mirror of
https://github.com/3b1b/manim.git
synced 2025-04-13 09:47:07 +00:00
54 lines
1.8 KiB
Python
54 lines
1.8 KiB
Python
import numpy as np
|
|
import cv2
|
|
import itertools as it
|
|
from tqdm import tqdm as show_progress
|
|
|
|
from scene import Scene
|
|
|
|
|
|
class SceneFromVideo(Scene):
|
|
def construct(self, file_name,
|
|
freeze_last_frame = True,
|
|
time_range = None):
|
|
cap = cv2.VideoCapture(file_name)
|
|
self.shape = (
|
|
int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)),
|
|
int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH))
|
|
)
|
|
fps = cap.get(cv2.cv.CV_CAP_PROP_FPS)
|
|
self.frame_duration = 1.0/fps
|
|
frame_count = int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT))
|
|
if time_range is None:
|
|
start_frame = 0
|
|
end_frame = frame_count
|
|
else:
|
|
start_frame, end_frame = map(lambda t : fps*t, time_range)
|
|
|
|
frame_count = end_frame - start_frame
|
|
print("Reading in " + file_name + "...")
|
|
for count in show_progress(range(start_frame, end_frame+1)):
|
|
returned, frame = cap.read()
|
|
if not returned
|
|
break
|
|
# b, g, r = cv2.split(frame)
|
|
# self.frames.append(cv2.merge([r, g, b]))
|
|
self.frames.append(frame)
|
|
cap.release()
|
|
|
|
if freeze_last_frame and len(self.frames) > 0:
|
|
self.original_background = self.background = self.frames[-1]
|
|
|
|
def apply_gaussian_blur(self, ksize = (5, 5), sigmaX = 5):
|
|
self.frames = [
|
|
cv2.GaussianBlur(frame, ksize, sigmaX)
|
|
for frame in self.frames
|
|
]
|
|
|
|
def apply_edge_detection(self, threshold1 = 50, threshold2 = 100):
|
|
edged_frames = [
|
|
cv2.Canny(frame, threshold1, threshold2)
|
|
for frame in self.frames
|
|
]
|
|
for index in range(len(self.frames)):
|
|
for i in range(3):
|
|
self.frames[index][:,:,i] = edged_frames[index]
|