3b1b-manim/old_projects/WindingNumber.py
2019-05-02 20:36:14 -07:00

2885 lines
No EOL
100 KiB
Python

from manimlib.imports import *
import warnings
warnings.warn("""
Warning: This file makes use of
ContinualAnimation, which has since
been deprecated
""")
import time
import mpmath
mpmath.mp.dps = 7
# Warning, this file uses ContinualChangingDecimal,
# which has since been been deprecated. Use a mobject
# updater instead
# Useful constants to play around with
UL = UP + LEFT
UR = UP + RIGHT
DL = DOWN + LEFT
DR = DOWN + RIGHT
standard_rect = np.array([UL, UR, DR, DL])
# Used in EquationSolver2d, and a few other places
border_stroke_width = 10
# Used for clockwise circling in some scenes
cw_circle = Circle(color = WHITE).stretch(-1, 0)
# Used when walker animations are on black backgrounds, in EquationSolver2d and PiWalker
WALKER_LIGHT_COLOR = DARK_GREY
ODOMETER_RADIUS = 1.5
ODOMETER_STROKE_WIDTH = 20
# TODO/WARNING: There's a lot of refactoring and cleanup to be done in this code,
# (and it will be done, but first I'll figure out what I'm doing with all this...)
# -SR
# This turns counterclockwise revs into their color. Beware, we use CCW angles
# in all display code, but generally think in this video's script in terms of
# CW angles
def rev_to_rgba(alpha):
alpha = (0.5 - alpha) % 1 # For convenience, to go CW from red on left instead of CCW from right
# 0 is red, 1/6 is yellow, 1/3 is green, 2/3 is blue
hue_list = [0, 0.5/6.0, 1/6.0, 1.1/6.0, 2/6.0, 3/6.0, 4/6.0, 5/6.0]
num_hues = len(hue_list)
start_index = int(np.floor(num_hues * alpha)) % num_hues
end_index = (start_index + 1) % num_hues
beta = (alpha % (1.0/num_hues)) * num_hues
start_hue = hue_list[start_index]
end_hue = hue_list[end_index]
if end_hue < start_hue:
end_hue = end_hue + 1
hue = interpolate(start_hue, end_hue, beta)
return color_to_rgba(Color(hue = hue, saturation = 1, luminance = 0.5))
# alpha = alpha % 1
# colors = colorslist
# num_colors = len(colors)
# beta = (alpha % (1.0/num_colors)) * num_colors
# start_index = int(np.floor(num_colors * alpha)) % num_colors
# end_index = (start_index + 1) % num_colors
# return interpolate(colors[start_index], colors[end_index], beta)
def rev_to_color(alpha):
return rgba_to_color(rev_to_rgba(alpha))
def point_to_rev(xxx_todo_changeme6, allow_origin = False):
# Warning: np.arctan2 would happily discontinuously returns the value 0 for (0, 0), due to
# design choices in the underlying atan2 library call, but for our purposes, this is
# illegitimate, and all winding number calculations must be set up to avoid this
(x, y) = xxx_todo_changeme6
if not(allow_origin) and (x, y) == (0, 0):
print("Error! Angle of (0, 0) computed!")
return
return fdiv(np.arctan2(y, x), TAU)
def point_to_size(xxx_todo_changeme7):
(x, y) = xxx_todo_changeme7
return np.sqrt(x**2 + y**2)
# rescaled_size goes from 0 to 1 as size goes from 0 to infinity
# The exact method is arbitrarily chosen to make pleasing color map
# brightness levels
def point_to_rescaled_size(p):
base_size = point_to_size(p)
return np.sqrt(fdiv(base_size, base_size + 1))
def point_to_rgba(point):
rev = point_to_rev(point, allow_origin = True)
rgba = rev_to_rgba(rev)
rescaled_size = point_to_rescaled_size(point)
return rgba * [rescaled_size, rescaled_size, rescaled_size, 1] # Preserve alpha
positive_color = rev_to_color(0)
negative_color = rev_to_color(0.5)
neutral_color = rev_to_color(0.25)
class EquationSolver1d(GraphScene, ZoomedScene):
CONFIG = {
"camera_config" :
{
"use_z_coordinate_for_display_order": True,
},
"func" : lambda x : x,
"targetX" : 0,
"targetY" : 0,
"initial_lower_x" : 0,
"initial_upper_x" : 10,
"num_iterations" : 10,
"iteration_at_which_to_start_zoom" : None,
"graph_label" : None,
"show_target_line" : True,
"base_line_y" : 0, # The y coordinate at which to draw our x guesses
"show_y_as_deviation" : False, # Displays y-values as deviations from target,
}
def drawGraph(self):
self.setup_axes()
self.graph = self.get_graph(self.func)
self.add(self.graph)
if self.graph_label != None:
curve_label = self.get_graph_label(self.graph, self.graph_label,
x_val = 4, direction = LEFT)
curve_label.shift(LEFT)
self.add(curve_label)
if self.show_target_line:
target_line_object = DashedLine(
self.coords_to_point(self.x_min, self.targetY),
self.coords_to_point(self.x_max, self.targetY),
dash_length = 0.1)
self.add(target_line_object)
target_label_num = 0 if self.show_y_as_deviation else self.targetY
target_line_label = TexMobject("y = " + str(target_label_num))
target_line_label.next_to(target_line_object.get_left(), UP + RIGHT)
self.add(target_line_label)
self.wait() # Give us time to appreciate the graph
if self.show_target_line:
self.play(FadeOut(target_line_label)) # Reduce clutter
print("For reference, graphOrigin: ", self.coords_to_point(0, 0))
print("targetYPoint: ", self.coords_to_point(0, self.targetY))
# This is a mess right now (first major animation coded),
# but it works; can be refactored later or never
def solveEquation(self):
# Under special conditions, used in GuaranteedZeroScene, we let the
# "lower" guesses actually be too high, or vice versa, and color
# everything accordingly
def color_by_comparison(val, ref):
if val > ref:
return positive_color
elif val < ref:
return negative_color
else:
return neutral_color
lower_color = color_by_comparison(self.func(self.initial_lower_x), self.targetY)
upper_color = color_by_comparison(self.func(self.initial_upper_x), self.targetY)
if self.show_y_as_deviation:
y_bias = -self.targetY
else:
y_bias = 0
startBrace = TexMobject("|", stroke_width = 10) #TexMobject("[") # Not using [ and ] because they end up crossing over
startBrace.set_color(lower_color)
endBrace = startBrace.copy().stretch(-1, 0)
endBrace.set_color(upper_color)
genericBraces = Group(startBrace, endBrace)
#genericBraces.scale(1.5)
leftBrace = startBrace.copy()
rightBrace = endBrace.copy()
xBraces = Group(leftBrace, rightBrace)
downBrace = startBrace.copy()
upBrace = endBrace.copy()
yBraces = Group(downBrace, upBrace)
yBraces.rotate(TAU/4)
lowerX = self.initial_lower_x
lowerY = self.func(lowerX)
upperX = self.initial_upper_x
upperY = self.func(upperX)
leftBrace.move_to(self.coords_to_point(lowerX, self.base_line_y)) #, aligned_edge = RIGHT)
leftBraceLabel = DecimalNumber(lowerX)
leftBraceLabel.next_to(leftBrace, DOWN + LEFT, buff = SMALL_BUFF)
leftBraceLabelAnimation = ContinualChangingDecimal(leftBraceLabel,
lambda alpha : self.point_to_coords(leftBrace.get_center())[0],
tracked_mobject = leftBrace)
rightBrace.move_to(self.coords_to_point(upperX, self.base_line_y)) #, aligned_edge = LEFT)
rightBraceLabel = DecimalNumber(upperX)
rightBraceLabel.next_to(rightBrace, DOWN + RIGHT, buff = SMALL_BUFF)
rightBraceLabelAnimation = ContinualChangingDecimal(rightBraceLabel,
lambda alpha : self.point_to_coords(rightBrace.get_center())[0],
tracked_mobject = rightBrace)
downBrace.move_to(self.coords_to_point(0, lowerY)) #, aligned_edge = UP)
downBraceLabel = DecimalNumber(lowerY)
downBraceLabel.next_to(downBrace, LEFT + DOWN, buff = SMALL_BUFF)
downBraceLabelAnimation = ContinualChangingDecimal(downBraceLabel,
lambda alpha : self.point_to_coords(downBrace.get_center())[1] + y_bias,
tracked_mobject = downBrace)
upBrace.move_to(self.coords_to_point(0, upperY)) #, aligned_edge = DOWN)
upBraceLabel = DecimalNumber(upperY)
upBraceLabel.next_to(upBrace, LEFT + UP, buff = SMALL_BUFF)
upBraceLabelAnimation = ContinualChangingDecimal(upBraceLabel,
lambda alpha : self.point_to_coords(upBrace.get_center())[1] + y_bias,
tracked_mobject = upBrace)
lowerDotPoint = self.input_to_graph_point(lowerX, self.graph)
lowerDotXPoint = self.coords_to_point(lowerX, self.base_line_y)
lowerDotYPoint = self.coords_to_point(0, self.func(lowerX))
lowerDot = Dot(lowerDotPoint + OUT, color = lower_color)
upperDotPoint = self.input_to_graph_point(upperX, self.graph)
upperDot = Dot(upperDotPoint + OUT, color = upper_color)
upperDotXPoint = self.coords_to_point(upperX, self.base_line_y)
upperDotYPoint = self.coords_to_point(0, self.func(upperX))
lowerXLine = Line(lowerDotXPoint, lowerDotPoint, color = lower_color)
upperXLine = Line(upperDotXPoint, upperDotPoint, color = upper_color)
lowerYLine = Line(lowerDotPoint, lowerDotYPoint, color = lower_color)
upperYLine = Line(upperDotPoint, upperDotYPoint, color = upper_color)
x_guess_line = Line(lowerDotXPoint, upperDotXPoint, color = WHITE, stroke_width = 10)
lowerGroup = Group(
lowerDot,
leftBrace, downBrace,
lowerXLine, lowerYLine,
x_guess_line
)
upperGroup = Group(
upperDot,
rightBrace, upBrace,
upperXLine, upperYLine,
x_guess_line
)
initialLowerXDot = Dot(lowerDotXPoint + OUT, color = lower_color)
initialUpperXDot = Dot(upperDotXPoint + OUT, color = upper_color)
initialLowerYDot = Dot(lowerDotYPoint + OUT, color = lower_color)
initialUpperYDot = Dot(upperDotYPoint + OUT, color = upper_color)
# All the initial adds and ShowCreations are here now:
self.play(FadeIn(initialLowerXDot), FadeIn(leftBrace), FadeIn(leftBraceLabel))
self.add_foreground_mobjects(initialLowerXDot, leftBrace)
self.add(leftBraceLabelAnimation)
self.play(ShowCreation(lowerXLine))
self.add_foreground_mobject(lowerDot)
self.play(ShowCreation(lowerYLine))
self.play(FadeIn(initialLowerYDot), FadeIn(downBrace), FadeIn(downBraceLabel))
self.add_foreground_mobjects(initialLowerYDot, downBrace)
self.add(downBraceLabelAnimation)
self.wait()
self.play(FadeIn(initialUpperXDot), FadeIn(rightBrace), FadeIn(rightBraceLabel))
self.add_foreground_mobjects(initialUpperXDot, rightBrace)
self.add(rightBraceLabelAnimation)
self.play(ShowCreation(upperXLine))
self.add_foreground_mobject(upperDot)
self.play(ShowCreation(upperYLine))
self.play(FadeIn(initialUpperYDot), FadeIn(upBrace), FadeIn(upBraceLabel))
self.add_foreground_mobjects(initialUpperYDot, upBrace)
self.add(upBraceLabelAnimation)
self.wait()
self.play(FadeIn(x_guess_line))
self.wait()
for i in range(self.num_iterations):
if i == self.iteration_at_which_to_start_zoom:
self.activate_zooming()
self.little_rectangle.move_to(
self.coords_to_point(self.targetX, self.targetY))
inverseZoomFactor = 1/float(self.zoom_factor)
self.play(
lowerDot.scale_in_place, inverseZoomFactor,
upperDot.scale_in_place, inverseZoomFactor)
def makeUpdater(xAtStart, fixed_guess_x):
def updater(group, alpha):
dot, xBrace, yBrace, xLine, yLine, guess_line = group
newX = interpolate(xAtStart, midX, alpha)
newY = self.func(newX)
graphPoint = self.input_to_graph_point(newX,
self.graph)
dot.move_to(graphPoint)
xAxisPoint = self.coords_to_point(newX, self.base_line_y)
xBrace.move_to(xAxisPoint)
yAxisPoint = self.coords_to_point(0, newY)
yBrace.move_to(yAxisPoint)
xLine.put_start_and_end_on(xAxisPoint, graphPoint)
yLine.put_start_and_end_on(yAxisPoint, graphPoint)
fixed_guess_point = self.coords_to_point(fixed_guess_x, self.base_line_y)
guess_line.put_start_and_end_on(xAxisPoint, fixed_guess_point)
return group
return updater
midX = (lowerX + upperX)/float(2)
midY = self.func(midX)
# If we run with an interval whose endpoints start off with same sign,
# then nothing after this branching can be trusted to do anything reasonable
# in terms of picking branches or assigning colors
in_negative_branch = midY < self.targetY
sign_color = negative_color if in_negative_branch else positive_color
midCoords = self.coords_to_point(midX, midY)
midColor = neutral_color
# Hm... even the z buffer isn't helping keep this above x_guess_line
midXBrace = startBrace.copy() # Had start and endBrace been asymmetric, we'd do something different here
midXBrace.set_color(midColor)
midXBrace.move_to(self.coords_to_point(midX, self.base_line_y) + OUT)
# We only actually add this much later
midXPoint = Dot(self.coords_to_point(midX, self.base_line_y) + OUT, color = sign_color)
x_guess_label_caption = TextMobject("New guess: x = ", fill_color = midColor)
x_guess_label_num = DecimalNumber(midX, fill_color = midColor)
x_guess_label_num.move_to(0.9 * FRAME_Y_RADIUS * DOWN)
x_guess_label_caption.next_to(x_guess_label_num, LEFT)
x_guess_label = Group(x_guess_label_caption, x_guess_label_num)
y_guess_label_caption = TextMobject(", y = ", fill_color = midColor)
y_guess_label_num = DecimalNumber(midY, fill_color = sign_color)
y_guess_label_caption.next_to(x_guess_label_num, RIGHT)
y_guess_label_num.next_to(y_guess_label_caption, RIGHT)
y_guess_label = Group(y_guess_label_caption, y_guess_label_num)
guess_labels = Group(x_guess_label, y_guess_label)
self.play(
ReplacementTransform(leftBrace.copy(), midXBrace),
ReplacementTransform(rightBrace.copy(), midXBrace),
FadeIn(x_guess_label))
self.add_foreground_mobject(midXBrace)
midXLine = DashedLine(
self.coords_to_point(midX, self.base_line_y),
midCoords,
color = midColor
)
self.play(ShowCreation(midXLine))
midDot = Dot(midCoords, color = sign_color)
if(self.iteration_at_which_to_start_zoom != None and
i >= self.iteration_at_which_to_start_zoom):
midDot.scale_in_place(inverseZoomFactor)
self.add(midDot)
midYLine = DashedLine(midCoords, self.coords_to_point(0, midY), color = sign_color)
self.play(
ShowCreation(midYLine),
FadeIn(y_guess_label),
ApplyMethod(midXBrace.set_color, sign_color),
ApplyMethod(midXLine.set_color, sign_color),
run_time = 0.25
)
midYPoint = Dot(self.coords_to_point(0, midY), color = sign_color)
self.add(midXPoint, midYPoint)
if in_negative_branch:
self.play(
UpdateFromAlphaFunc(lowerGroup,
makeUpdater(lowerX,
fixed_guess_x = upperX
)
),
FadeOut(guess_labels),
)
lowerX = midX
lowerY = midY
else:
self.play(
UpdateFromAlphaFunc(upperGroup,
makeUpdater(upperX,
fixed_guess_x = lowerX
)
),
FadeOut(guess_labels),
)
upperX = midX
upperY = midY
#mid_group = Group(midXLine, midDot, midYLine) Removing groups doesn't flatten as expected?
self.remove(midXLine, midDot, midYLine, midXBrace)
self.wait()
def construct(self):
self.drawGraph()
self.solveEquation()
# Returns the value with the same fractional component as x, closest to m
def resit_near(x, m):
frac_diff = (x - m) % 1
if frac_diff > 0.5:
frac_diff -= 1
return m + frac_diff
# TODO?: Perhaps use modulus of (uniform) continuity instead of num_checkpoints, calculating
# latter as needed from former?
#
# "cheap" argument only used for diagnostic testing right now
def make_alpha_winder(func, start, end, num_checkpoints, cheap = False):
check_points = [None for i in range(num_checkpoints)]
check_points[0] = func(start)
step_size = fdiv(end - start, num_checkpoints)
for i in range(num_checkpoints - 1):
check_points[i + 1] = \
resit_near(
func(start + (i + 1) * step_size),
check_points[i])
def return_func(alpha):
if cheap:
return alpha # A test to see if this func is responsible for slowdown
index = np.clip(0, num_checkpoints - 1, int(alpha * num_checkpoints))
x = interpolate(start, end, alpha)
if cheap:
return check_points[index] # A more principled test that at least returns a reasonable answer
else:
return resit_near(func(x), check_points[index])
return return_func
# The various inconsistent choices of what datatype to use where are a bit of a mess,
# but I'm more keen to rush this video out now than to sort this out.
def complex_to_pair(c):
return np.array((c.real, c.imag))
def plane_func_from_complex_func(f):
return lambda x_y4 : complex_to_pair(f(complex(x_y4[0],x_y4[1])))
def point3d_func_from_plane_func(f):
def g(xxx_todo_changeme):
(x, y, z) = xxx_todo_changeme
f_val = f((x, y))
return np.array((f_val[0], f_val[1], 0))
return g
def point3d_func_from_complex_func(f):
return point3d_func_from_plane_func(plane_func_from_complex_func(f))
def plane_zeta(xxx_todo_changeme8):
(x, y) = xxx_todo_changeme8
CLAMP_SIZE = 1000
z = complex(x, y)
try:
answer = mpmath.zeta(z)
except ValueError:
return (CLAMP_SIZE, 0)
if abs(answer) > CLAMP_SIZE:
answer = answer/abs(answer) * CLAMP_SIZE
return (float(answer.real), float(answer.imag))
def rescaled_plane_zeta(xxx_todo_changeme9):
(x, y) = xxx_todo_changeme9
return plane_zeta((x/FRAME_X_RADIUS, 8*y))
# Returns a function from 2-ples to 2-ples
# This function is specified by a list of (x, y, z) tuples,
# and has winding number z (or total of all specified z) around each (x, y)
#
# Can also pass in (x, y) tuples, interpreted as (x, y, 1)
def plane_func_by_wind_spec(*specs):
def embiggen(p):
if len(p) == 3:
return p
elif len(p) == 2:
return (p[0], p[1], 1)
else:
print("Error in plane_func_by_wind_spec embiggen!")
specs = list(map(embiggen, specs))
pos_specs = [x_y_z for x_y_z in specs if x_y_z[2] > 0]
neg_specs = [x_y_z1 for x_y_z1 in specs if x_y_z1[2] < 0]
neg_specs_made_pos = [(x_y_z2[0], x_y_z2[1], -x_y_z2[2]) for x_y_z2 in neg_specs]
def poly(c, root_specs):
return np.prod([(c - complex(x, y))**z for (x, y, z) in root_specs])
def complex_func(c):
return poly(c, pos_specs) * np.conjugate(poly(c, neg_specs_made_pos))
return plane_func_from_complex_func(complex_func)
def scale_func(func, scale_factor):
return lambda x : func(x) * scale_factor
# Used in Initial2dFunc scenes, VectorField scene, and ExamplePlaneFunc
example_plane_func_spec = [(-3, -1.3, 2), (0.1, 0.2, 1), (2.8, -2, -1)]
example_plane_func = plane_func_by_wind_spec(*example_plane_func_spec)
empty_animation = EmptyAnimation()
class WalkerAnimation(Animation):
CONFIG = {
"walk_func" : None, # Must be initialized to use
"remover" : True,
"rate_func" : None,
"coords_to_point" : None
}
def __init__(self, walk_func, val_func, coords_to_point,
show_arrows = True, scale_arrows = False,
**kwargs):
self.walk_func = walk_func
self.val_func = val_func
self.coords_to_point = coords_to_point
self.compound_walker = VGroup()
self.show_arrows = show_arrows
self.scale_arrows = scale_arrows
if "walker_stroke_color" in kwargs:
walker_stroke_color = kwargs["walker_stroke_color"]
else:
walker_stroke_color = BLACK
base_walker = Dot().scale(5 * 0.35).set_stroke(walker_stroke_color, 2) # PiCreature().scale(0.8 * 0.35)
self.compound_walker.walker = base_walker
if show_arrows:
self.compound_walker.arrow = Arrow(ORIGIN, 0.5 * RIGHT, buff = 0)
self.compound_walker.arrow.match_style(self.compound_walker.walker)
self.compound_walker.digest_mobject_attrs()
Animation.__init__(self, self.compound_walker, **kwargs)
# Perhaps abstract this out into an "Animation updating from original object" class
def interpolate_submobject(self, submobject, starting_submobject, alpha):
submobject.points = np.array(starting_submobject.points)
def interpolate_mobject(self, alpha):
Animation.interpolate_mobject(self, alpha)
cur_x, cur_y = cur_coords = self.walk_func(alpha)
cur_point = self.coords_to_point(cur_x, cur_y)
self.mobject.shift(cur_point - self.mobject.walker.get_center())
val = self.val_func(cur_coords)
rev = point_to_rev(val)
self.mobject.walker.set_fill(rev_to_color(rev))
if self.show_arrows:
self.mobject.arrow.set_fill(rev_to_color(rev))
self.mobject.arrow.rotate(
rev * TAU,
about_point = self.mobject.arrow.get_start()
)
if self.scale_arrows:
size = point_to_rescaled_size(val)
self.mobject.arrow.scale(
size * 0.3, # Hack constant; we barely use this feature right now
about_point = self.mobject.arrow.get_start()
)
def walker_animation_with_display(
walk_func,
val_func,
coords_to_point,
number_update_func = None,
show_arrows = True,
scale_arrows = False,
num_decimal_places = 1,
include_background_rectangle = True,
**kwargs
):
walker_anim = WalkerAnimation(
walk_func = walk_func,
val_func = val_func,
coords_to_point = coords_to_point,
show_arrows = show_arrows,
scale_arrows = scale_arrows,
**kwargs)
walker = walker_anim.compound_walker.walker
if number_update_func != None:
display = DecimalNumber(0,
num_decimal_places = num_decimal_places,
fill_color = WHITE if include_background_rectangle else BLACK,
include_background_rectangle = include_background_rectangle)
if include_background_rectangle:
display.background_rectangle.fill_opacity = 0.5
display.background_rectangle.fill_color = GREY
display.background_rectangle.scale(1.2)
displaycement = 0.5 * DOWN # How about that pun, eh?
# display.move_to(walker.get_center() + displaycement)
display.next_to(walker, DOWN+RIGHT, SMALL_BUFF)
display_anim = ChangingDecimal(display,
number_update_func,
tracked_mobject = walker_anim.compound_walker.walker,
**kwargs)
anim_group = AnimationGroup(walker_anim, display_anim, rate_func=linear)
return anim_group
else:
return walker_anim
def LinearWalker(
start_coords,
end_coords,
coords_to_point,
val_func,
number_update_func = None,
show_arrows = True,
scale_arrows = False,
include_background_rectangle = True,
**kwargs
):
walk_func = lambda alpha : interpolate(start_coords, end_coords, alpha)
return walker_animation_with_display(
walk_func = walk_func,
coords_to_point = coords_to_point,
val_func = val_func,
number_update_func = number_update_func,
show_arrows = show_arrows,
scale_arrows = scale_arrows,
include_background_rectangle = include_background_rectangle,
**kwargs)
class ColorMappedByFuncScene(Scene):
CONFIG = {
"func" : lambda p : p,
"num_plane" : NumberPlane(),
"show_num_plane" : True,
"show_output" : False,
"hide_background" : False #Background used for color mapped objects, not as background
}
def short_path_to_long_path(self, filename_with_ext):
return self.get_image_file_path(filename_with_ext)
def setup(self):
# The composition of input_to_pos and pos_to_color
# is to be equal to func (which turns inputs into colors)
# However, depending on whether we are showing input or output (via a MappingCamera),
# we color the background using either func or the identity map
if self.show_output:
self.input_to_pos_func = self.func
self.pos_to_color_func = lambda p : p
else:
self.input_to_pos_func = lambda p : p
self.pos_to_color_func = self.func
self.pixel_pos_to_color_func = lambda x_y3 : self.pos_to_color_func(
self.num_plane.point_to_coords_cheap(np.array([x_y3[0], x_y3[1], 0]))
)
jitter_val = 0.1
line_coords = np.linspace(-10, 10) + jitter_val
func_hash_points = it.product(line_coords, line_coords)
def mini_hasher(p):
rgba = point_to_rgba(self.pixel_pos_to_color_func(p))
if rgba[3] != 1.0:
print("Warning! point_to_rgba assigns fractional alpha", rgba[3])
return tuple(rgba)
to_hash = tuple(mini_hasher(p) for p in func_hash_points)
func_hash = hash(to_hash)
# We hash just based on output image
# Thus, multiple scenes with same output image can re-use it
# without recomputation
full_hash = hash((func_hash, self.camera.get_pixel_width()))
self.background_image_file = self.short_path_to_long_path(
"color_mapped_bg_hash_" + str(full_hash) + ".png"
)
self.in_background_pass = not os.path.exists(self.background_image_file)
print("Background file: " + self.background_image_file)
if self.in_background_pass:
print("The background file does not exist yet; this will be a background creation + video pass")
else:
print("The background file already exists; this will only be a video pass")
def construct(self):
if self.in_background_pass:
self.camera.set_background_from_func(
lambda x_y: point_to_rgba(
self.pixel_pos_to_color_func(
(x_y[0], x_y[1])
)
)
)
self.save_image(self.background_image_file, mode="RGBA")
if self.hide_background:
# Clearing background
self.camera.background_image = None
else:
# Even if we just computed the background, we switch to the file now
self.camera.background_image = self.background_image_file
self.camera.init_background()
if self.show_num_plane:
self.num_plane.fade()
self.add(self.num_plane)
class PureColorMap(ColorMappedByFuncScene):
CONFIG = {
"show_num_plane" : False
}
def construct(self):
ColorMappedByFuncScene.construct(self)
self.wait()
# This sets self.background_image_file, but does not display it as the background
class ColorMappedObjectsScene(ColorMappedByFuncScene):
CONFIG = {
"show_num_plane" : False,
"hide_background" : True,
}
class PiWalker(ColorMappedByFuncScene):
CONFIG = {
"walk_coords" : [],
"step_run_time" : 1,
"scale_arrows" : False,
"display_wind" : True,
"wind_reset_indices" : [],
"display_size" : False,
"display_odometer" : False,
"color_foreground_not_background" : False,
"show_num_plane" : False,
"draw_lines" : True,
"num_checkpoints" : 10,
"num_decimal_places" : 1,
"include_background_rectangle" : False,
}
def construct(self):
ColorMappedByFuncScene.construct(self)
if self.color_foreground_not_background or self.display_odometer:
# Clear background
self.camera.background_image = None
self.camera.init_background()
num_plane = self.num_plane
walk_coords = self.walk_coords
points = [num_plane.coords_to_point(x, y) for x, y in walk_coords]
polygon = Polygon(*points, color = WHITE)
if self.color_foreground_not_background:
polygon.stroke_width = border_stroke_width
polygon.color_using_background_image(self.background_image_file)
total_run_time = len(points) * self.step_run_time
polygon_anim = ShowCreation(polygon, run_time = total_run_time, rate_func=linear)
walker_anim = empty_animation
start_wind = 0
for i in range(len(walk_coords)):
start_coords = walk_coords[i]
end_coords = walk_coords[(i + 1) % len(walk_coords)]
# We need to do this roundabout default argument thing to get the closure we want,
# so the next iteration changing start_coords, end_coords doesn't change this closure
val_alpha_func = lambda a, start_coords = start_coords, end_coords = end_coords : self.func(interpolate(start_coords, end_coords, a))
if self.display_wind:
clockwise_val_func = lambda p : -point_to_rev(self.func(p))
alpha_winder = make_alpha_winder(clockwise_val_func, start_coords, end_coords, self.num_checkpoints)
number_update_func = lambda alpha, alpha_winder = alpha_winder, start_wind = start_wind: alpha_winder(alpha) - alpha_winder(0) + start_wind
start_wind = 0 if i + 1 in self.wind_reset_indices else number_update_func(1)
elif self.display_size:
# We need to do this roundabout default argument thing to get the closure we want,
# so the next iteration changing val_alpha_func doesn't change this closure
number_update_func = lambda a, val_alpha_func = val_alpha_func : point_to_rescaled_size(val_alpha_func(a)) # We only use this for diagnostics
else:
number_update_func = None
new_anim = LinearWalker(
start_coords = start_coords,
end_coords = end_coords,
coords_to_point = num_plane.coords_to_point,
val_func = self.func,
remover = (i < len(walk_coords) - 1),
show_arrows = not self.show_output,
scale_arrows = self.scale_arrows,
number_update_func = number_update_func,
run_time = self.step_run_time,
walker_stroke_color = WALKER_LIGHT_COLOR if self.color_foreground_not_background else BLACK,
num_decimal_places = self.num_decimal_places,
include_background_rectangle = self.include_background_rectangle,
)
if self.display_odometer:
# Discard above animation and show an odometer instead
# We need to do this roundabout default argument thing to get the closure we want,
# so the next iteration changing val_alpha_func doesn't change this closure
rev_func = lambda a, val_alpha_func = val_alpha_func : point_to_rev(val_alpha_func(a))
base_arrow = Arrow(ORIGIN, RIGHT, buff = 0)
new_anim = FuncRotater(base_arrow,
rev_func = rev_func,
run_time = self.step_run_time,
rate_func=linear,
remover = i < len(walk_coords) - 1,
)
walker_anim = Succession(walker_anim, new_anim)
# TODO: Allow smooth paths instead of breaking them up into lines, and
# use point_from_proportion to get points along the way
if self.display_odometer:
color_wheel = Circle(radius = ODOMETER_RADIUS)
color_wheel.stroke_width = ODOMETER_STROKE_WIDTH
color_wheel.color_using_background_image(self.short_path_to_long_path("pure_color_map.png")) # Manually inserted here; this is unclean
self.add(color_wheel)
self.play(walker_anim)
else:
if self.draw_lines:
self.play(polygon_anim, walker_anim)
else:
# (Note: Turns out, play is unhappy playing empty_animation, as had been
# previous approach to this toggle; should fix that)
self.play(walker_anim)
self.wait()
class PiWalkerRect(PiWalker):
CONFIG = {
"start_x" : -1,
"start_y" : 1,
"walk_width" : 2,
"walk_height" : 2,
"func" : plane_func_from_complex_func(lambda c: c**2),
"double_up" : False,
# New default for the scenes using this:
"display_wind" : True
}
def setup(self):
TL = np.array((self.start_x, self.start_y))
TR = TL + (self.walk_width, 0)
BR = TR + (0, -self.walk_height)
BL = BR + (-self.walk_width, 0)
self.walk_coords = [TL, TR, BR, BL]
if self.double_up:
self.walk_coords = self.walk_coords + self.walk_coords
PiWalker.setup(self)
class PiWalkerCircle(PiWalker):
CONFIG = {
"radius" : 1,
"num_steps" : 100,
"step_run_time" : 0.01
}
def setup(self):
r = self.radius
N = self.num_steps
self.walk_coords = [r * np.array((np.cos(i * TAU/N), np.sin(i * TAU/N))) for i in range(N)]
PiWalker.setup(self)
def split_interval(xxx_todo_changeme10):
(a, b) = xxx_todo_changeme10
mid = (a + b)/2.0
return ((a, mid), (mid, b))
# I am surely reinventing some wheel here, but what's done is done...
class RectangleData():
def __init__(self, x_interval, y_interval):
self.rect = (x_interval, y_interval)
def get_top_left(self):
return np.array((self.rect[0][0], self.rect[1][1]))
def get_top_right(self):
return np.array((self.rect[0][1], self.rect[1][1]))
def get_bottom_right(self):
return np.array((self.rect[0][1], self.rect[1][0]))
def get_bottom_left(self):
return np.array((self.rect[0][0], self.rect[1][0]))
def get_top(self):
return (self.get_top_left(), self.get_top_right())
def get_right(self):
return (self.get_top_right(), self.get_bottom_right())
def get_bottom(self):
return (self.get_bottom_right(), self.get_bottom_left())
def get_left(self):
return (self.get_bottom_left(), self.get_top_left())
def get_center(self):
return interpolate(self.get_top_left(), self.get_bottom_right(), 0.5)
def get_width(self):
return self.rect[0][1] - self.rect[0][0]
def get_height(self):
return self.rect[1][1] - self.rect[1][0]
def splits_on_dim(self, dim):
x_interval = self.rect[0]
y_interval = self.rect[1]
# TODO: Can refactor the following; will do later
if dim == 0:
return_data = [RectangleData(new_interval, y_interval) for new_interval in split_interval(x_interval)]
elif dim == 1:
return_data = [RectangleData(x_interval, new_interval) for new_interval in split_interval(y_interval)[::-1]]
else:
print("RectangleData.splits_on_dim passed illegitimate dimension!")
return tuple(return_data)
def split_line_on_dim(self, dim):
x_interval = self.rect[0]
y_interval = self.rect[1]
if dim == 0:
sides = (self.get_top(), self.get_bottom())
elif dim == 1:
sides = (self.get_left(), self.get_right())
else:
print("RectangleData.split_line_on_dim passed illegitimate dimension!")
return tuple([mid(x, y) for (x, y) in sides])
class EquationSolver2dNode(object):
def __init__(self, first_anim, children = []):
self.first_anim = first_anim
self.children = children
def depth(self):
if len(self.children) == 0:
return 0
return 1 + max([n.depth() for n in self.children])
def nodes_at_depth(self, n):
if n == 0:
return [self]
# Not the efficient way to flatten lists, because Python + is linear in list size,
# but we have at most two children, so no big deal here
return sum([c.nodes_at_depth(n - 1) for c in self.children], [])
# This is definitely NOT the efficient way to do BFS, but I'm just trying to write something
# quick without thinking that gets the job done on small instances for now
def hacky_bfs(self):
depth = self.depth()
# Not the efficient way to flatten lists, because Python + is linear in list size,
# but this IS hacky_bfs...
return sum([self.nodes_at_depth(i) for i in range(depth + 1)], [])
def display_in_series(self):
return Succession(self.first_anim, *[n.display_in_series() for n in self.children])
def display_in_parallel(self):
return Succession(self.first_anim, AnimationGroup(*[n.display_in_parallel() for n in self.children]))
def display_in_bfs(self):
bfs_nodes = self.hacky_bfs()
return Succession(*[n.first_anim for n in bfs_nodes])
def play_in_bfs(self, scene, border_anim):
bfs_nodes = self.hacky_bfs()
print("Number of nodes: ", len(bfs_nodes))
if len(bfs_nodes) < 1:
print("Less than 1 node! Aborting!")
return
scene.play(bfs_nodes[0].first_anim, border_anim)
for node in bfs_nodes[1:]:
scene.play(node.first_anim)
class EquationSolver2d(ColorMappedObjectsScene):
CONFIG = {
"camera_config" : {"use_z_coordinate_for_display_order": True},
"initial_lower_x" : -5,
"initial_upper_x" : 5,
"initial_lower_y" : -3,
"initial_upper_y" : 3,
"num_iterations" : 0,
"num_checkpoints" : 10,
# Should really merge this into one enum-style variable
"display_in_parallel" : False,
"display_in_bfs" : False,
"use_fancy_lines" : True,
"line_color" : WHITE, # Only used for non-fancy lines
# TODO: Consider adding a "find_all_roots" flag, which could be turned off
# to only explore one of the two candidate subrectangles when both are viable
# Walker settings
"show_arrows" : True,
"scale_arrows" : False,
# Special case settings
# These are used to hack UhOhScene, where we display different colors than
# are actually, secretly, guiding the evolution of the EquationSolver2d
#
# replacement_background_image_file has to be manually configured
"show_winding_numbers" : True,
# Used for UhOhScene;
"manual_wind_override" : None,
"show_cursor" : True,
"linger_parameter" : 0.5,
"use_separate_plays" : False,
"use_cheap_winding_numbers" : False, # To use this, make num_checkpoints large
}
def construct(self):
if self.num_iterations == 0:
print("You forgot to set num_iterations (maybe you meant to subclass something other than EquationSolver2d directly?)")
return
ColorMappedObjectsScene.construct(self)
num_plane = self.num_plane
clockwise_val_func = lambda p : -point_to_rev(self.func(p))
base_line = Line(UP, RIGHT, stroke_width = border_stroke_width, color = self.line_color)
if self.use_fancy_lines:
base_line.color_using_background_image(self.background_image_file)
def match_style_with_bg(obj1, obj2):
obj1.match_style(obj2)
bg = obj2.get_background_image_file()
if bg != None:
obj1.color_using_background_image(bg)
run_time_base = 1
run_time_with_lingering = run_time_base + self.linger_parameter
base_rate = lambda t : t
linger_rate = squish_rate_func(lambda t : t, 0,
fdiv(run_time_base, run_time_with_lingering))
cursor_base = TextMobject("?")
cursor_base.scale(2)
# Helper functions for manual_wind_override
def head(m):
if m == None:
return None
return m[0]
def child(m, i):
if m == None or m == 0:
return None
return m[i + 1]
def Animate2dSolver(cur_depth, rect, dim_to_split,
sides_to_draw = [0, 1, 2, 3],
manual_wind_override = None):
print("Solver at depth: " + str(cur_depth))
if cur_depth >= self.num_iterations:
return EquationSolver2dNode(empty_animation)
def draw_line_return_wind(start, end, start_wind, should_linger = False, draw_line = True):
alpha_winder = make_alpha_winder(clockwise_val_func, start, end, self.num_checkpoints, cheap = self.use_cheap_winding_numbers)
a0 = alpha_winder(0)
rebased_winder = lambda alpha: alpha_winder(alpha) - a0 + start_wind
colored_line = Line(num_plane.coords_to_point(*start) + IN, num_plane.coords_to_point(*end) + IN)
match_style_with_bg(colored_line, base_line)
walker_anim = LinearWalker(
start_coords = start,
end_coords = end,
coords_to_point = num_plane.coords_to_point,
val_func = self.func, # Note: This is the image func, and not logic_func
number_update_func = rebased_winder if self.show_winding_numbers else None,
remover = True,
walker_stroke_color = WALKER_LIGHT_COLOR,
show_arrows = self.show_arrows,
scale_arrows = self.scale_arrows,
)
if should_linger: # Do we need an "and not self.display_in_parallel" here?
run_time = run_time_with_lingering
rate_func = linger_rate
else:
run_time = run_time_base
rate_func = base_rate
opt_line_anim = ShowCreation(colored_line) if draw_line else empty_animation
line_draw_anim = AnimationGroup(
opt_line_anim,
walker_anim,
run_time = run_time,
rate_func = rate_func)
return (line_draw_anim, rebased_winder(1))
wind_so_far = 0
anim = empty_animation
sides = [
rect.get_top(),
rect.get_right(),
rect.get_bottom(),
rect.get_left()
]
for (i, (start, end)) in enumerate(sides):
(next_anim, wind_so_far) = draw_line_return_wind(start, end, wind_so_far,
should_linger = i == len(sides) - 1,
draw_line = i in sides_to_draw)
anim = Succession(anim, next_anim)
if self.show_cursor:
cursor = cursor_base.copy()
center_x, center_y = rect.get_center()
width = rect.get_width()
height = rect.get_height()
cursor.move_to(num_plane.coords_to_point(center_x, center_y) + 10 * IN)
cursor.scale(min(width, height))
# Do a quick FadeIn, wait, and quick FadeOut on the cursor, matching rectangle-drawing time
cursor_anim = Succession(
FadeIn(cursor, run_time = 0.1),
Animation(cursor, run_time = 3.8),
FadeOut(cursor, run_time = 0.1)
)
anim = AnimationGroup(anim, cursor_anim)
override_wind = head(manual_wind_override)
if override_wind != None:
total_wind = override_wind
else:
total_wind = round(wind_so_far)
if total_wind == 0:
coords = [
rect.get_top_left(),
rect.get_top_right(),
rect.get_bottom_right(),
rect.get_bottom_left()
]
points = np.array([num_plane.coords_to_point(x, y) for (x, y) in coords]) + 3 * IN
# TODO: Maybe use diagonal lines or something to fill in rectangles indicating
# their "Nothing here" status?
# Or draw a large X or something
fill_rect = polygonObject = Polygon(*points, fill_opacity = 0.8, color = DARK_GREY)
return EquationSolver2dNode(Succession(anim, FadeIn(fill_rect)))
else:
(sub_rect1, sub_rect2) = rect.splits_on_dim(dim_to_split)
if dim_to_split == 0:
sub_rect_and_sides = [(sub_rect1, 1), (sub_rect2, 3)]
else:
sub_rect_and_sides = [(sub_rect1, 2), (sub_rect2, 0)]
children = [
Animate2dSolver(
cur_depth = cur_depth + 1,
rect = sub_rect,
dim_to_split = 1 - dim_to_split,
sides_to_draw = [side_to_draw],
manual_wind_override = child(manual_wind_override, index)
)
for (index, (sub_rect, side_to_draw)) in enumerate(sub_rect_and_sides)
]
mid_line_coords = rect.split_line_on_dim(dim_to_split)
mid_line_points = [num_plane.coords_to_point(x, y) + 2 * IN for (x, y) in mid_line_coords]
mid_line = DashedLine(*mid_line_points)
return EquationSolver2dNode(Succession(anim, ShowCreation(mid_line)), children)
lower_x = self.initial_lower_x
upper_x = self.initial_upper_x
lower_y = self.initial_lower_y
upper_y = self.initial_upper_y
x_interval = (lower_x, upper_x)
y_interval = (lower_y, upper_y)
rect = RectangleData(x_interval, y_interval)
print("Starting to compute anim")
node = Animate2dSolver(
cur_depth = 0,
rect = rect,
dim_to_split = 0,
sides_to_draw = [],
manual_wind_override = self.manual_wind_override
)
print("Done computing anim")
if self.display_in_parallel:
anim = node.display_in_parallel()
elif self.display_in_bfs:
anim = node.display_in_bfs()
else:
anim = node.display_in_series()
# Keep timing details here in sync with details above
rect_points = [
rect.get_top_left(),
rect.get_top_right(),
rect.get_bottom_right(),
rect.get_bottom_left(),
]
border = Polygon(*[num_plane.coords_to_point(*x) + IN for x in rect_points])
match_style_with_bg(border, base_line)
rect_time_without_linger = 4 * run_time_base
rect_time_with_linger = 3 * run_time_base + run_time_with_lingering
def rect_rate(alpha):
time_in = alpha * rect_time_with_linger
if time_in < 3 * run_time_base:
return fdiv(time_in, 4 * run_time_base)
else:
time_in_last_leg = time_in - 3 * run_time_base
alpha_in_last_leg = fdiv(time_in_last_leg, run_time_with_lingering)
return interpolate(0.75, 1, linger_rate(alpha_in_last_leg))
border_anim = ShowCreation(
border,
run_time = rect_time_with_linger,
rate_func = rect_rate
)
print("About to do the big Play; for reference, the current time is ", time.strftime("%H:%M:%S"))
if self.use_separate_plays:
node.play_in_bfs(self, border_anim)
else:
self.play(anim, border_anim)
print("All done; for reference, the current time is ", time.strftime("%H:%M:%S"))
self.wait()
# TODO: Perhaps have option for bullets (pulses) to fade out and in at ends of line, instead of
# jarringly popping out and in?
#
# TODO: Perhaps have bullets change color corresponding to a function of their coordinates?
# This could involve some merging of functoinality with PiWalker
class LinePulser(ContinualAnimation):
def __init__(self, line, bullet_template, num_bullets, pulse_time, output_func = None, **kwargs):
self.line = line
self.num_bullets = num_bullets
self.pulse_time = pulse_time
self.bullets = [bullet_template.copy() for i in range(num_bullets)]
self.output_func = output_func
ContinualAnimation.__init__(self, VGroup(*self.bullets), **kwargs)
def update_mobject(self, dt):
alpha = self.external_time % self.pulse_time
start = self.line.get_start()
end = self.line.get_end()
for i in range(self.num_bullets):
position = interpolate(start, end,
fdiv((i + alpha),(self.num_bullets)))
self.bullets[i].move_to(position)
if self.output_func:
position_2d = (position[0], position[1])
rev = point_to_rev(self.output_func(position_2d))
color = rev_to_color(rev)
self.bullets[i].set_color(color)
class ArrowCircleTest(Scene):
def construct(self):
circle_radius = 3
circle = Circle(radius = circle_radius, color = WHITE)
self.add(circle)
base_arrow = Arrow(circle_radius * 0.7 * RIGHT, circle_radius * 1.3 * RIGHT)
def rev_rotate(x, revs):
x.rotate(revs * TAU, about_point = ORIGIN)
x.set_color(rev_to_color(revs))
return x
num_arrows = 8 * 3
# 0.5 - fdiv below so as to get a clockwise rotation from left
arrows = [rev_rotate(base_arrow.copy(), 0.5 - (fdiv(i, num_arrows))) for i in range(num_arrows)]
arrows_vgroup = VGroup(*arrows)
self.play(ShowCreation(arrows_vgroup), run_time = 2.5, rate_func=linear)
self.wait()
class FuncRotater(Animation):
CONFIG = {
"rev_func" : lambda x : x, # Func from alpha to CCW revolutions,
}
# Perhaps abstract this out into an "Animation updating from original object" class
def interpolate_submobject(self, submobject, starting_submobject, alpha):
submobject.points = np.array(starting_submobject.points)
def interpolate_mobject(self, alpha):
Animation.interpolate_mobject(self, alpha)
angle_revs = self.rev_func(alpha)
self.mobject.rotate(
angle_revs * TAU,
about_point = ORIGIN
)
self.mobject.set_color(rev_to_color(angle_revs))
class TestRotater(Scene):
def construct(self):
test_line = Line(ORIGIN, RIGHT)
self.play(FuncRotater(
test_line,
rev_func = lambda x : x % 0.25,
run_time = 10))
# TODO: Be careful about clockwise vs. counterclockwise convention throughout!
# Make sure this is correct everywhere in resulting video.
class OdometerScene(ColorMappedObjectsScene):
CONFIG = {
# "func" : lambda p : 100 * p # Full coloring, essentially
"rotate_func" : lambda x : 2 * np.sin(2 * x * TAU), # This is given in terms of CW revs
"run_time" : 40,
"dashed_line_angle" : None,
"biased_display_start" : None,
"pure_odometer_background" : False
}
def construct(self):
ColorMappedObjectsScene.construct(self)
radius = ODOMETER_RADIUS
circle = Circle(center = ORIGIN, radius = radius)
circle.stroke_width = ODOMETER_STROKE_WIDTH
circle.color_using_background_image(self.background_image_file)
self.add(circle)
if self.pure_odometer_background:
# Just display this background circle, for compositing in Premiere with PiWalker odometers
self.wait()
return
if self.dashed_line_angle:
dashed_line = DashedLine(ORIGIN, radius * RIGHT)
# Clockwise rotation
dashed_line.rotate(-self.dashed_line_angle * TAU, about_point = ORIGIN)
self.add(dashed_line)
num_display = DecimalNumber(0, include_background_rectangle = False)
num_display.move_to(2 * DOWN)
caption = TextMobject("turns clockwise")
caption.next_to(num_display, DOWN)
self.add(caption)
display_val_bias = 0
if self.biased_display_start != None:
display_val_bias = self.biased_display_start - self.rotate_func(0)
display_func = lambda alpha : self.rotate_func(alpha) + display_val_bias
base_arrow = Arrow(ORIGIN, RIGHT, buff = 0)
self.play(
FuncRotater(base_arrow, rev_func = lambda x : -self.rotate_func(x)),
ChangingDecimal(num_display, display_func),
run_time = self.run_time,
rate_func=linear)
#############
# Above are mostly general tools; here, we list, in order, finished or near-finished scenes
class FirstSqrtScene(EquationSolver1d):
CONFIG = {
"x_min" : 0,
"x_max" : 2.5,
"y_min" : 0,
"y_max" : 2.5**2,
"graph_origin" : 2.5*DOWN + 5.5*LEFT,
"x_axis_width" : 12,
"zoom_factor" : 3,
"zoomed_canvas_center" : 2.25 * UP + 1.75 * LEFT,
"func" : lambda x : x**2,
"targetX" : np.sqrt(2),
"targetY" : 2,
"initial_lower_x" : 1,
"initial_upper_x" : 2,
"num_iterations" : 5,
"iteration_at_which_to_start_zoom" : 3,
"graph_label" : "y = x^2",
"show_target_line" : True,
"x_tick_frequency" : 0.25
}
class TestFirstSqrtScene(FirstSqrtScene):
CONFIG = {
"num_iterations" : 1,
}
FirstSqrtSceneConfig = FirstSqrtScene.CONFIG
shiftVal = FirstSqrtSceneConfig["targetY"]
class SecondSqrtScene(FirstSqrtScene):
CONFIG = {
"graph_label" : FirstSqrtSceneConfig["graph_label"] + " - " + str(shiftVal),
"show_y_as_deviation" : True,
}
class TestSecondSqrtScene(SecondSqrtScene):
CONFIG = {
"num_iterations" : 1
}
class GuaranteedZeroScene(SecondSqrtScene):
CONFIG = {
# Manual config values, not automatically synced to anything above
"initial_lower_x" : 1.75,
"initial_upper_x" : 2
}
class TestGuaranteedZeroScene(GuaranteedZeroScene):
CONFIG = {
"num_iterations" : 1
}
# TODO: Pi creatures intrigued
class RewriteEquation(Scene):
def construct(self):
# Can maybe use get_center() to perfectly center Groups before and after transform
f_old = TexMobject("f(x)")
f_new = f_old.copy()
equals_old = TexMobject("=")
equals_old_2 = equals_old.copy()
equals_new = equals_old.copy()
g_old = TexMobject("g(x)")
g_new = g_old.copy()
minus_new = TexMobject("-")
zero_new = TexMobject("0")
f_old.next_to(equals_old, LEFT)
g_old.next_to(equals_old, RIGHT)
minus_new.next_to(g_new, LEFT)
f_new.next_to(minus_new, LEFT)
equals_new.next_to(g_new, RIGHT)
zero_new.next_to(equals_new, RIGHT)
# where_old = TextMobject("Where does ")
# where_old.next_to(f_old, LEFT)
# where_new = where_old.copy()
# where_new.next_to(f_new, LEFT)
# qmark_old = TextMobject("?")
# qmark_old.next_to(g_old, RIGHT)
# qmark_new = qmark_old.copy()
# qmark_new.next_to(zero_new, RIGHT)
self.add(f_old, equals_old, equals_old_2, g_old) #, where_old, qmark_old)
self.wait()
self.play(
ReplacementTransform(f_old, f_new),
ReplacementTransform(equals_old, equals_new),
ReplacementTransform(g_old, g_new),
ReplacementTransform(equals_old_2, minus_new),
ShowCreation(zero_new),
# ReplacementTransform(where_old, where_new),
# ReplacementTransform(qmark_old, qmark_new),
)
self.wait()
class SignsExplanation(Scene):
def construct(self):
num_line = NumberLine()
largest_num = 10
num_line.add_numbers(*list(range(-largest_num, largest_num + 1)))
self.add(num_line)
self.wait()
pos_num = 3
neg_num = -pos_num
pos_arrow = Arrow(
num_line.number_to_point(0),
num_line.number_to_point(pos_num),
buff = 0,
color = positive_color)
neg_arrow = Arrow(
num_line.number_to_point(0),
num_line.number_to_point(neg_num),
buff = 0,
color = negative_color)
plus_sign = TexMobject("+", fill_color = positive_color)
minus_sign = TexMobject("-", fill_color = negative_color)
plus_sign.next_to(pos_arrow, UP)
minus_sign.next_to(neg_arrow, UP)
#num_line.add_numbers(pos_num)
self.play(ShowCreation(pos_arrow), FadeIn(plus_sign))
#num_line.add_numbers(neg_num)
self.play(ShowCreation(neg_arrow), FadeIn(minus_sign))
class VectorField(Scene):
CONFIG = {
"func" : example_plane_func,
"granularity" : 10,
"arrow_scale_factor" : 0.1,
"normalized_arrow_scale_factor" : 5
}
def construct(self):
num_plane = NumberPlane()
self.add(num_plane)
x_min, y_min = num_plane.point_to_coords(FRAME_X_RADIUS * LEFT + FRAME_Y_RADIUS * UP)
x_max, y_max = num_plane.point_to_coords(FRAME_X_RADIUS * RIGHT + FRAME_Y_RADIUS * DOWN)
x_points = np.linspace(x_min, x_max, self.granularity)
y_points = np.linspace(y_min, y_max, self.granularity)
points = it.product(x_points, y_points)
sized_arrows = Group()
unsized_arrows = Group()
for (x, y) in points:
output = self.func((x, y))
output_size = np.sqrt(sum(output**2))
normalized_output = output * fdiv(self.normalized_arrow_scale_factor, output_size) # Assume output has nonzero size here
arrow = Vector(output * self.arrow_scale_factor)
normalized_arrow = Vector(normalized_output * self.arrow_scale_factor)
arrow.move_to(num_plane.coords_to_point(x, y))
normalized_arrow.move_to(arrow)
sized_arrows.add(arrow)
unsized_arrows.add(normalized_arrow)
self.add(sized_arrows)
self.wait()
self.play(ReplacementTransform(sized_arrows, unsized_arrows))
self.wait()
class HasItsLimitations(Scene):
CONFIG = {
"camera_config" : {"use_z_coordinate_for_display_order": True},
}
def construct(self):
num_line = NumberLine()
num_line.add_numbers()
self.add(num_line)
self.wait()
# We arrange to go from 2 to 4, a la the squaring in FirstSqrtScene
base_point = num_line.number_to_point(2) + OUT
dot_color = ORANGE
DOT_Z = OUT
# Note: This z-buffer value is needed for our static scenes, but is
# not sufficient for everything, in that we still need to use
# the foreground_mobjects trick during animations.
# At some point, we should figure out how to have animations
# play well with z coordinates.
input_dot = Dot(base_point + DOT_Z, color = dot_color)
input_label = TextMobject("Input", fill_color = dot_color)
input_label.next_to(input_dot, UP + LEFT)
input_label.add_background_rectangle()
self.add_foreground_mobject(input_dot)
self.add(input_label)
curved_arrow = Arc(0, color = MAROON_E)
curved_arrow.set_bound_angles(np.pi, 0)
curved_arrow.generate_points()
curved_arrow.add_tip()
curved_arrow.move_arc_center_to(base_point + RIGHT)
# Could do something smoother, with arrowhead moving along partial arc?
self.play(ShowCreation(curved_arrow))
output_dot = Dot(base_point + 2 * RIGHT + DOT_Z, color = dot_color)
output_label = TextMobject("Output", fill_color = dot_color)
output_label.next_to(output_dot, UP + RIGHT)
output_label.add_background_rectangle()
self.add_foreground_mobject(output_dot)
self.add(output_label)
self.wait()
num_plane = NumberPlane()
num_plane.add_coordinates()
new_base_point = base_point + 2 * UP
new_input_dot = input_dot.copy().move_to(new_base_point)
new_input_label = input_label.copy().next_to(new_input_dot, UP + LEFT)
new_curved_arrow = Arc(0).match_style(curved_arrow)
new_curved_arrow.set_bound_angles(np.pi * 3/4, 0)
new_curved_arrow.generate_points()
new_curved_arrow.add_tip()
input_diff = input_dot.get_center() - curved_arrow.points[0]
output_diff = output_dot.get_center() - curved_arrow.points[-1]
new_curved_arrow.shift((new_input_dot.get_center() - new_curved_arrow.points[0]) - input_diff)
new_output_dot = output_dot.copy().move_to(new_curved_arrow.points[-1] + output_diff)
new_output_label = output_label.copy().next_to(new_output_dot, UP + RIGHT)
dot_objects = Group(input_dot, input_label, output_dot, output_label, curved_arrow)
new_dot_objects = Group(new_input_dot, new_input_label, new_output_dot, new_output_label, new_curved_arrow)
self.play(
FadeOut(num_line), FadeIn(num_plane),
ReplacementTransform(dot_objects, new_dot_objects),
)
self.wait()
self.add_foreground_mobject(new_dot_objects)
complex_plane = ComplexPlane()
complex_plane.add_coordinates()
# This looks a little wonky and we may wish to do a crossfade in Premiere instead
self.play(FadeOut(num_plane), FadeIn(complex_plane))
self.wait()
class ComplexPlaneIs2d(Scene):
def construct(self):
com_plane = ComplexPlane()
self.add(com_plane)
# TODO: Add labels to axes, specific complex points
self.wait()
class NumberLineScene(Scene):
def construct(self):
num_line = NumberLine()
self.add(num_line)
# TODO: Add labels, arrows, specific points
self.wait()
border_color = PURPLE_E
inner_color = RED
stroke_width = 10
left_point = num_line.number_to_point(-1)
right_point = num_line.number_to_point(1)
# TODO: Make this line a thin rectangle
interval_1d = Line(left_point, right_point,
stroke_color = inner_color, stroke_width = stroke_width)
rect_1d = Rectangle(stroke_width = 0, fill_opacity = 1, fill_color = inner_color)
rect_1d.replace(interval_1d)
rect_1d.stretch_to_fit_height(SMALL_BUFF)
left_dot = Dot(left_point, stroke_width = stroke_width, color = border_color)
right_dot = Dot(right_point, stroke_width = stroke_width, color = border_color)
endpoints_1d = VGroup(left_dot, right_dot)
full_1d = VGroup(rect_1d, endpoints_1d)
self.play(ShowCreation(full_1d))
self.wait()
# TODO: Can polish the morphing above; have dots become left and right sides, and
# only then fill in the top and bottom
num_plane = NumberPlane()
random_points = [UP + LEFT, UP + RIGHT, DOWN + RIGHT, DOWN + LEFT]
border_2d = Polygon(
*random_points,
stroke_color = border_color,
stroke_width = stroke_width)
filling_2d = Polygon(
*random_points,
fill_color = inner_color,
fill_opacity = 0.8,
stroke_width = stroke_width)
full_2d = VGroup(filling_2d, border_2d)
self.play(
FadeOut(num_line),
FadeIn(num_plane),
ReplacementTransform(full_1d, full_2d))
self.wait()
class Initial2dFuncSceneBase(Scene):
CONFIG = {
"func" : point3d_func_from_complex_func(lambda c : c**2 - c**3/5 + 1)
# We don't use example_plane_func because, unfortunately, the sort of examples
# which are good for demonstrating our color mapping haven't turned out to be
# good for visualizing in this manner; the gridlines run over themselves multiple
# times in too confusing a fashion
}
def show_planes(self):
print("Error! Unimplemented (pure virtual) show_planes")
def shared_construct(self):
points = [LEFT + DOWN, RIGHT + DOWN, LEFT + UP, RIGHT + UP]
for i in range(len(points) - 1):
line = Line(points[i], points[i + 1], color = RED)
self.obj_draw(line)
def wiggle_around(point):
radius = 0.2
small_circle = cw_circle.copy()
small_circle.scale(radius)
small_circle.move_to(point + radius * RIGHT)
small_circle.set_color(RED)
self.obj_draw(small_circle)
wiggle_around(points[-1])
def obj_draw(self, input_object):
self.play(ShowCreation(input_object))
def construct(self):
self.show_planes()
self.shared_construct()
# Alternative to the below, using MappingCameras, but no morphing animation
class Initial2dFuncSceneWithoutMorphing(Initial2dFuncSceneBase):
def setup(self):
left_camera = Camera(**self.camera_config)
right_camera = MappingCamera(
mapping_func = self.func,
**self.camera_config)
split_screen_camera = SplitScreenCamera(left_camera, right_camera, **self.camera_config)
self.camera = split_screen_camera
def show_planes(self):
self.num_plane = NumberPlane()
self.num_plane.prepare_for_nonlinear_transform()
#num_plane.fade()
self.add(self.num_plane)
# Alternative to the above, manually implementing split screen with a morphing animation
class Initial2dFuncSceneMorphing(Initial2dFuncSceneBase):
CONFIG = {
"num_needed_anchor_curves" : 10,
}
def setup(self):
split_line = DashedLine(FRAME_Y_RADIUS * UP, FRAME_Y_RADIUS * DOWN)
self.num_plane = NumberPlane(x_radius = FRAME_X_RADIUS/2)
self.num_plane.to_edge(LEFT, buff = 0)
self.num_plane.prepare_for_nonlinear_transform()
self.add(self.num_plane, split_line)
def squash_onto_left(self, object):
object.shift(FRAME_X_RADIUS/2 * LEFT)
def squash_onto_right(self, object):
object.shift(FRAME_X_RADIUS/2 * RIGHT)
def obj_draw(self, input_object):
output_object = input_object.copy()
if input_object.get_num_curves() < self.num_needed_anchor_curves:
input_object.insert_n_curves(self.num_needed_anchor_curves)
output_object.apply_function(self.func)
self.squash_onto_left(input_object)
self.squash_onto_right(output_object)
self.play(
ShowCreation(input_object),
ShowCreation(output_object)
)
def show_planes(self):
right_plane = self.num_plane.copy()
right_plane.center()
right_plane.prepare_for_nonlinear_transform()
right_plane.apply_function(self.func)
right_plane.shift(FRAME_X_RADIUS/2 * RIGHT)
self.right_plane = right_plane
crappy_cropper = FullScreenFadeRectangle(fill_opacity = 1)
crappy_cropper.stretch_to_fit_width(FRAME_X_RADIUS)
crappy_cropper.to_edge(LEFT, buff = 0)
self.play(
ReplacementTransform(self.num_plane.copy(), right_plane),
FadeIn(crappy_cropper),
Animation(self.num_plane),
run_time = 3
)
class DemonstrateColorMapping(ColorMappedObjectsScene):
CONFIG = {
"show_num_plane" : False,
"show_full_color_map" : True
}
def construct(self):
ColorMappedObjectsScene.construct(self)
# Doing this in Premiere now instead
# output_plane_label = TextMobject("Output Plane", color = WHITE)
# output_plane_label.move_to(3 * UP)
# self.add_foreground_mobject(output_plane_label)
if self.show_full_color_map:
bright_background = Rectangle(width = 2 * FRAME_X_RADIUS + 1, height = 2 * FRAME_Y_RADIUS + 1, fill_opacity = 1)
bright_background.color_using_background_image(self.background_image_file)
dim_background = bright_background.copy()
dim_background.fill_opacity = 0.3
background = bright_background.copy()
self.add(background)
self.wait()
self.play(ReplacementTransform(background, dim_background))
self.wait()
ray = Line(ORIGIN, 10 * LEFT)
circle = cw_circle.copy()
circle.color_using_background_image(self.background_image_file)
self.play(ShowCreation(circle))
self.wait()
scale_up_factor = 5
scale_down_factor = 20
self.play(ApplyMethod(circle.scale, fdiv(1, scale_down_factor)))
self.play(ApplyMethod(circle.scale, scale_up_factor * scale_down_factor))
self.play(ApplyMethod(circle.scale, fdiv(1, scale_up_factor)))
self.wait()
self.remove(circle)
ray = Line(ORIGIN, 10 * LEFT)
ray.color_using_background_image(self.background_image_file)
self.play(ShowCreation(ray))
self.wait()
self.play(Rotating(ray, about_point = ORIGIN, radians = -TAU/2))
self.wait()
self.play(Rotating(ray, about_point = ORIGIN, radians = -TAU/2))
self.wait()
if self.show_full_color_map:
self.play(ReplacementTransform(background, bright_background))
self.wait()
# Everything in this is manually kept in sync with WindingNumber_G/TransitionFromPathsToBoundaries
class LoopSplitScene(ColorMappedObjectsScene):
CONFIG = {
"func" : plane_func_by_wind_spec(
(-2, 0, 2), (2, 0, 1)
),
"use_fancy_lines" : True,
}
def PulsedLine(self,
start, end,
bullet_template,
num_bullets = 4,
pulse_time = 1,
**kwargs):
line = Line(start, end, color = WHITE, stroke_width = 4, **kwargs)
if self.use_fancy_lines:
line.color_using_background_image(self.background_image_file)
anim = LinePulser(
line = line,
bullet_template = bullet_template,
num_bullets = num_bullets,
pulse_time = pulse_time,
output_func = self.func,
**kwargs)
return (line, VMobject(*anim.bullets), anim)
def construct(self):
ColorMappedObjectsScene.construct(self)
scale_factor = 2
shift_term = 0
# TODO: Change all this to use a wider than tall loop, made of two squares
# Original loop
tl = (UP + 2 * LEFT) * scale_factor
tm = UP * scale_factor
tr = (UP + 2 * RIGHT) * scale_factor
bl = (DOWN + 2 * LEFT) * scale_factor
bm = DOWN * scale_factor
br = (DOWN + 2 * RIGHT) * scale_factor
top_line = Line(tl, tr) # Invisible; only used for surrounding circle
bottom_line = Line(br, bl) # Invisible; only used for surrounding circle
stroke_width = top_line.stroke_width
default_bullet = PiCreature()
default_bullet.scale(0.15)
def pl(a, b):
return self.PulsedLine(a, b, default_bullet)
def indicate_circle(x, double_horizontal_stretch = False):
circle = Circle(color = WHITE, radius = 2 * np.sqrt(2))
circle.move_to(x.get_center())
if x.get_slope() == 0:
circle.stretch(0.2, 1)
if double_horizontal_stretch:
circle.stretch(2, 0)
else:
circle.stretch(0.2, 0)
return circle
tl_line_trip = pl(tl, tm)
midline_left_trip = pl(tm, bm)
bl_line_trip = pl(bm, bl)
left_line_trip = pl(bl, tl)
left_square_trips = [tl_line_trip, midline_left_trip, bl_line_trip, left_line_trip]
left_square_lines = [x[0] for x in left_square_trips]
left_square_lines_vmobject = VMobject(*left_square_lines)
left_square_bullets = [x[1] for x in left_square_trips]
left_square_anims = [x[2] for x in left_square_trips]
tr_line_trip = pl(tm, tr)
right_line_trip = pl(tr, br)
br_line_trip = pl(br, bm)
midline_right_trip = pl(bm, tm)
right_square_trips = [tr_line_trip, right_line_trip, br_line_trip, midline_right_trip]
right_square_lines = [x[0] for x in right_square_trips]
right_square_lines_vmobject = VMobject(*right_square_lines)
right_square_bullets = [x[1] for x in right_square_trips]
right_square_anims = [x[2] for x in right_square_trips]
midline_trips = [midline_left_trip, midline_right_trip]
midline_lines = [x[0] for x in midline_trips]
midline_lines_vmobject = VMobject(*midline_lines)
midline_bullets = [x[1] for x in midline_trips]
midline_anims = [x[1] for x in midline_trips]
left_line = left_line_trip[0]
right_line = right_line_trip[0]
for b in left_square_bullets + right_square_bullets:
b.set_fill(opacity = 0)
faded = 0.3
# Workaround for FadeOut/FadeIn not playing well with ContinualAnimations due to
# Transforms making copies no longer identified with the ContinualAnimation's tracked mobject
def bullet_fade(start, end, mob):
return UpdateFromAlphaFunc(mob, lambda m, a : m.set_fill(opacity = interpolate(start, end, a)))
def bullet_list_fade(start, end, bullet_list):
return [bullet_fade(start, end, b) for b in bullet_list]
def line_fade(start, end, mob):
return UpdateFromAlphaFunc(mob, lambda m, a : m.set_stroke(width = interpolate(start, end, a) * stroke_width))
def play_combined_fade(start, end, lines_vmobject, bullets):
self.play(
line_fade(start, end, lines_vmobject),
*bullet_list_fade(start, end, bullets)
)
def play_fade_left(start, end):
play_combined_fade(start, end, left_square_lines_vmobject, left_square_bullets)
def play_fade_right(start, end):
play_combined_fade(start, end, right_square_lines_vmobject, right_square_bullets)
def play_fade_mid(start, end):
play_combined_fade(start, end, midline_lines_vmobject, midline_bullets)
def flash_circles(circles):
self.play(LaggedStartMap(FadeIn, VGroup(circles)))
self.wait()
self.play(FadeOut(VGroup(circles)))
self.wait()
self.add(left_square_lines_vmobject, right_square_lines_vmobject)
self.remove(*midline_lines)
self.wait()
self.play(ShowCreation(midline_lines[0]))
self.add(midline_lines_vmobject)
self.wait()
self.add(*left_square_anims)
self.play(line_fade(1, faded, right_square_lines_vmobject), *bullet_list_fade(0, 1, left_square_bullets))
self.wait()
flash_circles([indicate_circle(l) for l in left_square_lines])
self.play(line_fade(faded, 1, right_square_lines_vmobject), *bullet_list_fade(1, 0, left_square_bullets))
self.wait()
self.add(*right_square_anims)
self.play(line_fade(1, faded, left_square_lines_vmobject), *bullet_list_fade(0, 1, right_square_bullets))
self.wait()
flash_circles([indicate_circle(l) for l in right_square_lines])
self.play(line_fade(faded, 1, left_square_lines_vmobject), *bullet_list_fade(1, 0, right_square_bullets))
self.wait()
self.play(*bullet_list_fade(0, 1, left_square_bullets + right_square_bullets))
self.wait()
outside_circlers = [
indicate_circle(left_line),
indicate_circle(right_line),
indicate_circle(top_line, double_horizontal_stretch = True),
indicate_circle(bottom_line, double_horizontal_stretch = True)
]
flash_circles(outside_circlers)
inner_circle = indicate_circle(midline_lines[0])
self.play(FadeIn(inner_circle))
self.wait()
self.play(FadeOut(inner_circle), line_fade(1, 0, midline_lines_vmobject), *bullet_list_fade(1, 0, midline_bullets))
self.wait()
# Repeat for effect, goes well with narration
self.play(FadeIn(inner_circle), line_fade(0, 1, midline_lines_vmobject), *bullet_list_fade(0, 1, midline_bullets))
self.wait()
self.play(FadeOut(inner_circle), line_fade(1, 0, midline_lines_vmobject), *bullet_list_fade(1, 0, midline_bullets))
self.wait()
# TODO: Perhaps do extra illustration of zooming out and winding around a large circle,
# to illustrate relation between degree and large-scale winding number
class FundThmAlg(EquationSolver2d):
CONFIG = {
"func" : plane_func_by_wind_spec((1, 2), (-1, 1.5), (-1, 1.5)),
"num_iterations" : 2,
}
class SolveX5MinusXMinus1(EquationSolver2d):
CONFIG = {
"func" : plane_func_from_complex_func(lambda c : c**5 - c - 1),
"num_iterations" : 10,
"show_cursor" : True,
"display_in_bfs" : True,
}
class PureColorMapOfX5Thing(PureColorMap):
CONFIG = {
"func" : plane_func_from_complex_func(lambda c : c**5 - c - 1),
}
class X5ThingWithRightHalfGreyed(SolveX5MinusXMinus1):
CONFIG = {
"num_iterations" : 3,
"manual_wind_override" : (1, None, (1, (0, None, None), (0, None, None)))
}
class SolveX5MinusXMinus1_5Iterations(EquationSolver2d):
CONFIG = {
"func" : plane_func_from_complex_func(lambda c : c**5 - c - 1),
"num_iterations" : 5,
"show_cursor" : True,
"display_in_bfs" : True,
"manual_wind_override" : (None, None, (None, (0, None, None), (0, None, None)))
}
class X5_Monster_Red_Lines(SolveX5MinusXMinus1_5Iterations):
CONFIG = {
"use_separate_plays" : True,
"use_fancy_lines" : False,
"line_color" : RED,
}
class X5_Monster_Green_Lines(X5_Monster_Red_Lines):
CONFIG = {
"line_color" : GREEN,
}
class X5_Monster_Red_Lines_Long(X5_Monster_Red_Lines):
CONFIG = {
"num_iterations" : 6
}
class X5_Monster_Green_Lines_Long(X5_Monster_Green_Lines):
CONFIG = {
"num_iterations" : 6
}
class X5_Monster_Red_Lines_Little_More(X5_Monster_Red_Lines_Long):
CONFIG = {
"num_iterations" : 7
}
class X5_Monster_Green_Lines_Little_More(X5_Monster_Green_Lines_Long):
CONFIG = {
"num_iterations" : 7
}
class X5_Monster_Red_Lines_No_Numbers(X5_Monster_Red_Lines):
CONFIG = {
"num_iterations" : 3,
"show_winding_numbers" : False,
}
class X5_Monster_Green_Lines_No_Numbers(X5_Monster_Green_Lines):
CONFIG = {
"num_iterations" : 3,
"show_winding_numbers" : False,
}
class SolveX5MinusXMinus1_3Iterations(EquationSolver2d):
CONFIG = {
"func" : plane_func_from_complex_func(lambda c : c**5 - c - 1),
"num_iterations" : 3,
"show_cursor" : True,
"display_in_bfs" : True,
}
class Diagnostic(SolveX5MinusXMinus1_3Iterations):
CONFIG = {
# I think the combination of these two makes things slow
"use_separate_plays" : not False, # This one isn't important to set any particular way, so let's leave it like this
"use_fancy_lines" : True,
# This causes a small slowdown (before rendering, in particular), but not the big one, I think
"show_winding_numbers" : True,
# This doesn't significantly matter for rendering time, I think
"camera_config" : {"use_z_coordinate_for_display_order" : True}
}
# All above flags False (meaning not db = False): just under 30 it/s
# not db = True: 30
# use_fancy_lines = True: 30 at first (if scene.play(bfs_nodes[0].first_anim, border_anim is off), but then drops to 3 (or drops right away if that simultaneous play is on)
# use_z_coordinate = True: 30
# show_winding_numbers = True: 10
# winding AND use_fancy_lines: 10
# not db AND fancy_lines AND z_coords = true, winding = false: 3. Not 30, but 3. Slow.
# db AND use_fancy: 3. Slow.
# fancy AND z_coords: 30. Fast. [Hm, this may have been a mistake; fancy and z_coords is now slow?]
# fancy, winding, AND z_coords, but not (not db): 10
# not db, winding, AND z_coords, but not fancy: 10
# class DiagnosticB(Diagnostic):
# CONFIG = {
# "num_iterations" : 3,
# #"num_checkpoints" : 100,
# #"show_winding_numbers" : False,
# #"use_cheap_winding_numbers" : True,
# }
class SolveX5MinusXMinus1Parallel(SolveX5MinusXMinus1):
CONFIG = {
"display_in_parallel" : True
}
class SolveX5MinusXMinus1BFS(SolveX5MinusXMinus1):
CONFIG = {
"display_in_bfs" : True
}
class PreviewClip(EquationSolver2d):
CONFIG = {
"func" : example_plane_func,
"num_iterations" : 5,
"display_in_parallel" : True,
"use_fancy_lines" : True,
}
class ParallelClip(EquationSolver2d):
CONFIG = {
"func" : plane_func_by_wind_spec(
(-3, -1.3, 2), (0.1, 0.2, 1), (2.8, -2, 1)
),
"num_iterations" : 5,
"display_in_parallel" : True,
}
class EquationSolver2dMatchBreakdown(EquationSolver2d):
CONFIG = {
"func" : plane_func_by_wind_spec(
(-2, 0.3, 2), (2, -0.2, 1) # Not an exact match, because our breakdown function has a zero along midlines...
),
"num_iterations" : 5,
"display_in_parallel" : True,
"show_cursor" : True
}
class EquationSolver2dMatchBreakdown_parallel(EquationSolver2dMatchBreakdown):
CONFIG = {
"display_in_parallel" : True,
"display_in_bfs" : False,
}
class EquationSolver2dMatchBreakdown_bfs(EquationSolver2dMatchBreakdown):
CONFIG = {
"display_in_parallel" : False,
"display_in_bfs" : True,
}
class QuickPreview(PreviewClip):
CONFIG = {
"num_iterations" : 3,
"display_in_parallel" : False,
"display_in_bfs" : True,
"show_cursor" : True
}
class LongEquationSolver(EquationSolver2d):
CONFIG = {
"func" : example_plane_func,
"num_iterations" : 10,
"display_in_bfs" : True,
"linger_parameter" : 0.4,
"show_cursor" : True,
}
class QuickPreviewUnfancy(LongEquationSolver):
CONFIG = {
# "use_fancy_lines" : False,
}
# TODO: Borsuk-Ulam visuals
# Note: May want to do an ordinary square scene, then MappingCamera it into a circle
# class BorsukUlamScene(PiWalker):
# 3-way scene of "Good enough"-illustrating odometers; to be composed in Premiere
left_func = lambda x : x**2 - x + 1
diff_func = lambda x : np.cos(1.4 * (x - 0.1) * (np.log(x + 0.1) - 0.3) * TAU)/2.1
class LeftOdometer(OdometerScene):
CONFIG = {
"rotate_func" : left_func,
"biased_display_start" : 0
}
class RightOdometer(OdometerScene):
CONFIG = {
"rotate_func" : lambda x : left_func(x) + diff_func(x),
"biased_display_start" : 0
}
class DiffOdometer(OdometerScene):
CONFIG = {
"rotate_func" : diff_func,
"dashed_line_angle" : 0.5,
"biased_display_start" : 0
}
class CombineInterval(Scene):
def construct(self):
plus_sign = TexMobject("+", fill_color = positive_color)
minus_sign = TexMobject("-", fill_color = negative_color)
left_point = Dot(LEFT, color = positive_color)
right_point = Dot(RIGHT, color = negative_color)
line1 = Line(LEFT, RIGHT)
interval1 = Group(line1, left_point, right_point)
plus_sign.next_to(left_point, UP)
minus_sign.next_to(right_point, UP)
self.add(interval1, plus_sign, minus_sign)
self.wait()
self.play(
CircleIndicate(plus_sign),
CircleIndicate(minus_sign),
)
self.wait()
mid_point = Dot(ORIGIN, color = GREY)
question_mark = TexMobject("?", fill_color = GREY)
plus_sign_copy = plus_sign.copy()
minus_sign_copy = minus_sign.copy()
new_signs = Group(question_mark, plus_sign_copy, minus_sign_copy)
for sign in new_signs: sign.next_to(mid_point, UP)
self.play(FadeIn(mid_point), FadeIn(question_mark))
self.wait()
self.play(
ApplyMethod(mid_point.set_color, positive_color),
ReplacementTransform(question_mark, plus_sign_copy),
)
self.play(
CircleIndicate(plus_sign_copy),
CircleIndicate(minus_sign),
)
self.wait()
self.play(
ApplyMethod(mid_point.set_color, negative_color),
ReplacementTransform(plus_sign_copy, minus_sign_copy),
)
self.play(
CircleIndicate(minus_sign_copy),
CircleIndicate(plus_sign),
)
self.wait()
class CombineInterval2(Scene):
def construct(self):
plus_sign = TexMobject("+", fill_color = positive_color)
def make_interval(a, b):
line = Line(a, b)
start_dot = Dot(a, color = positive_color)
end_dot = Dot(b, color = positive_color)
start_sign = plus_sign.copy().next_to(start_dot, UP)
end_sign = plus_sign.copy().next_to(end_dot, UP)
return Group(start_sign, end_sign, line, start_dot, end_dot)
def pair_indicate(a, b):
self.play(
CircleIndicate(a),
CircleIndicate(b)
)
left_interval = make_interval(2 * LEFT, LEFT)
right_interval = make_interval(RIGHT, 2 * RIGHT)
self.play(FadeIn(left_interval), FadeIn(right_interval))
pair_indicate(left_interval[0], left_interval[1])
pair_indicate(right_interval[0], right_interval[1])
self.play(
ApplyMethod(left_interval.shift, RIGHT),
ApplyMethod(right_interval.shift, LEFT),
)
pair_indicate(left_interval[0], right_interval[1])
self.wait()
tiny_loop_func = scale_func(plane_func_by_wind_spec((-1, -2), (1, 1), (1, 1)), 0.3)
class TinyLoopScene(ColorMappedByFuncScene):
CONFIG = {
"func" : tiny_loop_func,
"show_num_plane" : False,
"loop_point" : ORIGIN,
"circle_scale" : 0.7
}
def construct(self):
ColorMappedByFuncScene.construct(self)
circle = cw_circle.copy()
circle.scale(self.circle_scale)
circle.move_to(self.loop_point)
self.play(ShowCreation(circle))
self.wait()
class TinyLoopInInputPlaneAroundNonZero(TinyLoopScene):
CONFIG = {
"loop_point" : 0.5 * RIGHT
}
class TinyLoopInInputPlaneAroundZero(TinyLoopScene):
CONFIG = {
"loop_point" : UP + RIGHT
}
class TinyLoopInOutputPlaneAroundNonZero(TinyLoopInInputPlaneAroundNonZero):
CONFIG = {
"camera_class" : MappingCamera,
"camera_config" : {"mapping_func" : point3d_func_from_plane_func(tiny_loop_func)},
"show_output" : True,
"show_num_plane" : False,
}
class TinyLoopInOutputPlaneAroundZero(TinyLoopInInputPlaneAroundZero):
CONFIG = {
"camera_class" : MappingCamera,
"camera_config" : {"mapping_func" : point3d_func_from_plane_func(tiny_loop_func)},
"show_output" : True,
"show_num_plane" : False,
}
class BorderOf2dRegionScene(Scene):
def construct(self):
num_plane = NumberPlane()
self.add(num_plane)
points = standard_rect + 1.5 * UP + 2 * RIGHT
interior = Polygon(*points, fill_color = neutral_color, fill_opacity = 1, stroke_width = 0)
self.play(FadeIn(interior))
border = Polygon(*points, color = negative_color, stroke_width = border_stroke_width)
self.play(ShowCreation(border))
big_loop_no_zeros_func = lambda x_y5 : complex_to_pair(np.exp(complex(10, x_y5[1] * np.pi)))
class BigLoopNoZeros(ColorMappedObjectsScene):
CONFIG = {
"func" : big_loop_no_zeros_func
}
def construct(self):
ColorMappedObjectsScene.construct(self)
points = 3 * np.array([UL, UR, DR, DL])
polygon = Polygon(*points)
polygon.color_using_background_image(self.background_image_file)
self.play(ShowCreation(polygon))
self.wait()
polygon2 = polygon.copy()
polygon2.fill_opacity = 1
self.play(FadeIn(polygon2))
self.wait()
class ExamplePlaneFunc(ColorMappedByFuncScene):
CONFIG = {
"show_num_plane" : False,
"func" : example_plane_func
}
def construct(self):
ColorMappedByFuncScene.construct(self)
radius = 0.5
def circle_point(point):
circle = cw_circle.copy().scale(radius).move_to(point)
self.play(ShowCreation(circle))
return circle
def circle_spec(spec):
point = spec[0] * RIGHT + spec[1] * UP
return circle_point(point)
nonzero_point = ORIGIN # Manually chosen, not auto-synced with example_plane_func
nonzero_point_circle = circle_point(nonzero_point)
self.wait()
self.play(FadeOut(nonzero_point_circle))
self.wait()
zero_circles = Group()
for spec in example_plane_func_spec:
zero_circles.add(circle_spec(spec))
self.wait()
# TODO: Fix the code in Fade to automatically propagate correctly
# to subobjects, even with special vectorized object handler.
# Also, remove the special handling from FadeOut, have it implemented
# solely through Fade.
#
# But for now, I'll just take care of this stuff myself here.
# self.play(*[FadeOut(zero_circle) for zero_circle in zero_circles])
self.play(FadeOut(zero_circles))
self.wait()
# We can reuse our nonzero point from before for "Output doesn't go through ever color"
# Do re-use in Premiere
# We can also re-use the first of our zero-circles for "Output does go through every color",
# but just in case it would be useful, here's another one, all on its own
specific_spec_index = 0
temp_circle = circle_spec(example_plane_func_spec[specific_spec_index])
self.play(FadeOut(temp_circle))
self.wait()
class PiWalkerExamplePlaneFunc(PiWalkerRect):
CONFIG = {
"show_num_plane" : False,
"func" : example_plane_func,
# These are just manually entered, not
# automatically kept in sync with example_plane_func:
"start_x" : -4,
"start_y" : 3,
"walk_width" : 8,
"walk_height" : 6,
}
class NoticeHowOnThisLoop(PiWalkerRect):
CONFIG = {
"show_num_plane" : False,
"func" : example_plane_func,
# These are just manually entered, not
# automatically kept in sync with example_plane_func:
"start_x" : 0.5,
"start_y" : -0.5,
"walk_width" : -1, # We trace from bottom-right clockwise on this one, to start at a red point
"walk_height" : -1,
}
class ButOnThisLoopOverHere(NoticeHowOnThisLoop):
CONFIG = {
# These are just manually entered, not
# automatically kept in sync with example_plane_func:
"start_x" : -1,
"start_y" : 0,
"walk_width" : 1,
"walk_height" : 1,
}
class PiWalkerExamplePlaneFuncWithScaling(PiWalkerExamplePlaneFunc):
CONFIG = {
"scale_arrows" : True,
"display_size" : True,
}
class TinyLoopOfBasicallySameColor(PureColorMap):
def construct(self):
PureColorMap.construct(self)
radius = 0.5
circle = cw_circle.copy().scale(radius).move_to(UP + RIGHT)
self.play(ShowCreation(circle))
self.wait()
def uhOhFunc(xxx_todo_changeme11):
(x, y) = xxx_todo_changeme11
x = -np.clip(x, -5, 5)/5
y = -np.clip(y, -3, 3)/3
alpha = 0.5 # Most things will return green
# These next three things should really be abstracted into some "Interpolated triangle" function
if x >= 0 and y >= x and y <= 1:
alpha = interpolate(0.5, 1, y - x)
if x < 0 and y >= -2 * x and y <= 1:
alpha = interpolate(0.5, 1, y + 2 * x)
if x >= -1 and y >= 2 * (x + 1) and y <= 1:
alpha = interpolate(0.5, 0, y - 2 * (x + 1))
return complex_to_pair(100 * np.exp(complex(0, TAU * (0.5 - alpha))))
class UhOhFuncTest(PureColorMap):
CONFIG = {
"func" : uhOhFunc
}
class UhOhScene(EquationSolver2d):
CONFIG = {
"func" : uhOhFunc,
"manual_wind_override" : (1, None, (1, None, (1, None, None))), # Tailored to UhOhFunc above
"show_winding_numbers" : False,
"num_iterations" : 5,
}
class UhOhSceneWithWindingNumbers(UhOhScene):
CONFIG = {
"show_winding_numbers" : True,
}
class UhOhSceneWithWindingNumbersNoOverride(UhOhSceneWithWindingNumbers):
CONFIG = {
"manual_wind_override" : None,
"num_iterations" : 2
}
class UhOhSalientStill(ColorMappedObjectsScene):
CONFIG = {
"func" : uhOhFunc
}
def construct(self):
ColorMappedObjectsScene.construct(self)
new_up = 3 * UP
new_left = 5 * LEFT
thin_line = Line(UP, RIGHT, color = WHITE)
main_points = [new_left + new_up, new_up, ORIGIN, new_left]
polygon = Polygon(*main_points, stroke_width = border_stroke_width)
thin_polygon = polygon.copy().match_style(thin_line)
polygon.color_using_background_image(self.background_image_file)
midline = Line(new_up + 0.5 * new_left, 0.5 * new_left, stroke_width = border_stroke_width)
thin_midline = midline.copy().match_style(thin_line)
midline.color_using_background_image(self.background_image_file)
self.add(polygon, midline)
self.wait()
everything_filler = FullScreenFadeRectangle(fill_opacity = 1)
everything_filler.color_using_background_image(self.background_image_file)
thin_white_copy = Group(thin_polygon, thin_midline)
self.play(FadeIn(everything_filler), FadeIn(thin_white_copy))
self.wait()
# TODO: Brouwer's fixed point theorem visuals
# class BFTScene(Scene):
# TODO: Pi creatures wide-eyed in amazement
#################
# TODOs, from easiest to hardest:
# Minor fiddling with little things in each animation; placements, colors, timing, text
# Initial odometer scene (simple once previous Pi walker scene is decided upon)
# Writing new Pi walker scenes by parametrizing general template
# (All the above are basically trivial tinkering at this point)
# ----
# Pi creature emotion stuff
# BFT visuals
# Borsuk-Ulam visuals
####################
# Random test scenes and test functions go here:
def rect_to_circle(xxx_todo_changeme12):
(x, y, z) = xxx_todo_changeme12
size = np.sqrt(x**2 + y**2)
max_abs_size = max(abs(x), abs(y))
return fdiv(np.array((x, y, z)) * max_abs_size, size)
class MapPiWalkerRect(PiWalkerRect):
CONFIG = {
"camera_class" : MappingCamera,
"camera_config" : {"mapping_func" : rect_to_circle},
"show_output" : True
}
class ShowBack(PiWalkerRect):
CONFIG = {
"func" : plane_func_by_wind_spec((1, 2), (-1, 1.5), (-1, 1.5))
}
class PiWalkerOdometerTest(PiWalkerExamplePlaneFunc):
CONFIG = {
"display_odometer" : True
}
class PiWalkerFancyLineTest(PiWalkerExamplePlaneFunc):
CONFIG = {
"color_foreground_not_background" : True
}
class NotFoundScene(Scene):
def construct(self):
self.add(TextMobject("SCENE NOT FOUND!"))
self.wait()
criticalStripYScale = 100
criticalStrip = Axes(x_min = -0.5, x_max = 1.5, x_axis_config = {"unit_size" : FRAME_X_RADIUS,
"number_at_center" : 0.5},
y_min = -criticalStripYScale, y_max = criticalStripYScale,
y_axis_config = {"unit_size" : fdiv(FRAME_Y_RADIUS, criticalStripYScale)})
class ZetaViz(PureColorMap):
CONFIG = {
"func" : plane_zeta,
#"num_plane" : criticalStrip,
"show_num_plane" : True
}
class TopLabel(Scene):
CONFIG = {
"text" : "Text"
}
def construct(self):
label = TextMobject(self.text)
label.move_to(3 * UP)
self.add(label)
self.wait()
# This is a giant hack that doesn't handle rev wrap-around correctly; should use
# make_alpha_winder instead
class SpecifiedWinder(PiWalker):
CONFIG = {
"start_x" : 0,
"start_y" : 0,
"x_wind" : 1, # Assumed positive
"y_wind" : 1, # Assumed positive
"step_size" : 0.1
}
def setup(self):
rev_func = lambda p : point_to_rev(self.func(p))
start_pos = np.array((self.start_x, self.start_y))
cur_pos = start_pos.copy()
start_rev = rev_func(start_pos)
mid_rev = start_rev
while (abs(mid_rev - start_rev) < self.x_wind):
cur_pos += (self.step_size, 0)
mid_rev = rev_func(cur_pos)
print("Reached ", cur_pos, ", with rev ", mid_rev - start_rev)
mid_pos = cur_pos.copy()
end_rev = mid_rev
while (abs(end_rev - mid_rev) < self.y_wind):
cur_pos -= (0, self.step_size)
end_rev = rev_func(cur_pos)
end_pos = cur_pos.copy()
print("Reached ", cur_pos, ", with rev ", end_rev - mid_rev)
self.walk_coords = [start_pos, mid_pos, end_pos]
print("Walk coords: ", self.walk_coords)
PiWalker.setup(self)
class OneFifthTwoFifthWinder(SpecifiedWinder):
CONFIG = {
"func" : example_plane_func,
"start_x" : -2.0,
"start_y" : 1.0,
"x_wind" : 0.2,
"y_wind" : 0.2,
"step_size" : 0.01,
"show_num_plane" : False,
"step_run_time" : 6,
"num_decimal_places" : 2,
}
class OneFifthOneFifthWinderWithReset(OneFifthTwoFifthWinder):
CONFIG = {
"wind_reset_indices" : [1]
}
class OneFifthTwoFifthWinderOdometer(OneFifthTwoFifthWinder):
CONFIG = {
"display_odometer" : True,
}
class ForwardBackWalker(PiWalker):
CONFIG = {
"func" : example_plane_func,
"walk_coords" : [np.array((-2, 1)), np.array((1, 1))],
"step_run_time" : 3,
}
class ForwardBackWalkerOdometer(ForwardBackWalker):
CONFIG = {
"display_odometer" : True,
}
class PureOdometerBackground(OdometerScene):
CONFIG = {
"pure_odometer_background" : True
}
class CWColorWalk(PiWalkerRect):
CONFIG = {
"func" : example_plane_func,
"start_x" : example_plane_func_spec[0][0] - 1,
"start_y" : example_plane_func_spec[0][1] + 1,
"walk_width" : 2,
"walk_height" : 2,
"draw_lines" : False,
"display_wind" : False,
"step_run_time" : 2
}
class CWColorWalkOdometer(CWColorWalk):
CONFIG = {
"display_odometer" : True,
}
class CCWColorWalk(CWColorWalk):
CONFIG = {
"start_x" : example_plane_func_spec[2][0] - 1,
"start_y" : example_plane_func_spec[2][1] + 1,
}
class CCWColorWalkOdometer(CCWColorWalk):
CONFIG = {
"display_odometer" : True,
}
class ThreeTurnWalker(PiWalkerRect):
CONFIG = {
"func" : plane_func_from_complex_func(lambda c: c**3 * complex(1, 1)**3),
"double_up" : True,
"wind_reset_indices" : [4]
}
class ThreeTurnWalkerOdometer(ThreeTurnWalker):
CONFIG = {
"display_odometer" : True,
}
class FourTurnWalker(PiWalkerRect):
CONFIG = {
"func" : plane_func_by_wind_spec((0, 0, 4))
}
class FourTurnWalkerOdometer(FourTurnWalker):
CONFIG = {
"display_odometer" : True,
}
class OneTurnWalker(PiWalkerRect):
CONFIG = {
"func" : plane_func_from_complex_func(lambda c : np.exp(c) + c)
}
class OneTurnWalkerOdometer(OneTurnWalker):
CONFIG = {
"display_odometer" : True,
}
class ZeroTurnWalker(PiWalkerRect):
CONFIG = {
"func" : plane_func_by_wind_spec((2, 2, 1), (-1, 2, -1))
}
class ZeroTurnWalkerOdometer(ZeroTurnWalker):
CONFIG = {
"display_odometer" : True,
}
class NegOneTurnWalker(PiWalkerRect):
CONFIG = {
"step_run_time" : 2,
"func" : plane_func_by_wind_spec((0, 0, -1))
}
class NegOneTurnWalkerOdometer(NegOneTurnWalker):
CONFIG = {
"display_odometer" : True,
}
# FIN