#version 330 in vec2 uv_coords; in float uv_stroke_width; in float uv_anti_alias_width; in vec4 color; in float is_linear; out vec4 frag_color; const float QUICK_DIST_WIDTH = 0.2; float dist_to_curve(){ // In the linear case, the curve will have // been set to equal the x axis if(bool(is_linear)) return abs(uv_coords.y); // Otherwise, find the distance from uv_coords to the curve y = x^2 float x0 = uv_coords.x; float y0 = uv_coords.y; // This is a quick approximation for computing // the distance to the curve. // Evaluate F(x, y) = y - x^2 // divide by its gradient's magnitude float Fxy = y0 - x0 * x0; float approx_dist = abs(Fxy) * inversesqrt(1.0 + 4 * x0 * x0); if(approx_dist < QUICK_DIST_WIDTH) return approx_dist; // Otherwise, solve for the minimal distance. // The distance squared between (x0, y0) and a point (x, x^2) looks like // // (x0 - x)^2 + (y0 - x^2)^2 = x^4 + (1 - 2y0)x^2 - 2x0 * x + (x0^2 + y0^2) // // Setting the derivative equal to zero (and rescaling) looks like // // x^3 + (0.5 - y0) * x - 0.5 * x0 = 0 // // Adapted from https://www.shadertoy.com/view/ws3GD7 x0 = abs(x0); float p = (0.5 - y0) / 3.0; // p / 3 in usual Cardano's formula notation float q = 0.25 * x0; // -q / 2 in usual Cardano's formula notation float disc = q*q + p*p*p; float r = sqrt(abs(disc)); float x = (disc > 0.0) ? // 1 root pow(q + r, 1.0 / 3.0) + pow(abs(q - r), 1.0 / 3.0) * sign(-p) : // 3 roots 2.0 * cos(atan(r, q) / 3.0) * sqrt(-p); return length(vec2(x0 - x, y0 - x * x)); } void main() { if (uv_stroke_width == 0) discard; frag_color = color; // sdf for the region around the curve we wish to color. float signed_dist = dist_to_curve() - 0.5 * uv_stroke_width; frag_color.a *= smoothstep(0.5, -0.5, signed_dist / uv_anti_alias_width); }