import inspect import numpy as np import math from functools import lru_cache def sigmoid(x): return 1.0 / (1 + np.exp(-x)) @lru_cache(maxsize=10) def choose(n, k): return math.comb(n, k) def gen_choose(n, r): return np.prod(np.arange(n, n - r, -1)) / math.factorial(r) def get_num_args(function): return len(get_parameters(function)) def get_parameters(function): return inspect.signature(function).parameters # Just to have a less heavyweight name for this extremely common operation # # We may wish to have more fine-grained control over division by zero behavior # in the future (separate specifiable values for 0/0 and x/0 with x != 0), # but for now, we just allow the option to handle indeterminate 0/0. def clip(a, min_a, max_a): if a < min_a: return min_a elif a > max_a: return max_a return a def fdiv(a, b, zero_over_zero_value=None): if zero_over_zero_value is not None: out = np.full_like(a, zero_over_zero_value) where = np.logical_or(a != 0, b != 0) else: out = None where = True return np.true_divide(a, b, out=out, where=where) def binary_search(function, target, lower_bound, upper_bound, tolerance=1e-4): lh = lower_bound rh = upper_bound while abs(rh - lh) > tolerance: mh = np.mean([lh, rh]) lx, mx, rx = [function(h) for h in (lh, mh, rh)] if lx == target: return lx if rx == target: return rx if lx <= target and rx >= target: if mx > target: rh = mh else: lh = mh elif lx > target and rx < target: lh, rh = rh, lh else: return None return mh