3b1b-manim/helpers.py
2016-04-27 17:35:04 -07:00

466 lines
13 KiB
Python

import numpy as np
import itertools as it
import operator as op
from PIL import Image
from colour import Color
import random
import inspect
import string
import re
from scipy import linalg
from constants import *
def get_smooth_handle_points(points):
num_handles = len(points) - 1
dim = points.shape[1]
if num_handles < 1:
return np.zeros((0, dim)), np.zeros((0, dim))
#Must solve 2*num_handles equations to get the handles.
#l and u are the number of lower an upper diagonal rows
#in the matrix to solve.
l, u = 2, 1
#diag is a representation of the matrix in diagonal form
#See https://www.particleincell.com/2012/bezier-splines/
#for how to arive at these equations
diag = np.zeros((l+u+1, 2*num_handles))
diag[0,1::2] = -1
diag[0,2::2] = 1
diag[1,0::2] = 2
diag[1,1::2] = 1
diag[2,1:-2:2] = -2
diag[3,0:-3:2] = 1
#last
diag[2,-2] = -1
diag[1,-1] = 2
#This is the b as in Ax = b, where we are solving for x,
#and A is represented using diag. However, think of entries
#to x and b as being points in space, not numbers
b = np.zeros((2*num_handles, dim))
b[1::2] = 2*points[1:]
b[0] = points[0]
b[-1] = points[-1]
solve_func = lambda b : linalg.solve_banded(
(l, u), diag, b
)
if is_closed(points):
#Get equations to relate first and last points
matrix = diag_to_matrix((l, u), diag)
#last row handles second derivative
matrix[-1, [0, 1, -2, -1]] = [2, -1, 1, -2]
#first row handles first derivative
matrix[0,:] = np.zeros(matrix.shape[1])
matrix[0,[0, -1]] = [1, 1]
b[0] = 2*points[0]
b[-1] = np.zeros(dim)
solve_func = lambda b : linalg.solve(matrix, b)
handle_pairs = np.zeros((2*num_handles, dim))
for i in range(dim):
handle_pairs[:,i] = solve_func(b[:,i])
return handle_pairs[0::2], handle_pairs[1::2]
def diag_to_matrix(l_and_u, diag):
"""
Converts array whose rows represent diagonal
entries of a matrix into the matrix itself.
See scipy.linalg.solve_banded
"""
l, u = l_and_u
dim = diag.shape[1]
matrix = np.zeros((dim, dim))
for i in range(l+u+1):
np.fill_diagonal(
matrix[max(0,i-u):,max(0,u-i):],
diag[i,max(0,u-i):]
)
return matrix
def is_closed(points):
return np.all(points[0] == points[-1])
def color_to_rgb(color):
return np.array(Color(color).get_rgb())
def color_to_int_rgb(color):
return (255*color_to_rgb(color)).astype('uint8')
def compass_directions(n = 4, start_vect = RIGHT):
angle = 2*np.pi/n
return np.array([
rotate_vector(start_vect, k*angle)
for k in range(n)
])
def partial_bezier_points(points, a, b):
"""
Given an array of points which define
a bezier curve, and two numbres 0<=a<b<=1,
return an array of the same size, which
describes the portion of the original bezier
curve on the interval [a, b].
This algorithm is pretty nifty, and pretty dense.
"""
a_to_1 = np.array([
bezier(points[i:])(a)
for i in range(len(points))
])
return np.array([
bezier(a_to_1[:i+1])(b)
for i in range(len(points))
])
def bezier(points):
n = len(points) - 1
return lambda t : sum([
((1-t)**(n-k))*(t**k)*choose(n, k)*point
for point, k in zip(points, it.count())
])
def remove_list_redundancies(l):
"""
Used instead of list(set(l)) to maintain order
"""
return sorted(list(set(l)), lambda a, b : l.index(a) - l.index(b))
def list_update(l1, l2):
"""
Used instead of list(set(l1).update(l2)) to maintain order,
making sure duplicates are removed from l1, not l2.
"""
return filter(lambda e : e not in l2, l1) + list(l2)
def all_elements_are_instances(iterable, Class):
return all(map(lambda e : isinstance(e, Class), iterable))
def adjascent_pairs(objects):
return zip(objects, list(objects[1:])+[objects[0]])
def complex_to_R3(complex_num):
return np.array((complex_num.real, complex_num.imag, 0))
def tuplify(obj):
if isinstance(obj, str):
return (obj,)
try:
return tuple(obj)
except:
return (obj,)
def instantiate(obj):
"""
Useful so that classes or instance of those classes can be
included in configuration, which can prevent defaults from
getting created during compilation/importing
"""
return obj() if isinstance(obj, type) else obj
def get_all_descendent_classes(Class):
awaiting_review = [Class]
result = []
while awaiting_review:
Child = awaiting_review.pop()
awaiting_review += Child.__subclasses__()
result.append(Child)
return result
def filtered_locals(local_args):
result = local_args.copy()
ignored_local_args = ["self", "kwargs"]
for arg in ignored_local_args:
result.pop(arg, local_args)
return result
def digest_config(obj, kwargs, local_args = {}):
"""
Sets init args and CONFIG values as local variables
The purpose of this function is to ensure that all
configuration of any object is inheritable, able to
be easily passed into instantiation, and is attached
as an attribute of the object.
"""
### Assemble list of CONFIGs from all super classes
classes_in_heirarchy = [obj.__class__]
configs = []
while len(classes_in_heirarchy) > 0:
Class = classes_in_heirarchy.pop()
classes_in_heirarchy += Class.__bases__
if hasattr(Class, "CONFIG"):
configs.append(Class.CONFIG)
#Order matters a lot here, first dicts have higher priority
all_dicts = [kwargs, filtered_locals(local_args), obj.__dict__]
all_dicts += configs
item_lists = reversed([d.items() for d in all_dicts])
obj.__dict__ = dict(reduce(op.add, item_lists))
def digest_locals(obj):
caller_locals = inspect.currentframe().f_back.f_locals
obj.__dict__.update(filtered_locals(caller_locals))
def interpolate(start, end, alpha):
return (1-alpha)*start + alpha*end
def center_of_mass(points):
points = [np.array(point).astype("float") for point in points]
return sum(points) / len(points)
def choose(n, r):
if n < r: return 0
if r == 0: return 1
denom = reduce(op.mul, xrange(1, r+1), 1)
numer = reduce(op.mul, xrange(n, n-r, -1), 1)
return numer//denom
def is_on_line(p0, p1, p2, threshold = 0.01):
"""
Returns true of p0 is on the line between p1 and p2
"""
p0, p1, p2 = map(lambda tup : np.array(tup[:2]), [p0, p1, p2])
p1 -= p0
p2 -= p0
return abs((p1[0] / p1[1]) - (p2[0] / p2[1])) < threshold
def intersection(line1, line2):
"""
A "line" should come in the form [(x0, y0), (x1, y1)] for two
points it runs through
"""
p0, p1, p2, p3 = map(
lambda tup : np.array(tup[:2]),
[line1[0], line1[1], line2[0], line2[1]]
)
p1, p2, p3 = map(lambda x : x - p0, [p1, p2, p3])
transform = np.zeros((2, 2))
transform[:,0], transform[:,1] = p1, p2
if np.linalg.det(transform) == 0: return
inv = np.linalg.inv(transform)
new_p3 = np.dot(inv, p3.reshape((2, 1)))
#Where does line connecting (0, 1) to new_p3 hit x axis
x_intercept = new_p3[0] / (1 - new_p3[1])
result = np.dot(transform, [[x_intercept], [0]])
result = result.reshape((2,)) + p0
return result
def random_color():
return random.choice(PALETTE)
################################################
def straight_path(start_points, end_points, alpha):
return interpolate(start_points, end_points, alpha)
def path_along_arc(arc_angle):
"""
If vect is vector from start to end, [vect[:,1], -vect[:,0]] is
perpendicualr to vect in the left direction.
"""
if arc_angle == 0:
return straight_path
def path(start_points, end_points, alpha):
vects = end_points - start_points
centers = start_points + 0.5*vects
if arc_angle != np.pi:
for i, b in [(0, -1), (1, 1)]:
centers[:,i] += 0.5*b*vects[:,1-i]/np.tan(arc_angle/2)
return centers + np.dot(
start_points-centers,
np.transpose(rotation_about_z(alpha*arc_angle))
)
return path
def clockwise_path():
return path_along_arc(-np.pi)
def counterclockwise_path():
return path_along_arc(np.pi)
################################################
def to_cammel_case(name):
return "".join([
filter(
lambda c : c not in string.punctuation + string.whitespace, part
).capitalize()
for part in name.split("_")
])
def initials(name, sep_values = [" ", "_"]):
return "".join([
(s[0] if s else "")
for s in re.split("|".join(sep_values), name)
])
def cammel_case_initials(name):
return filter(lambda c : c.isupper(), name)
################################################
def drag_pixels(frames):
curr = frames[0]
new_frames = []
for frame in frames:
curr += (curr == 0) * np.array(frame)
new_frames.append(np.array(curr))
return new_frames
def invert_image(image):
arr = np.array(image)
arr = (255 * np.ones(arr.shape)).astype(arr.dtype) - arr
return Image.fromarray(arr)
def streth_array_to_length(nparray, length):
curr_len = len(nparray)
if curr_len > length:
raise Warning("Trying to stretch array to a length shorter than its own")
indices = np.arange(length)/ float(length)
indices *= curr_len
return nparray[indices.astype('int')]
def make_even(iterable_1, iterable_2):
list_1, list_2 = list(iterable_1), list(iterable_2)
length = max(len(list_1), len(list_2))
return (
[list_1[(n * len(list_1)) / length] for n in xrange(length)],
[list_2[(n * len(list_2)) / length] for n in xrange(length)]
)
def make_even_by_cycling(iterable_1, iterable_2):
length = max(len(iterable_1), len(iterable_2))
cycle1 = it.cycle(iterable_1)
cycle2 = it.cycle(iterable_2)
return (
[cycle1.next() for x in range(length)],
[cycle2.next() for x in range(length)]
)
### Alpha Functions ###
def sigmoid(x):
return 1.0/(1 + np.exp(-x))
def smooth(t, inflection = 10.0):
error = sigmoid(-inflection / 2)
return (sigmoid(inflection*(t - 0.5)) - error) / (1 - 2*error)
def rush_into(t):
return 2*smooth(t/2.0)
def rush_from(t):
return 2*smooth(t/2.0+0.5) - 1
def slow_into(t):
return np.sqrt(1-(1-t)*(1-t))
def there_and_back(t, inflection = 10.0):
new_t = 2*t if t < 0.5 else 2*(1 - t)
return smooth(new_t, inflection)
def not_quite_there(func = smooth, proportion = 0.7):
def result(t):
return proportion*func(t)
return result
def wiggle(t, wiggles = 2):
return there_and_back(t) * np.sin(wiggles*np.pi*t)
def squish_rate_func(func, a = 0.4, b = 0.6):
def result(t):
if t < a:
return func(0)
elif t > b:
return func(1)
else:
return func((t-a)/(b-a))
return result
### Functional Functions ###
def composition(func_list):
"""
func_list should contain elements of the form (f, args)
"""
return reduce(
lambda (f1, args1), (f2, args2) : (lambda x : f1(f2(x, *args2), *args1)),
func_list,
lambda x : x
)
def remove_nones(sequence):
return filter(lambda x : x, sequence)
#Matrix operations
def thick_diagonal(dim, thickness = 2):
row_indices = np.arange(dim).repeat(dim).reshape((dim, dim))
col_indices = np.transpose(row_indices)
return (np.abs(row_indices - col_indices)<thickness).astype('uint8')
def rotation_matrix(angle, axis):
"""
Rotation in R^3 about a specified axess of rotation.
"""
about_z = rotation_about_z(angle)
z_to_axis = z_to_vector(axis)
axis_to_z = np.linalg.inv(z_to_axis)
return reduce(np.dot, [z_to_axis, about_z, axis_to_z])
def rotation_about_z(angle):
return [
[np.cos(angle), -np.sin(angle), 0],
[np.sin(angle), np.cos(angle), 0],
[0, 0, 1]
]
def z_to_vector(vector):
"""
Returns some matrix in SO(3) which takes the z-axis to the
(normalized) vector provided as an argument
"""
norm = np.linalg.norm(vector)
if norm == 0:
return np.identity(3)
v = np.array(vector) / norm
phi = np.arccos(v[2])
if any(v[:2]):
#projection of vector to {x^2 + y^2 = 1}
axis_proj = v[:2] / np.linalg.norm(v[:2])
theta = np.arccos(axis_proj[0])
if axis_proj[1] < 0:
theta = -theta
else:
theta = 0
phi_down = np.array([
[np.cos(phi), 0, np.sin(phi)],
[0, 1, 0],
[-np.sin(phi), 0, np.cos(phi)]
])
return np.dot(rotation_about_z(theta), phi_down)
def rotate_vector(vector, angle, axis = OUT):
return np.dot(rotation_matrix(angle, axis), vector)
def angle_between(v1, v2):
return np.arccos(np.dot(
v1 / np.linalg.norm(v1),
v2 / np.linalg.norm(v2)
))
def angle_of_vector(vector):
"""
Returns polar coordinate theta when vector is project on xy plane
"""
z = complex(*vector[:2])
if z == 0:
return 0
return np.log(complex(*vector[:2])).imag