from PIL import Image from colour import Color import numpy as np import warnings import time import os import copy import progressbar import inspect from images2gif import writeGif from helpers import * from mobject import * import displayer as disp class Animation(object): def __init__(self, mobject, run_time = DEFAULT_ANIMATION_RUN_TIME, alpha_func = high_inflection_0_to_1, name = None): if isinstance(mobject, type) and issubclass(mobject, Mobject): self.mobject = mobject() self.starting_mobject = mobject() elif isinstance(mobject, Mobject): self.mobject = mobject self.starting_mobject = copy.deepcopy(mobject) else: raise Exception("Invalid mobject parameter, must be \ subclass or instance of Mobject") self.reference_mobjects = [self.starting_mobject] self.alpha_func = alpha_func or (lambda x : x) self.run_time = run_time self.filter_functions = [] self.restricted_height = SPACE_HEIGHT self.restricted_width = SPACE_WIDTH self.spacial_center = np.zeros(3) self.name = name or self.__class__.__name__ + str(self.mobject) def __str__(self): return self.name def get_points_and_rgbs(self): """ It is the responsibility of this class to only emit points within the space. Returns np array of points and corresponding np array of rgbs """ #TODO, I don't think this should be necessary. This should happen #under the individual mobjects. points = self.mobject.points rgbs = self.mobject.rgbs #Filters out what is out of bounds. admissibles = (abs(points[:,0]) < self.restricted_width) * \ (abs(points[:,1]) < self.restricted_height) for filter_function in self.filter_functions: admissibles *= ~filter_function(points) if any(self.spacial_center): points += self.spacial_center #Filter out points pushed off the edge admissibles *= (abs(points[:,0]) < SPACE_WIDTH) * \ (abs(points[:,1]) < SPACE_HEIGHT) if rgbs.shape[0] < points.shape[0]: #TODO, this shouldn't be necessary, find what's happening. points = points[:rgbs.shape[0], :] admissibles = admissibles[:rgbs.shape[0]] return points[admissibles, :], rgbs[admissibles, :] def update(self, alpha): if alpha < 0: alpha = 0 if alpha > 1: alpha = 1 self.update_mobject(self.alpha_func(alpha)) # def generate_frames(self): # print "Generating " + str(self) + "..." # progress_bar = progressbar.ProgressBar(maxval=self.nframes) # progress_bar.start() # self.frames = [] # while self.update(): # self.frames.append(self.get_image()) # progress_bar.update(self.nframes_past - 1) # self.clean_up() # for anim in self.following_animations: # self.frames += anim.get_frames() # progress_bar.finish() # return self def filter_out(self, *filter_functions): self.filter_functions += filter_functions return self def restrict_height(self, height): self.restricted_height = min(height, SPACE_HEIGHT) return self def restrict_width(self, width): self.restricted_width = min(width, SPACE_WIDTH) return self def shift(self, vector): self.spacial_center += vector return self def set_run_time(self, time): self.run_time = time return self.reload() def set_alpha_func(self, alpha_func): if alpha_func is None: alpha_func = lambda x : x self.alpha_func = alpha_func return self def set_name(self, name): self.name = name return self # def drag_pixels(self): # self.frames = drag_pixels(self.get_frames()) # return self # def reverse(self): # self.get_frames().reverse() # self.name = 'Reversed' + str(self) # return self def update_mobject(self, alpha): #Typically ipmlemented by subclass pass def clean_up(self): pass ###### Concrete Animations ######## class Rotating(Animation): def __init__(self, mobject, axis = None, axes = [[0, 0, 1], [0, 1, 0]], radians = 2 * np.pi, run_time = 20.0, alpha_func = None, *args, **kwargs): Animation.__init__( self, mobject, run_time = run_time, alpha_func = alpha_func, *args, **kwargs ) self.axes = [axis] if axis else axes self.radians = radians def update_mobject(self, alpha): self.mobject.points = self.starting_mobject.points for axis in self.axes: self.mobject.rotate( self.radians * alpha, axis ) class RotationAsTransform(Rotating): def __init__(self, mobject, radians, axis = (0, 0, 1), axes = None, run_time = DEFAULT_ANIMATION_RUN_TIME, alpha_func = high_inflection_0_to_1, *args, **kwargs): Rotating.__init__( self, mobject, axis = axis, axes = axes, run_time = run_time, radians = radians, alpha_func = alpha_func, ) class FadeOut(Animation): def update_mobject(self, alpha): self.mobject.rgbs = self.starting_mobject.rgbs * (1 - alpha) class Reveal(Animation): def update_mobject(self, alpha): self.mobject.rgbs = self.starting_mobject.rgbs * alpha if self.mobject.points.shape != self.starting_mobject.points.shape: self.mobject.points = self.starting_mobject.points #TODO, Why do you need to do this? Shouldn't points always align? class Transform(Animation): def __init__(self, mobject1, mobject2, run_time = DEFAULT_TRANSFORM_RUN_TIME, *args, **kwargs): count1, count2 = mobject1.get_num_points(), mobject2.get_num_points() Mobject.align_data(mobject1, mobject2) Animation.__init__(self, mobject1, run_time = run_time, *args, **kwargs) self.ending_mobject = mobject2 self.mobject.SHOULD_BUFF_POINTS = \ mobject1.SHOULD_BUFF_POINTS and mobject2.SHOULD_BUFF_POINTS self.reference_mobjects.append(mobject2) self.name += "To" + str(mobject2) if count2 < count1: #Ensure redundant pixels fade to black indices = self.non_redundant_m2_indices = \ np.arange(0, count1-1, float(count1) / count2).astype('int') temp = np.zeros(mobject2.points.shape) temp[indices] = mobject2.rgbs[indices] mobject2.rgbs = temp def update_mobject(self, alpha): Mobject.interpolate( self.starting_mobject, self.ending_mobject, self.mobject, alpha ) def clean_up(self): if hasattr(self, "non_redundant_m2_indices"): #Reduce mobject (which has become identical to mobject2), as #well as mobject2 itself for mobject in [self.mobject, self.ending_mobject]: for attr in ['points', 'rgbs']: setattr( mobject, attr, getattr( self.ending_mobject, attr )[self.non_redundant_m2_indices] ) class ApplyMethod(Transform): def __init__(self, method, mobject, *args, **kwargs): """ Method is a method of Mobject """ method_args = () if isinstance(method, tuple): method, method_args = method[0], method[1:] if not inspect.ismethod(method): raise "Not a valid Mobject method" Transform.__init__( self, mobject, method(copy.deepcopy(mobject), *method_args), *args, **kwargs ) class ApplyFunction(Transform): def __init__(self, function, mobject, run_time = DEFAULT_ANIMATION_RUN_TIME, *args, **kwargs): map_image = copy.deepcopy(mobject) map_image.points = np.array(map(function, map_image.points)) Transform.__init__(self, mobject, map_image, run_time = run_time, *args, **kwargs) self.name = "".join([ "Apply", "".join([s.capitalize() for s in function.__name__.split("_")]), "To" + str(mobject) ]) class ComplexFunction(ApplyFunction): def __init__(self, function, *args, **kwargs): def point_map(point): x, y, z = point c = np.complex(x, y) c = function(c) return c.real, c.imag, z if len(args) > 0: args = list(args) mobject = args.pop(0) elif "mobject" in kwargs: mobject = kwargs.pop("mobject") else: mobject = Grid() ApplyFunction.__init__(self, point_map, mobject, *args, **kwargs) self.name = "ComplexFunction" + to_cammel_case(function.__name__) #Todo, abstract away function naming' class Homotopy(Animation): def __init__(self, homotopy, *args, **kwargs): """ Homotopy a function from (x, y, z, t) to (x', y', z') """ self.homotopy = homotopy Animation.__init__(self, *args, **kwargs) def update_mobject(self, alpha): self.mobject.points = np.array([ self.homotopy((x, y, z, alpha)) for x, y, z in self.starting_mobject.points ]) class ComplexHomotopy(Homotopy): def __init__(self, complex_homotopy, *args, **kwargs): """ Complex Hootopy a function (z, t) to z' """ def homotopy((x, y, z, t)): c = complex_homotopy((complex(x, y), t)) return (c.real, c.imag, z) if len(args) > 0: args = list(args) mobject = args.pop(0) elif "mobject" in kwargs: mobject = kwargs["mobject"] else: mobject = Grid() Homotopy.__init__(self, homotopy, mobject, *args, **kwargs) self.name = "ComplexHomotopy" + \ to_cammel_case(complex_homotopy.__name__) class ShowCreation(Animation): def update_mobject(self, alpha): #TODO, shoudl I make this more efficient? new_num_points = int(alpha * self.starting_mobject.points.shape[0]) for attr in ["points", "rgbs"]: setattr( self.mobject, attr, getattr(self.starting_mobject, attr)[:new_num_points, :] ) class Flash(Animation): def __init__(self, mobject, color = "white", slow_factor = 0.01, run_time = 0.1, alpha_func = None, *args, **kwargs): Animation.__init__(self, mobject, run_time = run_time, alpha_func = alpha_func, *args, **kwargs) self.intermediate = Mobject(color = color) self.intermediate.add_points([ point + (x, y, 0) for point in self.mobject.points for x in [-1, 1] for y in [-1, 1] ]) self.reference_mobjects.append(self.intermediate) self.slow_factor = slow_factor def update_mobject(self, alpha): #Makes alpha go from 0 to slow_factor to 0 instead of 0 to 1 alpha = self.slow_factor * (1.0 - 4 * (alpha - 0.5)**2) Mobject.interpolate( self.starting_mobject, self.intermediate, self.mobject, alpha )