#version 330 in vec2 uv_coords; in float uv_stroke_width; in float uv_anti_alias_width; in vec4 color; in float is_linear; out vec4 frag_color; const float QUICK_DIST_WIDTH = 0.2; float dist_to_curve(){ // Returns distance from uv_coords to the curve v = u^2 float x0 = uv_coords.x; float y0 = uv_coords.y; // In the linear case, the curve will have // been set to equal the x axis if(bool(is_linear)) return abs(y0); if(uv_stroke_width < QUICK_DIST_WIDTH){ // This is a quick approximation for computing // the distance to the curve. // Evaluate F(x, y) = y - x^2 // divide by its gradient's magnitude return abs((y0 - x0 * x0) / sqrt(1 + 4 * x0 * x0)); } // Otherwise, solve for the minimal distance. // The distance squared between (x0, y0) and a point (x, x^2) looks like // // (x0 - x)^2 + (y0 - x^2)^2 = x^4 + (1 - 2y0)x^2 - 2x0 * x + (x0^2 + y0^2) // // Setting the derivative equal to zero (and rescaling) looks like // // x^3 + (0.5 - y0) * x - 0.5 * x0 = 0 // // Use two rounds of Newton's method float x = x0; float p = (0.5 - y0); float q = -0.5 * x0; for(int i = 0; i < 2; i++){ float fx = x * x * x + p * x + q; float dfx = 3 * x * x + p; x = x - fx / dfx; } return distance(uv_coords, vec2(x, x * x)); } void main() { if (uv_stroke_width == 0) discard; // sdf for the region around the curve we wish to color. float signed_dist = dist_to_curve() - 0.5 * uv_stroke_width; frag_color = color; frag_color.a *= smoothstep(0.5, -0.5, signed_dist / uv_anti_alias_width); }