_anims):
|
|
network_mob = self.network_mob
|
|
nabla_b, nabla_w = self.network.backprop(train_in, train_out)
|
|
neuron_groups = VGroup(*[
|
|
layer.neurons
|
|
for layer in network_mob.layers[1:]
|
|
])
|
|
delta_neuron_groups = neuron_groups.copy()
|
|
edge_groups = network_mob.edge_groups
|
|
delta_edge_groups = VGroup(*[
|
|
edge_group.copy()
|
|
for edge_group in edge_groups
|
|
])
|
|
tups = zip(
|
|
it.count(), nabla_b, nabla_w,
|
|
delta_neuron_groups, neuron_groups,
|
|
delta_edge_groups, edge_groups
|
|
)
|
|
pc_color = self.positive_change_color
|
|
nc_color = self.negative_change_color
|
|
for i, nb, nw, delta_neurons, neurons, delta_edges, edges in reversed(tups):
|
|
shown_nw = self.get_adjusted_first_matrix(nw)
|
|
if np.max(shown_nw) == 0:
|
|
shown_nw = (2*np.random.random(shown_nw.shape)-1)**5
|
|
max_b = np.max(np.abs(nb))
|
|
max_w = np.max(np.abs(shown_nw))
|
|
for neuron, b in zip(delta_neurons, nb):
|
|
color = nc_color if b > 0 else pc_color
|
|
# neuron.set_fill(color, abs(b)/max_b)
|
|
neuron.set_stroke(color, 3)
|
|
for edge, w in zip(delta_edges.split(), shown_nw.T.flatten()):
|
|
edge.set_stroke(
|
|
nc_color if w > 0 else pc_color,
|
|
3*abs(w)/max_w
|
|
)
|
|
edge.rotate_in_place(np.pi)
|
|
if i == 2:
|
|
delta_edges.submobjects = [
|
|
delta_edges[j]
|
|
for j in np.argsort(shown_nw.T.flatten())
|
|
]
|
|
network = self.network
|
|
network.weights[i] -= self.eta*nw
|
|
network.biases[i] -= self.eta*nb
|
|
|
|
self.play(
|
|
ShowCreation(
|
|
delta_edges, submobject_mode = "all_at_once"
|
|
),
|
|
FadeIn(delta_neurons),
|
|
run_time = 0.5
|
|
)
|
|
edge_groups.save_state()
|
|
self.color_network_edges()
|
|
self.remove(edge_groups)
|
|
self.play(*it.chain(
|
|
[ReplacementTransform(
|
|
edge_groups.saved_state, edge_groups,
|
|
)],
|
|
map(FadeOut, [delta_edge_groups, delta_neuron_groups]),
|
|
added_outro_anims,
|
|
))
|
|
|
|
#####
|
|
|
|
def get_adjusted_first_matrix(self, matrix):
|
|
n = self.network_mob.max_shown_neurons
|
|
if matrix.shape[1] > n:
|
|
half = matrix.shape[1]/2
|
|
return matrix[:,half-n/2:half+n/2]
|
|
else:
|
|
return matrix
|
|
|
|
def color_network_edges(self):
|
|
layers = self.network_mob.layers
|
|
weight_matrices = self.network.weights
|
|
for layer, matrix in zip(layers[1:], weight_matrices):
|
|
matrix = self.get_adjusted_first_matrix(matrix)
|
|
matrix_max = np.max(matrix)
|
|
for neuron, row in zip(layer.neurons, matrix):
|
|
for edge, w in zip(neuron.edges_in, row):
|
|
color = GREEN if w > 0 else RED
|
|
msw = self.max_stroke_width
|
|
swe = self.stroke_width_exp
|
|
sw = msw*(abs(w)/matrix_max)**swe
|
|
sw = min(sw, msw)
|
|
edge.set_stroke(color, sw)
|
|
|
|
class TrainingVsTestData(Scene):
|
|
CONFIG = {
|
|
"n_examples" : 10,
|
|
"n_new_examples_shown" : 10,
|
|
}
|
|
def construct(self):
|
|
self.initialize_data()
|
|
self.introduce_all_data()
|
|
self.subdivide_into_training_and_testing()
|
|
self.scroll_through_much_data()
|
|
|
|
def initialize_data(self):
|
|
training_data, validation_data, test_data = load_data_wrapper()
|
|
self.data = training_data
|
|
self.curr_index = 0
|
|
|
|
def get_examples(self):
|
|
ci = self.curr_index
|
|
self.curr_index += self.n_examples
|
|
group = Group(*it.starmap(
|
|
get_training_image_group,
|
|
self.data[ci:ci+self.n_examples]
|
|
))
|
|
group.arrange_submobjects(DOWN)
|
|
group.scale(0.5)
|
|
return group
|
|
|
|
def introduce_all_data(self):
|
|
training_examples, test_examples = [
|
|
self.get_examples() for x in range(2)
|
|
]
|
|
|
|
training_examples.next_to(ORIGIN, LEFT)
|
|
test_examples.next_to(ORIGIN, RIGHT)
|
|
self.play(
|
|
LaggedStart(FadeIn, training_examples),
|
|
LaggedStart(FadeIn, test_examples),
|
|
)
|
|
|
|
self.training_examples = training_examples
|
|
self.test_examples = test_examples
|
|
|
|
def subdivide_into_training_and_testing(self):
|
|
training_examples = self.training_examples
|
|
test_examples = self.test_examples
|
|
for examples in training_examples, test_examples:
|
|
examples.generate_target()
|
|
training_examples.target.shift(2*LEFT)
|
|
test_examples.target.shift(2*RIGHT)
|
|
|
|
train_brace = Brace(training_examples.target, LEFT)
|
|
train_words = train_brace.get_text("Train on \\\\ these")
|
|
test_brace = Brace(test_examples.target, RIGHT)
|
|
test_words = test_brace.get_text("Test on \\\\ these")
|
|
|
|
bools = [True]*(len(test_examples)-1) + [False]
|
|
random.shuffle(bools)
|
|
marks = VGroup()
|
|
for is_correct, test_example in zip(bools, test_examples.target):
|
|
if is_correct:
|
|
mark = TexMobject("\\checkmark")
|
|
mark.highlight(GREEN)
|
|
else:
|
|
mark = TexMobject("\\times")
|
|
mark.highlight(RED)
|
|
mark.next_to(test_example, LEFT)
|
|
marks.add(mark)
|
|
|
|
self.play(
|
|
MoveToTarget(training_examples),
|
|
GrowFromCenter(train_brace),
|
|
FadeIn(train_words)
|
|
)
|
|
self.dither()
|
|
self.play(
|
|
MoveToTarget(test_examples),
|
|
GrowFromCenter(test_brace),
|
|
FadeIn(test_words)
|
|
)
|
|
self.play(Write(marks))
|
|
self.dither()
|
|
|
|
def scroll_through_much_data(self):
|
|
training_examples = self.training_examples
|
|
colors = color_gradient([BLUE, YELLOW], self.n_new_examples_shown)
|
|
for color in colors:
|
|
new_examples = self.get_examples()
|
|
new_examples.move_to(training_examples)
|
|
for train_ex, new_ex in zip(training_examples, new_examples):
|
|
self.remove(train_ex)
|
|
self.add(new_ex)
|
|
new_ex[0][0].highlight(color)
|
|
self.dither(1./30)
|
|
training_examples = new_examples
|
|
|
|
class NotSciFi(TeacherStudentsScene):
|
|
def construct(self):
|
|
students = self.students
|
|
self.student_says(
|
|
"Machines learning?!?",
|
|
student_index = 0,
|
|
target_mode = "pleading",
|
|
run_time = 1,
|
|
)
|
|
bubble = students[0].bubble
|
|
students[0].bubble = None
|
|
self.student_says(
|
|
"Should we \\\\ be worried?", student_index = 2,
|
|
target_mode = "confused",
|
|
bubble_kwargs = {"direction" : LEFT},
|
|
run_time = 1,
|
|
)
|
|
self.dither()
|
|
students[0].bubble = bubble
|
|
self.teacher_says(
|
|
"It's actually \\\\ just calculus.",
|
|
run_time = 1
|
|
)
|
|
self.teacher.bubble = None
|
|
self.dither()
|
|
self.student_says(
|
|
"Even worse!",
|
|
target_mode = "horrified",
|
|
bubble_kwargs = {
|
|
"direction" : LEFT,
|
|
"width" : 3,
|
|
"height" : 2,
|
|
},
|
|
)
|
|
self.dither(2)
|
|
|
|
class FunctionMinmization(GraphScene):
|
|
CONFIG = {
|
|
"x_labeled_nums" : range(-1, 10),
|
|
}
|
|
def construct(self):
|
|
self.setup_axes()
|
|
title = TextMobject("Finding minima")
|
|
title.to_edge(UP)
|
|
self.add(title)
|
|
|
|
def func(x):
|
|
x -= 4.5
|
|
return 0.03*(x**4 - 16*x**2) + 0.3*x + 4
|
|
graph = self.get_graph(func)
|
|
graph_label = self.get_graph_label(graph, "C(x)")
|
|
self.add(graph, graph_label)
|
|
|
|
dots = VGroup(*[
|
|
Dot().move_to(self.input_to_graph_point(x, graph))
|
|
for x in range(10)
|
|
])
|
|
dots.gradient_highlight(YELLOW, RED)
|
|
|
|
def update_dot(dot, dt):
|
|
x = self.x_axis.point_to_number(dot.get_center())
|
|
slope = self.slope_of_tangent(x, graph)
|
|
x -= slope*dt
|
|
dot.move_to(self.input_to_graph_point(x, graph))
|
|
|
|
self.add(*[
|
|
ContinualUpdateFromFunc(dot, update_dot)
|
|
for dot in dots
|
|
])
|
|
self.dither(10)
|
|
|
|
class IntroduceCostFunction(PreviewLearning):
|
|
def construct(self):
|
|
self.force_skipping()
|
|
|
|
self.isolate_one_neuron()
|
|
self.reminder_of_weights_and_bias()
|
|
self.initialize_randomly()
|
|
self.feed_in_example()
|
|
self.make_fun_of_output()
|
|
self.need_a_cost_function()
|
|
self.show_cost_function()
|
|
|
|
def isolate_one_neuron(self):
|
|
network_mob = self.network_mob
|
|
network_mob.shift(LEFT)
|
|
neuron_groups = VGroup(*[
|
|
layer.neurons
|
|
for layer in network_mob.layers[1:]
|
|
])
|
|
edge_groups = network_mob.edge_groups
|
|
neuron = neuron_groups[0][7].deepcopy()
|
|
output_labels = network_mob.output_labels
|
|
kwargs = {
|
|
"submobject_mode" : "lagged_start",
|
|
"run_time" : 2,
|
|
}
|
|
self.play(
|
|
FadeOut(edge_groups, **kwargs),
|
|
FadeOut(neuron_groups, **kwargs),
|
|
FadeOut(output_labels, **kwargs),
|
|
Animation(neuron),
|
|
neuron.edges_in.set_stroke, None, 2,
|
|
)
|
|
self.dither()
|
|
|
|
self.neuron = neuron
|
|
|
|
def reminder_of_weights_and_bias(self):
|
|
neuron = self.neuron
|
|
layer0 = self.network_mob.layers[0]
|
|
active_layer0 = self.network_mob.get_active_layer(
|
|
0, np.random.random(len(layer0.neurons))
|
|
)
|
|
prev_neurons = layer0.neurons
|
|
|
|
weights = 4*(np.random.random(len(neuron.edges_in))-0.5)
|
|
weighted_edges = VGroup(*[
|
|
edge.copy().set_stroke(
|
|
color = GREEN if w > 0 else RED,
|
|
width = abs(w)
|
|
)
|
|
for w, edge in zip(weights, neuron.edges_in)
|
|
])
|
|
|
|
formula = TexMobject(
|
|
"=", "\\sigma(",
|
|
"w_1", "a_1", "+",
|
|
"w_2", "a_2", "+",
|
|
"\\cdots", "+",
|
|
"w_n", "a_n", "+", "b", ")"
|
|
)
|
|
w_labels = formula.get_parts_by_tex("w_")
|
|
a_labels = formula.get_parts_by_tex("a_")
|
|
b = formula.get_part_by_tex("b")
|
|
sigma = VGroup(
|
|
formula.get_part_by_tex("\\sigma"),
|
|
formula.get_part_by_tex(")"),
|
|
)
|
|
symbols = VGroup(*[
|
|
formula.get_parts_by_tex(tex)
|
|
for tex in "=", "+", "dots"
|
|
])
|
|
|
|
w_labels.highlight(GREEN)
|
|
b.highlight(BLUE)
|
|
sigma.highlight(YELLOW)
|
|
# formula.to_edge(UP)
|
|
formula.next_to(neuron, RIGHT)
|
|
|
|
weights_word = TextMobject("Weights")
|
|
weights_word.next_to(neuron.edges_in, RIGHT, aligned_edge = UP)
|
|
weights_word.highlight(GREEN)
|
|
weights_arrow = Arrow(
|
|
weights_word.get_bottom(),
|
|
neuron.edges_in[0].get_center(),
|
|
color = GREEN
|
|
)
|
|
|
|
alt_weights_arrows = VGroup(*[
|
|
Arrow(
|
|
weights_word.get_bottom(),
|
|
w_label.get_top(),
|
|
color = GREEN
|
|
)
|
|
for w_label in w_labels
|
|
])
|
|
|
|
bias_word = TextMobject("Bias")
|
|
bias_arrow = Vector(DOWN, color = BLUE)
|
|
bias_arrow.next_to(b, UP, SMALL_BUFF)
|
|
bias_word.next_to(bias_arrow, UP, SMALL_BUFF)
|
|
bias_word.highlight(BLUE)
|
|
|
|
self.revert_to_original_skipping_status()
|
|
self.play(
|
|
Transform(layer0, active_layer0),
|
|
FadeIn(a_labels),
|
|
FadeIn(symbols),
|
|
run_time = 2,
|
|
submobject_mode = "lagged_start"
|
|
)
|
|
self.play(
|
|
Write(weights_word),
|
|
GrowArrow(weights_arrow),
|
|
Transform(neuron.edges_in, weighted_edges),
|
|
run_time = 1,
|
|
)
|
|
self.dither()
|
|
self.play(
|
|
ReplacementTransform(
|
|
weighted_edges.copy(), w_labels,
|
|
),
|
|
ReplacementTransform(
|
|
VGroup(weights_arrow),
|
|
alt_weights_arrows
|
|
)
|
|
)
|
|
self.dither()
|
|
self.play(
|
|
Write(b),
|
|
Write(bias_word),
|
|
GrowArrow(bias_arrow),
|
|
run_time = 1
|
|
)
|
|
self.play(Write(sigma))
|
|
self.dither(2)
|
|
|
|
def initialize_randomly(self):
|
|
pass
|
|
|
|
def feed_in_example(self):
|
|
pass
|
|
|
|
def make_fun_of_output(self):
|
|
pass
|
|
|
|
def need_a_cost_function(self):
|
|
pass
|
|
|
|
def show_cost_function(self):
|
|
pass
|
|
|
|
|
|
####
|
|
|
|
def activate_network(self, train_in, *added_anims):
|
|
##TODO
|
|
PreviewLearning.activate_network(self, train_in, *added_anims)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|