3b1b-manim/manimlib/shaders/inserts/get_xyz_to_uv.glsl
2023-01-19 20:24:32 -08:00

104 lines
3.1 KiB
GLSL

vec2 xs_on_clean_parabola(vec3 b0, vec3 b1, vec3 b2){
/*
Given three control points for a quadratic bezier,
this returns the two values (x0, x2) such that the
section of the parabola y = x^2 between those values
is isometric to the given quadratic bezier.
Adapated from https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
*/
vec3 dd = 2 * b1 - b0 - b2;
float u0 = dot(b1 - b0, dd);
float u2 = dot(b2 - b1, dd);
float cp = length(cross(b2 - b0, dd));
return vec2(u0 / cp, u2 / cp);
}
mat4 map_triangles(vec3 src0, vec3 src1, vec3 src2, vec3 dst0, vec3 dst1, vec3 dst2){
/*
Return an affine transform which maps the triangle (src0, src1, src2)
onto the triangle (dst0, dst1, dst2)
*/
mat4 src_mat = mat4(
src0, 1.0,
src1, 1.0,
src2, 1.0,
vec4(1.0)
);
mat4 dst_mat = mat4(
dst0, 1.0,
dst1, 1.0,
dst2, 1.0,
vec4(1.0)
);
return dst_mat * inverse(src_mat);
}
mat4 rotation(vec3 axis, float cos_angle){
float c = cos_angle;
float s = sqrt(1 - c * c); // Sine of the angle
float oc = 1.0 - c;
float ax = axis.x;
float ay = axis.y;
float az = axis.z;
return mat4(
oc * ax * ax + c, oc * ax * ay + az * s, oc * az * ax - ay * s, 0.0,
oc * ax * ay - az * s, oc * ay * ay + c, oc * ay * az + ax * s, 0.0,
oc * az * ax + ay * s, oc * ay * az - ax * s, oc * az * az + c, 0.0,
0.0, 0.0, 0.0, 1.0
);
}
mat4 map_onto_x_axis(vec3 src0, vec3 src1){
mat4 shift = mat4(1.0);
shift[3].xyz = -src0;
// Find rotation matrix between unit vectors in each direction
vec3 vect = normalize(src1 - src0);
// No rotation needed
if(vect.x > 1 - 1e-6) return shift;
// Equivalent to cross(vect, vec3(1, 0, 0))
vec3 axis = normalize(vec3(0.0, vect.z, -vect.y));
mat4 rotate = rotation(axis, vect.x);
return rotate * shift;
}
mat4 get_xyz_to_uv(
vec3 b0, vec3 b1, vec3 b2,
float threshold,
out bool exceeds_threshold
){
/*
Populates the matrix `result` with an affine transformation which maps a set of
quadratic bezier controls points into a new coordinate system such that the bezier
curve coincides with y = x^2.
If the x-range under this part of the curve exceeds `threshold`, this returns false
and populates result a matrix mapping b0 and b2 onto the x-axis
*/
vec2 xs = xs_on_clean_parabola(b0, b1, b2);
float x0 = xs[0];
float x1 = 0.5 * (xs[0] + xs[1]);
float x2 = xs[1];
// Portions of the parabola y = x^2 where abs(x) exceeds
// this value are treated as straight lines.
exceeds_threshold = (min(x0, x2) > threshold || max(x0, x2) < -threshold);
if(exceeds_threshold){
return map_onto_x_axis(b0, b2);
}
// This triangle on the xy plane should be isometric
// to (b0, b1, b2), and it should define a quadratic
// bezier segment aligned with y = x^2
vec3 dst0 = vec3(x0, x0 * x0, 0.0);
vec3 dst1 = vec3(x1, x0 * x2, 0.0);
vec3 dst2 = vec3(x2, x2 * x2, 0.0);
return map_triangles(b0, b1, b2, dst0, dst1, dst2);
}