import numpy as np import itertools as it import os import sys from PIL import Image import cv2 from colour import Color import progressbar from helpers import * class Camera(object): DEFAULT_CONFIG = { #background of a different shape will overwrite these "pixel_width" : DEFAULT_WIDTH, "pixel_height" : DEFAULT_HEIGHT, "background_color" : BLACK, # "space_height" : SPACE_HEIGHT, "space_center" : ORIGIN, } def __init__(self, background = None, **kwargs): digest_config(self, kwargs, locals()) self.init_background() self.reset() width_to_height = float(self.pixel_width) / self.pixel_height self.space_width = self.space_height * width_to_height def init_background(self): if self.background: shape = self.background.shape[:2] self.pixel_height, self.pixel_width = shape else: background_color = Color(self.background_color) background_rgb = (255*np.array( background_color.get_rgb() )).astype('uint8') ones = np.ones( (self.pixel_height, self.pixel_width, 1), dtype = 'uint8' ) self.background = np.dot( ones, background_rgb.reshape((1, 3)) ) def get_image(self): return np.array(self.pixel_array) def set_image(self, pixel_array): self.pixel_array = np.array(pixel_array) def reset(self): self.set_image(np.array(self.background)) # def paint_region(region, image_array = None, color = None): # pixels = get_pixels(image_array) # assert region.shape == pixels.shape[:2] # if color is None: # #Random dark color # rgb = 0.5 * np.random.random(3) # else: # rgb = np.array(Color(color).get_rgb()) # pixels[region.bool_grid] = (255*rgb).astype('uint8') # return pixels def capture_mobject(self, mobject): return self.capture_mobjects([mobject]) def capture_mobjects(self, mobjects, include_sub_mobjects = True): if include_sub_mobjects: all_families = [ mob.submobject_family() for mob in mobjects ] mobjects = reduce(op.add, all_families, []) for mobject in mobjects: self.display_points( mobject.points, mobject.rgbs, self.adjusted_thickness(mobject.point_thickness) ) def display_points(self, points, rgbs, thickness): if len(points) == 0: return points = self.align_points_to_camera(points) pixel_coords = self.points_to_pixel_coords(points) pixel_coords = self.thickened_coordinates( pixel_coords, thickness ) rgbs = (255*rgbs).astype('uint8') target_len = len(pixel_coords) factor = target_len/len(rgbs) rgbs = np.array([rgbs]*factor).reshape((target_len, 3)) on_screen_indices = self.on_screen_pixels(pixel_coords) pixel_coords = pixel_coords[on_screen_indices] rgbs = rgbs[on_screen_indices] flattener = np.array([1, self.pixel_width], dtype = 'int') flattener = flattener.reshape((2, 1)) indices = np.dot(pixel_coords, flattener)[:,0] indices = indices.astype('int') pw, ph = self.pixel_width, self.pixel_height # new_array = np.zeros((pw*ph, 3), dtype = 'uint8') # new_array[indices, :] = rgbs new_pa = self.pixel_array.reshape((ph*pw, 3)) new_pa[indices] = rgbs self.pixel_array = new_pa.reshape((ph, pw, 3)) def align_points_to_camera(self, points): ## This is where projection should live return points - self.space_center def points_to_pixel_coords(self, points): result = np.zeros((len(points), 2)) width_mult = self.pixel_width/self.space_width/2 width_add = self.pixel_width/2 height_mult = self.pixel_height/self.space_height/2 height_add = self.pixel_height/2 #Flip on y-axis as you go height_mult *= -1 result[:,0] = points[:,0]*width_mult + width_add result[:,1] = points[:,1]*height_mult + height_add return result.astype('int') def on_screen_pixels(self, pixel_coords): return reduce(op.and_, [ pixel_coords[:,0] >= 0, pixel_coords[:,0] < self.pixel_width, pixel_coords[:,1] >= 0, pixel_coords[:,1] < self.pixel_height, ]) # def add_thickness(pixel_indices_and_rgbs, thickness, width, height): # """ # Imagine dragging each pixel around like a paintbrush in # a plus-sign-shaped pixel arrangement surrounding it. # Pass rgb = None to do nothing to them # """ # thickness = adjusted_thickness(thickness, width, height) # original = np.array(pixel_indices_and_rgbs) # n_extra_columns = pixel_indices_and_rgbs.shape[1] - 2 # for nudge in range(-thickness/2+1, thickness/2+1): # if nudge == 0: # continue # for x, y in [[nudge, 0], [0, nudge]]: # pixel_indices_and_rgbs = np.append( # pixel_indices_and_rgbs, # original+([x, y] + [0]*n_extra_columns), # axis = 0 # ) # admissibles = (pixel_indices_and_rgbs[:,0] >= 0) & \ # (pixel_indices_and_rgbs[:,0] < width) & \ # (pixel_indices_and_rgbs[:,1] >= 0) & \ # (pixel_indices_and_rgbs[:,1] < height) # return pixel_indices_and_rgbs[admissibles] def adjusted_thickness(self, thickness): big_width = PRODUCTION_QUALITY_DISPLAY_CONFIG["width"] big_height = PRODUCTION_QUALITY_DISPLAY_CONFIG["height"] factor = (big_width + big_height) / \ (self.pixel_width + self.pixel_height) return 1 + (thickness-1)/factor def get_thickening_nudges(self, thickness): _range = range(-thickness/2+1, thickness/2+1) return np.array(list(it.product(*[_range]*2))) def thickened_coordinates(self, pixel_coords, thickness): nudges = self.get_thickening_nudges(thickness) pixel_coords = np.array([ pixel_coords + nudge for nudge in nudges ]) size = pixel_coords.size return pixel_coords.reshape((size/2, 2))