#version 330 layout (triangles) in; layout (triangle_strip, max_vertices = 5) out; // Needed for get_gl_Position uniform vec2 frame_shape; uniform vec2 pixel_shape; uniform float focal_distance; uniform float is_fixed_in_frame; uniform float anti_alias_width; uniform float flat_stroke; uniform mat3 camera_rotation; //Needed for lighting uniform vec3 light_source_position; uniform vec3 camera_position; uniform float joint_type; uniform float reflectiveness; uniform float gloss; uniform float shadow; in vec3 verts[3]; in float v_joint_angle[3]; in float v_stroke_width[3]; in vec4 v_color[3]; out vec4 color; out float uv_stroke_width; out float uv_anti_alias_width; out float is_linear; out vec2 uv_coords; // Codes for joint types const int NO_JOINT = 0; const int AUTO_JOINT = 1; const int BEVEL_JOINT = 2; const int MITER_JOINT = 3; const float PI = 3.141592653; const float DISJOINT_CONST = 404.0; const float ANGLE_THRESHOLD = 1e-3; #INSERT get_xy_to_uv.glsl #INSERT get_gl_Position.glsl #INSERT get_unit_normal.glsl #INSERT finalize_color.glsl void create_joint(float angle, vec2 unit_tan, float buff, vec2 static_c0, out vec2 changing_c0, vec2 static_c1, out vec2 changing_c1){ float shift; if(abs(angle) < ANGLE_THRESHOLD || int(joint_type) == NO_JOINT){ // No joint shift = 0; }else if(int(joint_type) == MITER_JOINT || (int(joint_type) == AUTO_JOINT && angle > 0.9 * PI)){ shift = buff * (-1.0 - cos(angle)) / sin(angle); }else{ // For a Bevel joint shift = buff * (1.0 - cos(angle)) / sin(angle); } changing_c0 = static_c0 - shift * unit_tan; changing_c1 = static_c1 + shift * unit_tan; } // This function is responsible for finding the corners of // a bounding region around the bezier curve, which can be // emitted as a triangle fan int get_corners( vec2 controls[3], float stroke_widths[3], float aaw, // Anti-alias width float angle_from_prev, float angle_to_next, out vec2 corners[5] ){ vec2 p0 = controls[0]; vec2 p1 = controls[1]; vec2 p2 = controls[2]; // Unit vectors for directions between control points vec2 v10 = normalize(p0 - p1); vec2 v12 = normalize(p2 - p1); vec2 v01 = -v10; vec2 v21 = -v12; float cross_prod = cross2d(v01, v12); float sgn = (cross_prod >= 0.0 || bool(is_linear)) ? 1.0 : -1.0; vec2 p0_perp = sgn * vec2(-v01.y, v01.x); // Pointing to the inside of the curve from p0 vec2 p2_perp = sgn * vec2(-v12.y, v12.x); // Pointing to the inside of the curve from p2 // aaw is the added width given around the polygon for antialiasing. // In case the normal is faced away from (0, 0, 1), the vector to the // camera, this is scaled up. float buff0 = 0.5 * stroke_widths[0] + aaw; float buff2 = 0.5 * stroke_widths[2] + aaw; vec2 c0 = p0 - buff0 * p0_perp; vec2 c1 = p0 + buff0 * p0_perp; vec2 c2 = p2 + buff2 * p2_perp; vec2 c3 = p2 - buff2 * p2_perp; // Account for previous and next control points create_joint(angle_from_prev, v01, buff0, c0, c0, c1, c1); create_joint(angle_to_next, v21, buff2, c3, c3, c2, c2); // Linear case is the simplest if(bool(is_linear)){ // The order of corners should be for a triangle_strip. Last entry is a dummy corners = vec2[5](c0, c1, c3, c2, vec2(0.0)); return 4; } // Otherwise, form a pentagon around the curve corners = vec2[5](c0, c1, p1, c2, c3); corners[2] -= buff0 * p0_perp + buff2 * p2_perp; return 5; } void main() { if (distance(verts[0], verts[1]) == 0 && distance(verts[1], verts[2]) == 0) return; vec3 unit_normal = camera_rotation * vec3(0.0, 0.0, 1.0); // TODO, track true unit normal globally // Control points are projected to the xy plane before drawing, which in turn // gets tranlated to a uv plane. The z-coordinate information will be remembered // by what's sent out to gl_Position, and by how it affects the lighting and stroke width vec2 flat_controls[3]; float scaled_strokes[3]; for(int i = 0; i < 3; i++){ float sf = perspective_scale_factor(verts[i].z, focal_distance); flat_controls[i] = sf * verts[i].xy; if(bool(flat_stroke)){ vec3 to_cam = normalize(vec3(0.0, 0.0, focal_distance) - verts[i]); sf *= abs(dot(unit_normal, to_cam)); } scaled_strokes[i] = v_stroke_width[i] * sf; } // Set joint information float angle_from_prev = v_joint_angle[0]; float angle_to_next = v_joint_angle[2]; if(angle_from_prev == DISJOINT_CONST){ // TODO, add anti-aliasing patch to curve start angle_from_prev = 0.0; } if(angle_to_next == DISJOINT_CONST){ // TODO, add anti-aliasing patch to curve end angle_to_next = 0.0; } // We want to change the coordinates to a space where the curve // coincides with y = x^2, between some values x0 and x2. Or, in // the case of a linear curve (bezier degree 1), just put it on // the segment from (0, 0) to (1, 0) is_linear = float(abs(v_joint_angle[1]) < ANGLE_THRESHOLD); mat3 xy_to_uv = get_xy_to_uv(flat_controls, is_linear, is_linear); float uv_scale_factor = length(xy_to_uv[0].xy); float scaled_anti_alias_width = anti_alias_width * (frame_shape.y / pixel_shape.y); uv_anti_alias_width = uv_scale_factor * scaled_anti_alias_width; // If the curve is flat, put the middle control in the midpoint if (bool(is_linear)){ flat_controls[1] = 0.5 * (flat_controls[0] + flat_controls[2]); } // Corners of a bounding region around curve vec2 corners[5]; int n_corners = get_corners( flat_controls, scaled_strokes, scaled_anti_alias_width, angle_from_prev, angle_to_next, corners ); int index_map[5] = int[5](0, 0, 1, 2, 2); if(n_corners == 4) index_map[2] = 2; // Emit each corner for(int i = 0; i < n_corners; i++){ uv_coords = (xy_to_uv * vec3(corners[i], 1.0)).xy; uv_stroke_width = uv_scale_factor * scaled_strokes[index_map[i]]; // Apply some lighting to the color before sending out. vec3 xyz_coords = vec3(corners[i], verts[index_map[i]].z); color = finalize_color( v_color[index_map[i]], xyz_coords, unit_normal, light_source_position, camera_position, reflectiveness, gloss, shadow ); gl_Position = vec4( get_gl_Position(vec3(corners[i], 0.0)).xy, get_gl_Position(verts[index_map[i]]).zw ); EmitVertex(); } EndPrimitive(); }