import numpy as np from utils.simple_functions import sigmoid from utils.bezier import bezier def smooth(t, inflection = 10.0): error = sigmoid(-inflection / 2) return (sigmoid(inflection*(t - 0.5)) - error) / (1 - 2*error) def rush_into(t): return 2*smooth(t/2.0) def rush_from(t): return 2*smooth(t/2.0+0.5) - 1 def slow_into(t): return np.sqrt(1-(1-t)*(1-t)) def double_smooth(t): if t < 0.5: return 0.5*smooth(2*t) else: return 0.5*(1 + smooth(2*t - 1)) def there_and_back(t, inflection = 10.0): new_t = 2*t if t < 0.5 else 2*(1 - t) return smooth(new_t, inflection) def there_and_back_with_pause(t): if t < 1./3: return smooth(3*t) elif t < 2./3: return 1 else: return smooth(3 - 3*t) def running_start(t, pull_factor = -0.5): return bezier([0, 0, pull_factor, pull_factor, 1, 1, 1])(t) def not_quite_there(func = smooth, proportion = 0.7): def result(t): return proportion*func(t) return result def wiggle(t, wiggles = 2): return there_and_back(t) * np.sin(wiggles*np.pi*t) def squish_rate_func(func, a = 0.4, b = 0.6): def result(t): if a == b: return a if t < a: return func(0) elif t > b: return func(1) else: return func((t-a)/(b-a)) return result # Stylistically, should this take parameters (with default values)? # Ultimately, the functionality is entirely subsumed by squish_rate_func, # but it may be useful to have a nice name for with nice default params for # "lingering", different from squish_rate_func's default params def lingering(t): return squish_rate_func(lambda t: t, 0, 0.8)(t)