3b1b-manim/manimlib/mobject/mobject.py
2021-01-13 10:23:42 -10:00

1475 lines
48 KiB
Python

from functools import reduce
import copy
import itertools as it
import operator as op
import random
import sys
import moderngl
import numpy as np
from manimlib.constants import *
from manimlib.utils.color import color_gradient
from manimlib.utils.color import get_colormap_list
from manimlib.utils.color import rgb_to_hex
from manimlib.utils.color import color_to_rgb
from manimlib.utils.config_ops import digest_config
from manimlib.utils.iterables import batch_by_property
from manimlib.utils.iterables import list_update
from manimlib.utils.iterables import resize_array
from manimlib.utils.iterables import resize_preserving_order
from manimlib.utils.iterables import resize_with_interpolation
from manimlib.utils.iterables import make_even
from manimlib.utils.iterables import listify
from manimlib.utils.bezier import interpolate
from manimlib.utils.paths import straight_path
from manimlib.utils.simple_functions import get_parameters
from manimlib.utils.space_ops import angle_of_vector
from manimlib.utils.space_ops import get_norm
from manimlib.utils.space_ops import rotation_matrix_transpose
from manimlib.shader_wrapper import ShaderWrapper
from manimlib.shader_wrapper import get_colormap_code
# TODO: Explain array_attrs
# TODO: Incorporate shader defaults
class Mobject(object):
"""
Mathematical Object
"""
CONFIG = {
"color": WHITE,
"opacity": 1,
"dim": 3, # TODO, get rid of this
# Lighting parameters
# Positive gloss up to 1 makes it reflect the light.
"gloss": 0.0,
# Positive shadow up to 1 makes a side opposite the light darker
"shadow": 0.0,
# For shaders
"shader_folder": "",
"render_primitive": moderngl.TRIANGLE_STRIP,
"texture_paths": None,
"depth_test": False,
# If true, the mobject will not get rotated according to camera position
"is_fixed_in_frame": False,
# Must match in attributes of vert shader
"shader_dtype": [
('point', np.float32, (3,)),
]
}
def __init__(self, **kwargs):
digest_config(self, kwargs)
self.submobjects = []
self.parents = []
self.family = [self]
self.locked_data_keys = set()
self.init_data()
self.init_uniforms()
self.init_updaters()
self.init_points()
self.init_colors()
self.init_shader_data()
if self.depth_test:
self.apply_depth_test()
def __str__(self):
return self.__class__.__name__
def init_data(self):
self.data = {
"points": np.zeros((0, 3)),
"rgbas": np.zeros((1, 4)),
}
def init_uniforms(self):
self.uniforms = {
"is_fixed_in_frame": float(self.is_fixed_in_frame),
"gloss": self.gloss,
"shadow": self.shadow,
}
def init_colors(self):
self.set_color(self.color, self.opacity)
def init_points(self):
# Typically implemented in subclass, unlpess purposefully left blank
pass
# Related to data dict
def set_data(self, data):
for key in data:
self.data[key] = data[key].copy()
def set_uniforms(self, uniforms):
for key in uniforms:
self.uniforms[key] = uniforms[key] # Copy?
def resize_points(self, new_length, resize_func=resize_array):
if new_length != len(self.data["points"]):
self.data["points"] = resize_func(self.data["points"], new_length)
def set_points(self, points):
self.resize_points(len(points))
self.data["points"][:] = points
def append_points(self, new_points):
self.resize_points(self.get_num_points() + len(new_points))
self.data["points"][-len(new_points):] = new_points
return self
def match_points(self, mobject):
self.set_points(mobject.get_points())
def get_points(self):
return self.data["points"]
def clear_points(self):
self.resize_points(0)
def get_num_points(self):
return len(self.data["points"])
#
# Family matters
def __getitem__(self, value):
if isinstance(value, slice):
GroupClass = self.get_group_class()
return GroupClass(*self.split().__getitem__(value))
return self.split().__getitem__(value)
def __iter__(self):
return iter(self.split())
def __len__(self):
return len(self.split())
def split(self):
return self.submobjects
def assemble_family(self):
sub_families = [sm.get_family() for sm in self.submobjects]
self.family = [self, *it.chain(*sub_families)]
self.refresh_has_updater_status()
for parent in self.parents:
parent.assemble_family()
return self
def get_family(self, recurse=True):
return self.family if recurse else [self]
def family_members_with_points(self):
return [m for m in self.get_family() if m.has_points()]
def add(self, *mobjects):
if self in mobjects:
raise Exception("Mobject cannot contain self")
for mobject in mobjects:
if mobject not in self.submobjects:
self.submobjects.append(mobject)
if self not in mobject.parents:
mobject.parents.append(self)
self.assemble_family()
return self
def remove(self, *mobjects):
for mobject in mobjects:
if mobject in self.submobjects:
self.submobjects.remove(mobject)
if self in mobject.parents:
mobject.parents.remove(self)
self.assemble_family()
return self
def add_to_back(self, *mobjects):
self.set_submobjects(list_update(mobjects, self.submobjects))
return self
def replace_submobject(self, index, new_submob):
old_submob = self.submobjects[index]
if self in old_submob.parents:
old_submob.parents.remove(self)
self.submobjects[index] = new_submob
self.assemble_family()
return self
def set_submobjects(self, submobject_list):
self.remove(*self.submobjects)
self.add(*submobject_list)
return self
def get_array_attrs(self):
# May be more for other Mobject types
return ["points"]
def digest_mobject_attrs(self):
"""
Ensures all attributes which are mobjects are included
in the submobjects list.
"""
mobject_attrs = [x for x in list(self.__dict__.values()) if isinstance(x, Mobject)]
self.set_submobjects(list_update(self.submobjects, mobject_attrs))
return self
def apply_over_attr_arrays(self, func):
for attr in self.get_array_attrs():
setattr(self, attr, func(getattr(self, attr)))
return self
def copy(self):
# TODO, either justify reason for shallow copy, or
# remove this redundancy everywhere
# return self.deepcopy()
parents = self.parents
self.parents = []
copy_mobject = copy.copy(self)
self.parents = parents
copy_mobject.data = dict(self.data)
for key in self.data:
copy_mobject.data[key] = self.data[key].copy()
copy_mobject.uniforms = dict(self.uniforms)
copy_mobject.submobjects = []
copy_mobject.add(*[sm.copy() for sm in self.submobjects])
copy_mobject.match_updaters(self)
# Make sure any mobject or numpy array attributes are copied
family = self.get_family()
for attr, value in list(self.__dict__.items()):
if isinstance(value, Mobject) and value in family and value is not self:
setattr(copy_mobject, attr, value.copy())
if isinstance(value, np.ndarray):
setattr(copy_mobject, attr, value.copy())
if isinstance(value, ShaderWrapper):
setattr(copy_mobject, attr, value.copy())
return copy_mobject
def deepcopy(self):
parents = self.parents
self.parents = []
result = copy.deepcopy(self)
self.parents = parents
return result
def generate_target(self, use_deepcopy=False):
self.target = None # Prevent exponential explosion
if use_deepcopy:
self.target = self.deepcopy()
else:
self.target = self.copy()
return self.target
# Updating
def init_updaters(self):
self.time_based_updaters = []
self.non_time_updaters = []
self.has_updaters = False
self.updating_suspended = False
def update(self, dt=0, recursive=True):
if not self.has_updaters or self.updating_suspended:
return self
for updater in self.time_based_updaters:
updater(self, dt)
for updater in self.non_time_updaters:
updater(self)
if recursive:
for submob in self.submobjects:
submob.update(dt, recursive)
return self
def get_time_based_updaters(self):
return self.time_based_updaters
def has_time_based_updater(self):
return len(self.time_based_updaters) > 0
def get_updaters(self):
return self.time_based_updaters + self.non_time_updaters
def get_family_updaters(self):
return list(it.chain(*[sm.get_updaters() for sm in self.get_family()]))
def add_updater(self, update_function, index=None, call_updater=True):
if "dt" in get_parameters(update_function):
updater_list = self.time_based_updaters
else:
updater_list = self.non_time_updaters
if index is None:
updater_list.append(update_function)
else:
updater_list.insert(index, update_function)
self.refresh_has_updater_status()
if call_updater:
self.update()
return self
def remove_updater(self, update_function):
for updater_list in [self.time_based_updaters, self.non_time_updaters]:
while update_function in updater_list:
updater_list.remove(update_function)
return self
def clear_updaters(self, recursive=True):
self.time_based_updaters = []
self.non_time_updaters = []
if recursive:
for submob in self.submobjects:
submob.clear_updaters()
self.suspend_updating(recursive)
return self
def match_updaters(self, mobject):
self.clear_updaters()
for updater in mobject.get_updaters():
self.add_updater(updater)
return self
def suspend_updating(self, recursive=True):
self.updating_suspended = True
if recursive:
for submob in self.submobjects:
submob.suspend_updating(recursive)
return self
def resume_updating(self, recursive=True, call_updater=True):
self.updating_suspended = False
if recursive:
for submob in self.submobjects:
submob.resume_updating(recursive)
for parent in self.parents:
parent.resume_updating(recursive=False, call_updater=False)
if call_updater:
self.update(dt=0, recursive=recursive)
return self
def refresh_has_updater_status(self):
self.has_updaters = len(self.get_family_updaters()) > 0
return self
# Transforming operations
def apply_to_family(self, func):
for mob in self.family_members_with_points():
func(mob)
def shift(self, *vectors):
total_vector = reduce(op.add, vectors)
for mob in self.get_family():
mob.set_points(mob.get_points() + total_vector)
return self
def scale(self, scale_factor, **kwargs):
"""
Default behavior is to scale about the center of the mobject.
The argument about_edge can be a vector, indicating which side of
the mobject to scale about, e.g., mob.scale(about_edge = RIGHT)
scales about mob.get_right().
Otherwise, if about_point is given a value, scaling is done with
respect to that point.
"""
self.apply_points_function(
lambda points: scale_factor * points,
**kwargs
)
return self
def rotate_about_origin(self, angle, axis=OUT, axes=[]):
return self.rotate(angle, axis, about_point=ORIGIN)
def rotate(self, angle, axis=OUT, **kwargs):
rot_matrix_T = rotation_matrix_transpose(angle, axis)
self.apply_points_function(
lambda points: np.dot(points, rot_matrix_T),
**kwargs
)
return self
def flip(self, axis=UP, **kwargs):
return self.rotate(TAU / 2, axis, **kwargs)
def stretch(self, factor, dim, **kwargs):
def func(points):
points[:, dim] *= factor
return points
self.apply_points_function(func, **kwargs)
return self
def apply_function(self, function, **kwargs):
# Default to applying matrix about the origin, not mobjects center
if len(kwargs) == 0:
kwargs["about_point"] = ORIGIN
self.apply_points_function(
lambda points: np.array([function(p) for p in points]),
**kwargs
)
return self
def apply_function_to_position(self, function):
self.move_to(function(self.get_center()))
return self
def apply_function_to_submobject_positions(self, function):
for submob in self.submobjects:
submob.apply_function_to_position(function)
return self
def apply_matrix(self, matrix, **kwargs):
# Default to applying matrix about the origin, not mobjects center
if ("about_point" not in kwargs) and ("about_edge" not in kwargs):
kwargs["about_point"] = ORIGIN
full_matrix = np.identity(self.dim)
matrix = np.array(matrix)
full_matrix[:matrix.shape[0], :matrix.shape[1]] = matrix
self.apply_points_function(
lambda points: np.dot(points, full_matrix.T),
**kwargs
)
return self
def apply_complex_function(self, function, **kwargs):
def R3_func(point):
x, y, z = point
xy_complex = function(complex(x, y))
return [
xy_complex.real,
xy_complex.imag,
z
]
return self.apply_function(R3_func)
def wag(self, direction=RIGHT, axis=DOWN, wag_factor=1.0):
for mob in self.family_members_with_points():
alphas = np.dot(mob.get_points(), np.transpose(axis))
alphas -= min(alphas)
alphas /= max(alphas)
alphas = alphas**wag_factor
mob.set_points(mob.get_points() + np.dot(
alphas.reshape((len(alphas), 1)),
np.array(direction).reshape((1, mob.dim))
))
return self
def reverse_points(self):
for mob in self.family_members_with_points():
mob.apply_over_attr_arrays(lambda arr: arr[::-1])
return self
def repeat(self, count):
"""
This can make transition animations nicer
"""
for mob in self.family_members_with_points():
mob.apply_over_attr_arrays(lambda arr: np.vstack([arr] * count))
return self
def apply_points_function(self, func, about_point=None, about_edge=None):
if about_point is None:
if about_edge is None:
about_edge = ORIGIN
about_point = self.get_bounding_box_point(about_edge)
for mob in self.family_members_with_points():
points = mob.get_points()
points[:] = func(points - about_point) + about_point
return self
# Positioning methods
def center(self):
self.shift(-self.get_center())
return self
def align_on_border(self, direction, buff=DEFAULT_MOBJECT_TO_EDGE_BUFFER):
"""
Direction just needs to be a vector pointing towards side or
corner in the 2d plane.
"""
target_point = np.sign(direction) * (FRAME_X_RADIUS, FRAME_Y_RADIUS, 0)
point_to_align = self.get_bounding_box_point(direction)
shift_val = target_point - point_to_align - buff * np.array(direction)
shift_val = shift_val * abs(np.sign(direction))
self.shift(shift_val)
return self
def to_corner(self, corner=LEFT + DOWN, buff=DEFAULT_MOBJECT_TO_EDGE_BUFFER):
return self.align_on_border(corner, buff)
def to_edge(self, edge=LEFT, buff=DEFAULT_MOBJECT_TO_EDGE_BUFFER):
return self.align_on_border(edge, buff)
def next_to(self, mobject_or_point,
direction=RIGHT,
buff=DEFAULT_MOBJECT_TO_MOBJECT_BUFFER,
aligned_edge=ORIGIN,
submobject_to_align=None,
index_of_submobject_to_align=None,
coor_mask=np.array([1, 1, 1]),
):
if isinstance(mobject_or_point, Mobject):
mob = mobject_or_point
if index_of_submobject_to_align is not None:
target_aligner = mob[index_of_submobject_to_align]
else:
target_aligner = mob
target_point = target_aligner.get_bounding_box_point(
aligned_edge + direction
)
else:
target_point = mobject_or_point
if submobject_to_align is not None:
aligner = submobject_to_align
elif index_of_submobject_to_align is not None:
aligner = self[index_of_submobject_to_align]
else:
aligner = self
point_to_align = aligner.get_bounding_box_point(aligned_edge - direction)
self.shift((target_point - point_to_align + buff * direction) * coor_mask)
return self
def shift_onto_screen(self, **kwargs):
space_lengths = [FRAME_X_RADIUS, FRAME_Y_RADIUS]
for vect in UP, DOWN, LEFT, RIGHT:
dim = np.argmax(np.abs(vect))
buff = kwargs.get("buff", DEFAULT_MOBJECT_TO_EDGE_BUFFER)
max_val = space_lengths[dim] - buff
edge_center = self.get_edge_center(vect)
if np.dot(edge_center, vect) > max_val:
self.to_edge(vect, **kwargs)
return self
def is_off_screen(self):
if self.get_left()[0] > FRAME_X_RADIUS:
return True
if self.get_right()[0] < -FRAME_X_RADIUS:
return True
if self.get_bottom()[1] > FRAME_Y_RADIUS:
return True
if self.get_top()[1] < -FRAME_Y_RADIUS:
return True
return False
def stretch_about_point(self, factor, dim, point):
return self.stretch(factor, dim, about_point=point)
def stretch_in_place(self, factor, dim):
# Now redundant with stretch
return self.stretch(factor, dim)
def rescale_to_fit(self, length, dim, stretch=False, **kwargs):
old_length = self.length_over_dim(dim)
if old_length == 0:
return self
if stretch:
self.stretch(length / old_length, dim, **kwargs)
else:
self.scale(length / old_length, **kwargs)
return self
def stretch_to_fit_width(self, width, **kwargs):
return self.rescale_to_fit(width, 0, stretch=True, **kwargs)
def stretch_to_fit_height(self, height, **kwargs):
return self.rescale_to_fit(height, 1, stretch=True, **kwargs)
def stretch_to_fit_depth(self, depth, **kwargs):
return self.rescale_to_fit(depth, 1, stretch=True, **kwargs)
def set_width(self, width, stretch=False, **kwargs):
return self.rescale_to_fit(width, 0, stretch=stretch, **kwargs)
def set_height(self, height, stretch=False, **kwargs):
return self.rescale_to_fit(height, 1, stretch=stretch, **kwargs)
def set_depth(self, depth, stretch=False, **kwargs):
return self.rescale_to_fit(depth, 2, stretch=stretch, **kwargs)
def set_coord(self, value, dim, direction=ORIGIN):
curr = self.get_coord(dim, direction)
shift_vect = np.zeros(self.dim)
shift_vect[dim] = value - curr
self.shift(shift_vect)
return self
def set_x(self, x, direction=ORIGIN):
return self.set_coord(x, 0, direction)
def set_y(self, y, direction=ORIGIN):
return self.set_coord(y, 1, direction)
def set_z(self, z, direction=ORIGIN):
return self.set_coord(z, 2, direction)
def space_out_submobjects(self, factor=1.5, **kwargs):
self.scale(factor, **kwargs)
for submob in self.submobjects:
submob.scale(1. / factor)
return self
def move_to(self, point_or_mobject, aligned_edge=ORIGIN,
coor_mask=np.array([1, 1, 1])):
if isinstance(point_or_mobject, Mobject):
target = point_or_mobject.get_bounding_box_point(aligned_edge)
else:
target = point_or_mobject
point_to_align = self.get_bounding_box_point(aligned_edge)
self.shift((target - point_to_align) * coor_mask)
return self
def replace(self, mobject, dim_to_match=0, stretch=False):
if not mobject.get_num_points() and not mobject.submobjects:
self.scale(0)
return self
if stretch:
for i in range(self.dim):
self.rescale_to_fit(mobject.length_over_dim(i), i, stretch=True)
else:
self.rescale_to_fit(
mobject.length_over_dim(dim_to_match),
dim_to_match,
stretch=False
)
self.shift(mobject.get_center() - self.get_center())
return self
def surround(self, mobject,
dim_to_match=0,
stretch=False,
buff=MED_SMALL_BUFF):
self.replace(mobject, dim_to_match, stretch)
length = mobject.length_over_dim(dim_to_match)
self.scale((length + buff) / length)
return self
def put_start_and_end_on(self, start, end):
# TODO, this doesn't currently work in 3d
curr_start, curr_end = self.get_start_and_end()
curr_vect = curr_end - curr_start
if np.all(curr_vect == 0):
raise Exception("Cannot position endpoints of closed loop")
target_vect = end - start
self.scale(
get_norm(target_vect) / get_norm(curr_vect),
about_point=curr_start,
)
self.rotate(
angle_of_vector(target_vect) - angle_of_vector(curr_vect),
about_point=curr_start
)
self.shift(start - curr_start)
return self
# Background rectangle
def add_background_rectangle(self, color=BLACK, opacity=0.75, **kwargs):
# TODO, this does not behave well when the mobject has points,
# since it gets displayed on top
from manimlib.mobject.shape_matchers import BackgroundRectangle
self.background_rectangle = BackgroundRectangle(
self, color=color,
fill_opacity=opacity,
**kwargs
)
self.add_to_back(self.background_rectangle)
return self
def add_background_rectangle_to_submobjects(self, **kwargs):
for submobject in self.submobjects:
submobject.add_background_rectangle(**kwargs)
return self
def add_background_rectangle_to_family_members_with_points(self, **kwargs):
for mob in self.family_members_with_points():
mob.add_background_rectangle(**kwargs)
return self
# Color functions
def set_rgba_array(self, color=None, opacity=None, name="rgbas", recurse=True):
if color is not None:
rgbs = np.array([color_to_rgb(c) for c in listify(color)])
if opacity is not None:
opacities = listify(opacity)
# Color only
if color is not None and opacity is None:
for mob in self.get_family(recurse):
mob.data[name] = resize_array(mob.data[name], len(rgbs))
mob.data[name][:, :3] = rgbs
# Opacity only
if color is None and opacity is not None:
for mob in self.get_family(recurse):
mob.data[name] = resize_array(mob.data[name], len(opacities))
mob.data[name][:, 3] = opacities
# Color and opacity
if color is not None and opacity is not None:
rgbas = np.array([
[*rgb, o]
for rgb, o in zip(*make_even(rgbs, opacities))
])
for mob in self.get_family(recurse):
mob.data[name] = rgbas.copy()
return self
def set_color(self, color, opacity=None, recurse=True):
self.set_rgba_array(color, opacity, recurse=False)
# Recurse to submobjects differently from how set_rgba_array
# in case they implement set_color differently
if recurse:
for submob in self.submobjects:
submob.set_color(color, recurse=True)
return self
def set_opacity(self, opacity, recurse=True):
self.set_rgba_array(color=None, opacity=opacity, recurse=False)
if recurse:
for submob in self.submobjects:
submob.set_opacity(opacity, recurse=True)
return self
def get_color(self):
return rgb_to_hex(self.data["rgbas"][0, :3])
def get_opacity(self):
return self.data["rgbas"][0, 3]
def set_color_by_gradient(self, *colors):
self.set_submobject_colors_by_gradient(*colors)
return self
def set_submobject_colors_by_gradient(self, *colors):
if len(colors) == 0:
raise Exception("Need at least one color")
elif len(colors) == 1:
return self.set_color(*colors)
# mobs = self.family_members_with_points()
mobs = self.submobjects
new_colors = color_gradient(colors, len(mobs))
for mob, color in zip(mobs, new_colors):
mob.set_color(color)
return self
def fade(self, darkness=0.5, recurse=True):
self.set_opacity(1.0 - darkness, recurse=recurse)
def get_gloss(self):
return self.uniforms["gloss"]
def set_gloss(self, gloss, recurse=True):
for mob in self.get_family(recurse):
mob.uniforms["gloss"] = gloss
return self
def get_shadow(self):
return self.uniforms["shadow"]
def set_shadow(self, shadow, recurse=True):
for mob in self.get_family(recurse):
mob.uniforms["shadow"] = shadow
return self
##
def save_state(self, use_deepcopy=False):
if hasattr(self, "saved_state"):
# Prevent exponential growth of data
self.saved_state = None
if use_deepcopy:
self.saved_state = self.deepcopy()
else:
self.saved_state = self.copy()
return self
def restore(self):
if not hasattr(self, "saved_state") or self.save_state is None:
raise Exception("Trying to restore without having saved")
self.become(self.saved_state)
return self
##
def get_merged_array(self, array_attr):
if self.submobjects:
return np.vstack([
getattr(sm, array_attr)
for sm in self.get_family()
])
else:
return getattr(self, array_attr)
def get_all_points(self):
if self.submobjects:
return np.vstack([sm.get_points() for sm in self.get_family()])
else:
return self.get_points()
# Getters
def get_points_defining_boundary(self):
return self.get_all_points()
def get_bounding_box_point(self, direction):
result = np.zeros(self.dim)
bb = self.get_bounding_box()
result[direction < 0] = bb[0, direction < 0]
result[direction == 0] = bb[1, direction == 0]
result[direction > 0] = bb[2, direction > 0]
return result
def get_bounding_box(self):
all_points = self.get_points_defining_boundary()
if len(all_points) == 0:
return np.zeros((3, self.dim))
else:
# Lower left and upper right corners
mins = all_points.min(0)
maxs = all_points.max(0)
mids = (mins + maxs) / 2
return np.array([mins, mids, maxs])
# Pseudonyms for more general get_bounding_box_point method
def get_edge_center(self, direction):
return self.get_bounding_box_point(direction)
def get_corner(self, direction):
return self.get_bounding_box_point(direction)
def get_center(self):
return self.get_bounding_box_point(np.zeros(self.dim))
def get_center_of_mass(self):
return self.get_all_points().mean(0)
def get_boundary_point(self, direction):
all_points = self.get_points_defining_boundary()
boundary_directions = all_points - self.get_center()
norms = np.linalg.norm(boundary_directions, axis=1)
boundary_directions /= np.repeat(norms, 3).reshape((len(norms), 3))
index = np.argmax(np.dot(boundary_directions, np.array(direction).T))
return all_points[index]
def get_bounding_box_point_by_direction(self, direction):
dl, center, ur = self.get_bounding_box()
corner_vect = (ur - center)
return center + direction / np.max(np.abs(np.true_divide(
direction, corner_vect,
out=np.zeros(len(direction)),
where=((corner_vect) != 0)
)))
def get_top(self):
return self.get_edge_center(UP)
def get_bottom(self):
return self.get_edge_center(DOWN)
def get_right(self):
return self.get_edge_center(RIGHT)
def get_left(self):
return self.get_edge_center(LEFT)
def get_zenith(self):
return self.get_edge_center(OUT)
def get_nadir(self):
return self.get_edge_center(IN)
def length_over_dim(self, dim):
bb = self.get_bounding_box()
return (bb[2] - bb[0])[dim]
def get_width(self):
return self.length_over_dim(0)
def get_height(self):
return self.length_over_dim(1)
def get_depth(self):
return self.length_over_dim(2)
def get_coord(self, dim, direction=ORIGIN):
"""
Meant to generalize get_x, get_y, get_z
"""
return self.get_bounding_box_point(direction)[dim]
def get_x(self, direction=ORIGIN):
return self.get_coord(0, direction)
def get_y(self, direction=ORIGIN):
return self.get_coord(1, direction)
def get_z(self, direction=ORIGIN):
return self.get_coord(2, direction)
def get_start(self):
self.throw_error_if_no_points()
return np.array(self.get_points()[0])
def get_end(self):
self.throw_error_if_no_points()
return np.array(self.get_points()[-1])
def get_start_and_end(self):
return self.get_start(), self.get_end()
def point_from_proportion(self, alpha):
raise Exception("Not implemented")
def pfp(self, alpha):
"""Abbreviation fo point_from_proportion"""
return self.point_from_proportion(alpha)
def get_pieces(self, n_pieces):
template = self.copy()
template.set_submobjects([])
alphas = np.linspace(0, 1, n_pieces + 1)
return Group(*[
template.copy().pointwise_become_partial(
self, a1, a2
)
for a1, a2 in zip(alphas[:-1], alphas[1:])
])
def get_z_index_reference_point(self):
# TODO, better place to define default z_index_group?
z_index_group = getattr(self, "z_index_group", self)
return z_index_group.get_center()
def has_points(self):
return self.get_num_points() > 0
def has_no_points(self):
return not self.has_points()
# Match other mobject properties
def match_color(self, mobject):
return self.set_color(mobject.get_color())
def match_dim_size(self, mobject, dim, **kwargs):
return self.rescale_to_fit(
mobject.length_over_dim(dim), dim,
**kwargs
)
def match_width(self, mobject, **kwargs):
return self.match_dim_size(mobject, 0, **kwargs)
def match_height(self, mobject, **kwargs):
return self.match_dim_size(mobject, 1, **kwargs)
def match_depth(self, mobject, **kwargs):
return self.match_dim_size(mobject, 2, **kwargs)
def match_coord(self, mobject, dim, direction=ORIGIN):
return self.set_coord(
mobject.get_coord(dim, direction),
dim=dim,
direction=direction,
)
def match_x(self, mobject, direction=ORIGIN):
return self.match_coord(mobject, 0, direction)
def match_y(self, mobject, direction=ORIGIN):
return self.match_coord(mobject, 1, direction)
def match_z(self, mobject, direction=ORIGIN):
return self.match_coord(mobject, 2, direction)
def align_to(self, mobject_or_point, direction=ORIGIN, alignment_vect=UP):
"""
Examples:
mob1.align_to(mob2, UP) moves mob1 vertically so that its
top edge lines ups with mob2's top edge.
mob1.align_to(mob2, alignment_vect = RIGHT) moves mob1
horizontally so that it's center is directly above/below
the center of mob2
"""
if isinstance(mobject_or_point, Mobject):
point = mobject_or_point.get_bounding_box_point(direction)
else:
point = mobject_or_point
for dim in range(self.dim):
if direction[dim] != 0:
self.set_coord(point[dim], dim, direction)
return self
def get_group_class(self):
return Group
# Submobject organization
def arrange(self, direction=RIGHT, center=True, **kwargs):
for m1, m2 in zip(self.submobjects, self.submobjects[1:]):
m2.next_to(m1, direction, **kwargs)
if center:
self.center()
return self
def arrange_in_grid(self, n_rows=None, n_cols=None,
buff=None,
h_buff=None,
v_buff=None,
buff_ratio=None,
h_buff_ratio=0.5,
v_buff_ratio=0.5,
aligned_edge=ORIGIN,
fill_rows_first=True):
submobs = self.submobjects
if n_rows is None and n_cols is None:
n_rows = int(np.sqrt(len(submobs)))
if n_rows is None:
n_rows = len(submobs) // n_cols
if n_cols is None:
n_cols = len(submobs) // n_rows
if buff is not None:
h_buff = buff
v_buff = buff
else:
if buff_ratio is not None:
v_buff_ratio = buff_ratio
h_buff_ratio = buff_ratio
if h_buff is None:
h_buff = h_buff_ratio * self[0].get_width()
if v_buff is None:
v_buff = v_buff_ratio * self[0].get_height()
x_unit = h_buff + max([sm.get_width() for sm in submobs])
y_unit = v_buff + max([sm.get_height() for sm in submobs])
for index, sm in enumerate(submobs):
if fill_rows_first:
x, y = index % n_cols, index // n_cols
else:
x, y = index // n_rows, index % n_rows
sm.move_to(ORIGIN, aligned_edge)
sm.shift(x * x_unit * RIGHT + y * y_unit * DOWN)
self.center()
return self
def get_grid(self, n_rows, n_cols, height=None, **kwargs):
"""
Returns a new mobject containing multiple copies of this one
arranged in a grid
"""
grid = self.get_group_class()(
*(self.copy() for n in range(n_rows * n_cols))
)
grid.arrange_in_grid(n_rows, n_cols, **kwargs)
if height is not None:
grid.set_height(height)
return grid
def sort(self, point_to_num_func=lambda p: p[0], submob_func=None):
if submob_func is not None:
self.submobjects.sort(key=submob_func)
else:
self.submobjects.sort(key=lambda m: point_to_num_func(m.get_center()))
return self
def shuffle(self, recurse=False):
if recurse:
for submob in self.submobjects:
submob.shuffle(recurse=True)
random.shuffle(self.submobjects)
return self
# Just here to keep from breaking old scenes.
def arrange_submobjects(self, *args, **kwargs):
return self.arrange(*args, **kwargs)
def sort_submobjects(self, *args, **kwargs):
return self.sort(*args, **kwargs)
def shuffle_submobjects(self, *args, **kwargs):
return self.shuffle(*args, **kwargs)
# Alignment
def align_data_and_family(self, mobject):
self.align_family(mobject)
self.align_data(mobject)
def align_data(self, mobject):
# In case any data arrays get resized when aligned to shader data
self.refresh_shader_data()
for mob1, mob2 in zip(self.get_family(), mobject.get_family()):
# Separate out how points are treated so that subclasses
# can handle that case differently if they choose
mob1.align_points(mob2)
for key in mob1.data:
if key == "points":
continue
arr1 = mob1.data[key]
arr2 = mob2.data[key]
if len(arr2) > len(arr1):
mob1.data[key] = resize_preserving_order(arr1, len(arr2))
elif len(arr1) > len(arr2):
mob2.data[key] = resize_preserving_order(arr2, len(arr1))
def align_points(self, mobject):
max_len = max(self.get_num_points(), mobject.get_num_points())
for mob in (self, mobject):
mob.resize_points(max_len, resize_func=resize_preserving_order)
return self
def align_family(self, mobject):
self.null_point_align(mobject) # Needed?
mob1 = self
mob2 = mobject
n1 = len(mob1.submobjects)
n2 = len(mob2.submobjects)
mob1.add_n_more_submobjects(max(0, n2 - n1))
mob2.add_n_more_submobjects(max(0, n1 - n2))
# Recurse
for sm1, sm2 in zip(mob1.submobjects, mob2.submobjects):
sm1.align_family(sm2)
return self
def null_point_align(self, mobject):
"""
If a mobject with points is being aligned to
one without, treat both as groups, and push
the one with points into its own submobjects
list.
"""
for m1, m2 in (self, mobject), (mobject, self):
if m1.has_no_points() and m2.has_points():
m2.push_self_into_submobjects()
return self
def push_self_into_submobjects(self):
copy = self.deepcopy()
copy.set_submobjects([])
self.resize_points(0)
self.add(copy)
return self
def add_n_more_submobjects(self, n):
if n == 0:
return
curr = len(self.submobjects)
if curr == 0:
# If empty, simply add n point mobjects
self.set_submobjects([
self.copy().scale(0)
for k in range(n)
])
return
target = curr + n
repeat_indices = (np.arange(target) * curr) // target
split_factors = [
(repeat_indices == i).sum()
for i in range(curr)
]
new_submobs = []
for submob, sf in zip(self.submobjects, split_factors):
new_submobs.append(submob)
for k in range(1, sf):
new_submob = submob.copy()
# If the submobject is at all transparent, then
# make the copy completely transparent
if submob.get_opacity() < 1:
new_submob.set_opacity(0)
new_submobs.append(new_submob)
self.set_submobjects(new_submobs)
return self
def interpolate(self, mobject1, mobject2, alpha, path_func=straight_path):
"""
Turns self into an interpolation between mobject1
and mobject2.
"""
for key in self.data:
if key in self.locked_data_keys:
continue
if len(self.data[key]) == 0:
continue
func = path_func if key == "points" else interpolate
self.data[key][:] = func(
mobject1.data[key],
mobject2.data[key],
alpha
)
for key in self.uniforms:
self.uniforms[key] = interpolate(
mobject1.uniforms[key],
mobject2.uniforms[key],
alpha
)
return self
def become_partial(self, mobject, a, b):
"""
Set points in such a way as to become only
part of mobject.
Inputs 0 <= a < b <= 1 determine what portion
of mobject to become.
"""
pass # To implement in subclasses
# TODO, color?
def pointwise_become_partial(self, mobject, a, b):
pass # To implement in subclass
def become(self, mobject):
"""
Edit points, colors and submobjects to be idential
to another mobject
"""
self.align_family(mobject)
for sm1, sm2 in zip(self.get_family(), mobject.get_family()):
sm1.set_data(sm2.data)
sm1.set_uniforms(sm2.uniforms)
return self
def cleanup_from_animation(self):
pass
# Locking data
def lock_data(self, keys):
"""
To speed up some animations, particularly transformations,
it can be handy to acknowledge which pieces of data
won't change during the animation so that calls to
interpolate can skip this, and so that it's not
read into the shader_wrapper objects needlessly
"""
if self.has_updaters:
return
# Be sure shader data has most up to date information
self.refresh_shader_data()
self.locked_data_keys = set(keys)
def lock_matching_data(self, mobject1, mobject2):
for sm, sm1, sm2 in zip(self.get_family(), mobject1.get_family(), mobject2.get_family()):
sm.lock_data([
key for key in sm.data
if np.all(sm1.data[key] == sm2.data[key])
])
return self
def unlock_data(self):
for mob in self.get_family():
mob.locked_data_keys = set()
# Operations touching shader uniforms
def affects_shader_info_id(func):
def wrapper(self):
for mob in self.get_family():
func(mob)
mob.refresh_shader_wrapper_id()
return wrapper
@affects_shader_info_id
def fix_in_frame(self):
self.uniforms["is_fixed_in_frame"] = 1.0
return self
@affects_shader_info_id
def unfix_from_frame(self):
self.uniforms["is_fixed_in_frame"] = 0.0
return self
@affects_shader_info_id
def apply_depth_test(self):
self.depth_test = True
return self
@affects_shader_info_id
def deactivate_depth_test(self):
self.depth_test = False
return self
# Shader code manipulation
def replace_shader_code(self, old, new):
for wrapper in self.get_shader_wrapper_list():
wrapper.replace_code(old, new)
return self
def refresh_shader_code(self):
for wrapper in self.get_shader_wrapper_list():
wrapper.init_program_code()
wrapper.refresh_id()
return self
def set_color_by_code(self, glsl_code):
"""
Takes a snippet of code and inserts it into a
context which has the following variables:
vec4 color, vec3 point, vec3 unit_normal.
The code should change the color variable
"""
self.replace_shader_code(
"///// INSERT COLOR FUNCTION HERE /////",
glsl_code
)
return self
def set_color_by_xyz_func(self, glsl_snippet,
min_value=-5.0, max_value=5.0,
colormap="viridis"):
"""
Pass in a glsl expression in terms of x, y and z which returns
a float.
"""
# TODO, add a version of this which changes the point data instead
# of the shader code
for char in "xyz":
glsl_snippet = glsl_snippet.replace(char, "point." + char)
rgb_list = get_colormap_list(colormap)
self.set_color_by_code(
"color.rgb = float_to_color({}, {}, {}, {});".format(
glsl_snippet,
float(min_value),
float(max_value),
get_colormap_code(rgb_list)
)
)
return self
# For shader data
def init_shader_data(self):
# TODO, only call this when needed?
self.shader_data = np.zeros(len(self.get_points()), dtype=self.shader_dtype)
self.shader_indices = None
self.shader_wrapper = ShaderWrapper(
vert_data=self.shader_data,
shader_folder=self.shader_folder,
texture_paths=self.texture_paths,
depth_test=self.depth_test,
render_primitive=self.render_primitive,
)
def refresh_shader_wrapper_id(self):
self.shader_wrapper.refresh_id()
return self
def get_shader_wrapper(self):
self.shader_wrapper.vert_data = self.get_shader_data()
self.shader_wrapper.vert_indices = self.get_shader_vert_indices()
self.shader_wrapper.uniforms = self.get_shader_uniforms()
self.shader_wrapper.depth_test = self.depth_test
return self.shader_wrapper
def get_shader_wrapper_list(self):
shader_wrappers = it.chain(
[self.get_shader_wrapper()],
*[sm.get_shader_wrapper_list() for sm in self.submobjects]
)
batches = batch_by_property(shader_wrappers, lambda sw: sw.get_id())
result = []
for wrapper_group, sid in batches:
shader_wrapper = wrapper_group[0]
if not shader_wrapper.is_valid():
continue
shader_wrapper.combine_with(*wrapper_group[1:])
if len(shader_wrapper.vert_data) > 0:
result.append(shader_wrapper)
return result
def check_data_alignment(self, array, data_key):
# Makes sure that self.data[key] can be brodcast into
# the given array, meaning its length has to be either 1
# or the length of the array
d_len = len(self.data[data_key])
if d_len != 1 and d_len != len(array):
self.data[data_key] = resize_with_interpolation(
self.data[data_key], len(array)
)
return self
def get_resized_shader_data_array(self, length):
# If possible, try to populate an existing array, rather
# than recreating it each frame
if len(self.shader_data) != length:
self.shader_data = resize_array(self.shader_data, length)
return self.shader_data
def read_data_to_shader(self, shader_data, shader_data_key, data_key):
if data_key in self.locked_data_keys:
return
self.check_data_alignment(shader_data, data_key)
shader_data[shader_data_key] = self.data[data_key]
def get_shader_data(self):
shader_data = self.get_resized_shader_data_array(self.get_num_points())
self.read_data_to_shader(shader_data, "point", "points")
return shader_data
def refresh_shader_data(self):
self.get_shader_data()
def get_shader_uniforms(self):
return self.uniforms
def get_shader_vert_indices(self):
return self.shader_indices
# Errors
def throw_error_if_no_points(self):
if self.has_no_points():
message = "Cannot call Mobject.{} " +\
"for a Mobject with no points"
caller_name = sys._getframe(1).f_code.co_name
raise Exception(message.format(caller_name))
class Group(Mobject):
def __init__(self, *mobjects, **kwargs):
if not all([isinstance(m, Mobject) for m in mobjects]):
raise Exception("All submobjects must be of type Mobject")
Mobject.__init__(self, **kwargs)
self.add(*mobjects)
class Point(Mobject):
CONFIG = {
"artificial_width": 1e-6,
"artificial_height": 1e-6,
}
def __init__(self, location=ORIGIN, **kwargs):
Mobject.__init__(self, **kwargs)
self.set_location(location)
def get_width(self):
return self.artificial_width
def get_height(self):
return self.artificial_height
def get_location(self):
return self.get_points()[0].copy()
def get_bounding_box_point(self, *args, **kwargs):
return self.get_location()
def set_location(self, new_loc):
self.set_points(np.array(new_loc, ndmin=2, dtype=float))