3b1b-manim/camera/camera.py
2018-08-11 19:20:09 -07:00

687 lines
25 KiB
Python

import itertools as it
import numpy as np
import operator as op
# import aggdraw
import copy
import time
from PIL import Image
from colour import Color
from scipy.spatial.distance import pdist
import cairo
from constants import *
from mobject.types.image_mobject import AbstractImageMobject
from mobject.mobject import Mobject
from mobject.types.point_cloud_mobject import PMobject
from mobject.types.vectorized_mobject import VMobject
from utils.color import color_to_int_rgba
from utils.color import rgb_to_hex
from utils.config_ops import digest_config
from utils.images import get_full_raster_image_path
from utils.iterables import batch_by_property
from utils.iterables import list_difference_update
from utils.iterables import remove_list_redundancies
from utils.simple_functions import fdiv
from utils.space_ops import angle_of_vector
from functools import reduce
class Camera(object):
CONFIG = {
"background_image": None,
"pixel_height": DEFAULT_PIXEL_HEIGHT,
"pixel_width": DEFAULT_PIXEL_WIDTH,
# Note: frame height and width will be resized to match
# the pixel aspect ratio
"frame_height": FRAME_HEIGHT,
"frame_width": FRAME_WIDTH,
"frame_center": ORIGIN,
"background_color": BLACK,
"background_opacity": 1,
# Points in vectorized mobjects with norm greater
# than this value will be rescaled.
"max_allowable_norm": FRAME_WIDTH,
"image_mode": "RGBA",
"n_channels": 4,
"pixel_array_dtype": 'uint8',
"use_z_coordinate_for_display_order": False,
# z_buff_func is only used if the flag above is set to True.
# round z coordinate to nearest hundredth when comparring
"z_buff_func": lambda m: np.round(m.get_center()[2], 2),
"cairo_line_width_multiple": 0.01,
}
def __init__(self, background=None, **kwargs):
digest_config(self, kwargs, locals())
self.rgb_max_val = np.iinfo(self.pixel_array_dtype).max
self.cairo_context = None # For vectorized rendering
self.init_background()
self.resize_frame_shape()
self.reset()
def __deepcopy__(self, memo):
# This is to address a strange bug where deepcopying
# will result in a segfault, which is somehow related
# to the aggdraw library
self.canvas = None
return copy.copy(self)
def reset_pixel_shape(self, new_height, new_width):
self.pixel_width = new_width
self.pixel_height = new_height
self.init_background()
self.resize_frame_shape()
self.reset()
def get_pixel_height(self):
return self.pixel_height
def get_pixel_width(self):
return self.pixel_width
def get_frame_height(self):
return self.frame_height
def get_frame_width(self):
return self.frame_width
def get_frame_center(self):
return self.frame_center
def set_frame_height(self, frame_height):
self.frame_height = frame_height
def set_frame_width(self, frame_width):
self.frame_width = frame_width
def set_frame_center(self, frame_center):
self.frame_center = frame_center
def resize_frame_shape(self, fixed_dimension=0):
"""
Changes frame_shape to match the aspect ratio
of the pixels, where fixed_dimension determines
whether frame_height or frame_width
remains fixed while the other changes accordingly.
"""
pixel_height = self.get_pixel_height()
pixel_width = self.get_pixel_width()
frame_height = self.get_frame_height()
frame_width = self.get_frame_width()
aspect_ratio = fdiv(pixel_width, pixel_height)
if fixed_dimension == 0:
frame_height = frame_width / aspect_ratio
else:
frame_width = aspect_ratio * frame_height
self.set_frame_height(frame_height)
self.set_frame_width(frame_width)
def init_background(self):
height = self.get_pixel_height()
width = self.get_pixel_width()
if self.background_image is not None:
path = get_full_raster_image_path(self.background_image)
image = Image.open(path).convert(self.image_mode)
# TODO, how to gracefully handle backgrounds
# with different sizes?
self.background = np.array(image)[:height, :width]
self.background = self.background.astype(self.pixel_array_dtype)
else:
background_rgba = color_to_int_rgba(
self.background_color, self.background_opacity
)
self.background = np.zeros(
(height, width, self.n_channels),
dtype=self.pixel_array_dtype
)
self.background[:, :] = background_rgba
def get_image(self):
return Image.fromarray(
self.pixel_array,
mode=self.image_mode
)
def get_pixel_array(self):
return self.pixel_array
def convert_pixel_array(self, pixel_array, convert_from_floats=False):
retval = np.array(pixel_array)
if convert_from_floats:
retval = np.apply_along_axis(
lambda f: (f * self.rgb_max_val).astype(self.pixel_array_dtype),
2,
retval
)
return retval
def set_pixel_array(self, pixel_array, convert_from_floats=False):
converted_array = self.convert_pixel_array(
pixel_array, convert_from_floats)
if not (hasattr(self, "pixel_array") and self.pixel_array.shape == converted_array.shape):
self.pixel_array = converted_array
self.cairo_context = None
else:
# Set in place
self.pixel_array[:, :, :] = converted_array[:, :, :]
def set_background(self, pixel_array, convert_from_floats=False):
self.background = self.convert_pixel_array(
pixel_array, convert_from_floats)
def make_background_from_func(self, coords_to_colors_func):
"""
Sets background by using coords_to_colors_func to determine each pixel's color. Each input
to coords_to_colors_func is an (x, y) pair in space (in ordinary space coordinates; not
pixel coordinates), and each output is expected to be an RGBA array of 4 floats.
"""
print("Starting set_background; for reference, the current time is ", time.strftime("%H:%M:%S"))
coords = self.get_coords_of_all_pixels()
new_background = np.apply_along_axis(
coords_to_colors_func,
2,
coords
)
print("Ending set_background; for reference, the current time is ", time.strftime("%H:%M:%S"))
return self.convert_pixel_array(new_background, convert_from_floats=True)
def set_background_from_func(self, coords_to_colors_func):
self.set_background(
self.make_background_from_func(coords_to_colors_func))
def reset(self):
self.set_pixel_array(self.background)
return self
####
def extract_mobject_family_members(self, mobjects, only_those_with_points=False):
if only_those_with_points:
method = Mobject.family_members_with_points
else:
method = Mobject.submobject_family
return remove_list_redundancies(list(
it.chain(*[
method(m)
for m in mobjects
if not (isinstance(m, VMobject) and m.is_subpath)
])
))
def get_mobjects_to_display(
self, mobjects,
include_submobjects=True,
excluded_mobjects=None,
):
if include_submobjects:
mobjects = self.extract_mobject_family_members(
mobjects, only_those_with_points=True
)
if excluded_mobjects:
all_excluded = self.extract_mobject_family_members(
excluded_mobjects
)
mobjects = list_difference_update(mobjects, all_excluded)
if self.use_z_coordinate_for_display_order:
# Should perhaps think about what happens here when include_submobjects is False,
# (for now, the onus is then on the caller to ensure this is handled correctly by
# passing us an appropriately pre-flattened list of mobjects if need be)
return sorted(
mobjects,
lambda a, b: cmp(self.z_buff_func(a), self.z_buff_func(b))
)
else:
return mobjects
def is_in_frame(self, mobject):
fc = self.get_frame_center()
fh = self.get_frame_height()
fw = self.get_frame_width()
return not reduce(op.or_, [
mobject.get_right()[0] < fc[0] - fw,
mobject.get_bottom()[1] > fc[1] + fh,
mobject.get_left()[0] > fc[0] + fw,
mobject.get_top()[1] < fc[1] - fh,
])
def capture_mobject(self, mobject, **kwargs):
return self.capture_mobjects([mobject], **kwargs)
def capture_mobjects(self, mobjects, **kwargs):
mobjects = self.get_mobjects_to_display(mobjects, **kwargs)
# Organize this list into batches of the same type, and
# apply corresponding function to those batches
type_func_pairs = [
(VMobject, self.display_multiple_vectorized_mobjects),
(PMobject, self.display_multiple_point_cloud_mobjects),
(AbstractImageMobject, self.display_multiple_image_mobjects),
(Mobject, lambda batch: batch), # Do nothing
]
def get_mobject_type(mobject):
for mobject_type, func in type_func_pairs:
if isinstance(mobject, mobject_type):
return mobject_type
raise Exception(
"Trying to display something which is not of type Mobject"
)
batch_type_pairs = batch_by_property(mobjects, get_mobject_type)
# Display in these batches
for batch, batch_type in batch_type_pairs:
# check what the type is, and call the appropriate function
for mobject_type, func in type_func_pairs:
if batch_type == mobject_type:
func(batch)
# Methods associated with svg rendering
def create_new_cairo_context(self):
# TODO, make sure this isn't run too much
pw = self.get_pixel_width()
ph = self.get_pixel_height()
fw = self.get_frame_width()
fh = self.get_frame_height()
surface = cairo.ImageSurface.create_for_data(
self.pixel_array,
cairo.FORMAT_ARGB32,
pw, ph
)
ctx = cairo.Context(surface)
ctx.scale(pw, ph)
ctx.set_matrix(cairo.Matrix(
fdiv(pw, fw), 0,
0, -fdiv(ph, fh),
pw / 2, ph / 2,
))
return ctx
def get_cairo_context(self):
if self.cairo_context is None:
ctx = self.create_new_cairo_context()
self.cairo_context = ctx
else:
ctx = self.cairo_context
return ctx
def display_multiple_vectorized_mobjects(self, vmobjects):
if len(vmobjects) == 0:
return
batch_file_pairs = batch_by_property(
vmobjects,
lambda vm: vm.get_background_image_file()
)
for batch, file_name in batch_file_pairs:
if file_name:
self.display_multiple_background_colored_vmobject(batch)
else:
self.display_multiple_non_background_colored_vmobjects(batch)
def display_multiple_non_background_colored_vmobjects(self, vmobjects):
for vmobject in vmobjects:
self.display_vectorized(vmobject)
def display_vectorized(self, vmobject):
if vmobject.is_subpath:
# Subpath vectorized mobjects are taken care
# of by their parent
return
ctx = self.get_cairo_context()
self.set_cairo_context_path(ctx, vmobject)
self.apply_stroke(ctx, vmobject, background=True)
self.apply_fill(ctx, vmobject)
self.apply_stroke(ctx, vmobject)
ctx.new_path()
return self
def set_cairo_context_path(self, ctx, vmobject):
for vmob in it.chain([vmobject], vmobject.get_subpath_mobjects()):
points = vmob.points
ctx.new_sub_path()
ctx.move_to(*points[0][:2])
for triplet in zip(points[1::3], points[2::3], points[3::3]):
ctx.curve_to(*it.chain(*[
point[:2] for point in triplet
]))
if vmob.is_closed():
ctx.close_path()
return self
def set_cairo_context_color(self, ctx, rgbas, vmobject):
if len(rgbas) == 1:
# Use reversed rgb because cairo surface is
# encodes it in reverse order
ctx.set_source_rgba(
*rgbas[0][2::-1], rgbas[0][3]
)
else:
points = vmobject.get_gradient_start_and_end_points()
pat = cairo.LinearGradient(*it.chain(*[
point[:2] for point in points
]))
offsets = np.linspace(1, 0, len(rgbas))
for rgba, offset in zip(rgbas, offsets):
pat.add_color_stop_rgba(
offset, *rgba[2::-1], rgba[3]
)
ctx.set_source(pat)
return self
def apply_fill(self, ctx, vmobject):
self.set_cairo_context_color(
ctx, self.get_fill_rgbas(vmobject), vmobject
)
ctx.fill_preserve()
return self
def apply_stroke(self, ctx, vmobject, background=False):
width = vmobject.get_stroke_width(background)
self.set_cairo_context_color(
ctx,
self.get_stroke_rgbas(vmobject, background=background),
vmobject
)
ctx.set_line_width(
width * self.cairo_line_width_multiple
)
ctx.stroke_preserve()
return self
def get_stroke_rgbas(self, vmobject, background=False):
return vmobject.get_stroke_rgbas(background)
def get_fill_rgbas(self, vmobject):
return vmobject.get_fill_rgbas()
def get_background_colored_vmobject_displayer(self):
# Quite wordy to type out a bunch
bcvd = "background_colored_vmobject_displayer"
if not hasattr(self, bcvd):
setattr(self, bcvd, BackgroundColoredVMobjectDisplayer(self))
return getattr(self, bcvd)
def display_multiple_background_colored_vmobject(self, cvmobjects):
displayer = self.get_background_colored_vmobject_displayer()
cvmobject_pixel_array = displayer.display(*cvmobjects)
self.overlay_rgba_array(cvmobject_pixel_array)
return self
# Methods for other rendering
def display_multiple_point_cloud_mobjects(self, pmobjects):
for pmobject in pmobjects:
self.display_point_cloud(
pmobject.points,
pmobject.rgbas,
self.adjusted_thickness(pmobject.stroke_width)
)
def display_point_cloud(self, points, rgbas, thickness):
if len(points) == 0:
return
pixel_coords = self.points_to_pixel_coords(points)
pixel_coords = self.thickened_coordinates(
pixel_coords, thickness
)
rgba_len = self.pixel_array.shape[2]
rgbas = (self.rgb_max_val * rgbas).astype(self.pixel_array_dtype)
target_len = len(pixel_coords)
factor = target_len / len(rgbas)
rgbas = np.array([rgbas] * factor).reshape((target_len, rgba_len))
on_screen_indices = self.on_screen_pixels(pixel_coords)
pixel_coords = pixel_coords[on_screen_indices]
rgbas = rgbas[on_screen_indices]
ph = self.get_pixel_height()
pw = self.get_pixel_width()
flattener = np.array([1, pw], dtype='int')
flattener = flattener.reshape((2, 1))
indices = np.dot(pixel_coords, flattener)[:, 0]
indices = indices.astype('int')
new_pa = self.pixel_array.reshape((ph * pw, rgba_len))
new_pa[indices] = rgbas
self.set_pixel_array(new_pa.reshape((ph, pw, rgba_len)))
def display_multiple_image_mobjects(self, image_mobjects):
for image_mobject in image_mobjects:
self.display_image_mobject(image_mobject)
def display_image_mobject(self, image_mobject):
corner_coords = self.points_to_pixel_coords(image_mobject.points)
ul_coords, ur_coords, dl_coords = corner_coords
right_vect = ur_coords - ul_coords
down_vect = dl_coords - ul_coords
center_coords = ul_coords + (right_vect + down_vect) / 2
sub_image = Image.fromarray(
image_mobject.get_pixel_array(),
mode="RGBA"
)
# Reshape
pixel_width = max(int(pdist([ul_coords, ur_coords])), 1)
pixel_height = max(int(pdist([ul_coords, dl_coords])), 1)
sub_image = sub_image.resize(
(pixel_width, pixel_height), resample=Image.BICUBIC
)
# Rotate
angle = angle_of_vector(right_vect)
adjusted_angle = -int(360 * angle / TAU)
if adjusted_angle != 0:
sub_image = sub_image.rotate(
adjusted_angle, resample=Image.BICUBIC, expand=1
)
# TODO, there is no accounting for a shear...
# Paste into an image as large as the camear's pixel array
full_image = Image.fromarray(
np.zeros((self.get_pixel_height(), self.get_pixel_width())),
mode="RGBA"
)
new_ul_coords = center_coords - np.array(sub_image.size) / 2
new_ul_coords = new_ul_coords.astype(int)
full_image.paste(
sub_image,
box=(
new_ul_coords[0],
new_ul_coords[1],
new_ul_coords[0] + sub_image.size[0],
new_ul_coords[1] + sub_image.size[1],
)
)
# Paint on top of existing pixel array
self.overlay_PIL_image(full_image)
def overlay_rgba_array(self, arr):
self.overlay_PIL_image(Image.fromarray(arr, mode="RGBA"))
def overlay_PIL_image(self, image):
self.pixel_array[:, :] = np.array(
Image.alpha_composite(self.get_image(), image),
dtype='uint8'
)
def adjust_out_of_range_points(self, points):
if not np.any(points > self.max_allowable_norm):
return points
norms = np.apply_along_axis(np.linalg.norm, 1, points)
violator_indices = norms > self.max_allowable_norm
violators = points[violator_indices, :]
violator_norms = norms[violator_indices]
reshaped_norms = np.repeat(
violator_norms.reshape((len(violator_norms), 1)),
points.shape[1], 1
)
rescaled = self.max_allowable_norm * violators / reshaped_norms
points[violator_indices] = rescaled
return points
def points_to_pixel_coords(self, points):
shifted_points = points - self.get_frame_center()
result = np.zeros((len(points), 2))
pixel_height = self.get_pixel_height()
pixel_width = self.get_pixel_width()
frame_height = self.get_frame_height()
frame_width = self.get_frame_width()
width_mult = pixel_width / frame_width
width_add = pixel_width / 2
height_mult = pixel_height / frame_height
height_add = pixel_height / 2
# Flip on y-axis as you go
height_mult *= -1
result[:, 0] = shifted_points[:, 0] * width_mult + width_add
result[:, 1] = shifted_points[:, 1] * height_mult + height_add
return result.astype('int')
def on_screen_pixels(self, pixel_coords):
return reduce(op.and_, [
pixel_coords[:, 0] >= 0,
pixel_coords[:, 0] < self.get_pixel_width(),
pixel_coords[:, 1] >= 0,
pixel_coords[:, 1] < self.get_pixel_height(),
])
def adjusted_thickness(self, thickness):
# TODO: This seems...unsystematic
big_sum = op.add(
PRODUCTION_QUALITY_CAMERA_CONFIG["pixel_height"],
PRODUCTION_QUALITY_CAMERA_CONFIG["pixel_width"],
)
this_sum = op.add(
self.get_pixel_height(),
self.get_pixel_width(),
)
factor = fdiv(big_sum, this_sum)
return 1 + (thickness - 1) / factor
def get_thickening_nudges(self, thickness):
_range = list(range(-thickness / 2 + 1, thickness / 2 + 1))
return np.array(list(it.product(_range, _range)))
def thickened_coordinates(self, pixel_coords, thickness):
nudges = self.get_thickening_nudges(thickness)
pixel_coords = np.array([
pixel_coords + nudge
for nudge in nudges
])
size = pixel_coords.size
return pixel_coords.reshape((size / 2, 2))
def get_coords_of_all_pixels(self):
# These are in x, y order, to help me keep things straight
full_space_dims = np.array([
self.get_frame_width(),
self.get_frame_height()
])
full_pixel_dims = np.array([
self.get_pixel_width(),
self.get_pixel_height()
])
# These are addressed in the same y, x order as in pixel_array, but the values in them
# are listed in x, y order
uncentered_pixel_coords = np.indices(
[self.get_pixel_height(), self.get_pixel_width()]
)[::-1].transpose(1, 2, 0)
uncentered_space_coords = fdiv(
uncentered_pixel_coords * full_space_dims,
full_pixel_dims)
# Could structure above line's computation slightly differently, but figured (without much
# thought) multiplying by frame_shape first, THEN dividing by pixel_shape, is probably
# better than the other order, for avoiding underflow quantization in the division (whereas
# overflow is unlikely to be a problem)
centered_space_coords = (
uncentered_space_coords - fdiv(full_space_dims, 2)
)
# Have to also flip the y coordinates to account for pixel array being listed in
# top-to-bottom order, opposite of screen coordinate convention
centered_space_coords = centered_space_coords * (1, -1)
return centered_space_coords
# TODO
class BackgroundColoredVMobjectDisplayer(object):
def __init__(self, camera):
self.camera = camera
self.file_name_to_pixel_array_map = {}
self.init_canvas()
def init_canvas(self):
self.pixel_array = np.zeros(
self.camera.pixel_array.shape,
dtype=self.camera.pixel_array_dtype,
)
self.reset_canvas()
def reset_canvas(self):
image = Image.fromarray(self.pixel_array, mode=self.camera.image_mode)
self.canvas = aggdraw.Draw(image)
def resize_background_array(
self, background_array,
new_width, new_height,
mode="RGBA"
):
image = Image.fromarray(background_array)
image = image.convert(mode)
resized_image = image.resize((new_width, new_height))
return np.array(resized_image)
def resize_background_array_to_match(self, background_array, pixel_array):
height, width = pixel_array.shape[:2]
mode = "RGBA" if pixel_array.shape[2] == 4 else "RGB"
return self.resize_background_array(background_array, width, height, mode)
def get_background_array(self, file_name):
if file_name in self.file_name_to_pixel_array_map:
return self.file_name_to_pixel_array_map[file_name]
full_path = get_full_raster_image_path(file_name)
image = Image.open(full_path)
array = np.array(image)
camera = self.camera
if not np.all(camera.pixel_array.shape == array.shape):
array = self.resize_background_array_to_match(
array, camera.pixel_array)
self.file_name_to_pixel_array_map[file_name] = array
return array
def display(self, *cvmobjects):
batch_image_file_pairs = batch_by_property(
cvmobjects, lambda cv: cv.get_background_image_file()
)
curr_array = None
for batch, image_file in batch_image_file_pairs:
background_array = self.get_background_array(image_file)
for cvmobject in batch:
self.camera.display_vectorized(cvmobject, self.canvas)
self.canvas.flush()
new_array = np.array(
(background_array * self.pixel_array.astype('float') / 255),
dtype=self.camera.pixel_array_dtype
)
if curr_array is None:
curr_array = new_array
else:
curr_array = np.maximum(curr_array, new_array)
self.pixel_array[:, :] = 0
self.reset_canvas()
return curr_array