import numpy as np import operator as op import os import copy from PIL import Image from colour import Color from helpers import * from container import * #TODO: Explain array_attrs class Mobject(Container): """ Mathematical Object """ CONFIG = { "color" : WHITE, "stroke_width" : DEFAULT_POINT_THICKNESS, "name" : None, "dim" : 3, "target" : None, } def __init__(self, *submobjects, **kwargs): Container.__init__(self, *submobjects, **kwargs) if not all(map(lambda m : isinstance(m, Mobject), submobjects)): raise Exception("All submobjects must be of type Mobject") self.submobjects = list(submobjects) self.color = Color(self.color) if self.name is None: self.name = self.__class__.__name__ self.init_points() self.generate_points() self.init_colors() def __str__(self): return str(self.name) def init_points(self): self.points = np.zeros((0, self.dim)) def init_colors(self): #For subclasses pass def generate_points(self): #Typically implemented in subclass, unless purposefully left blank pass def add(self, *mobjects): if self in mobjects: raise Exception("Mobject cannot contain self") self.submobjects = list_update(self.submobjects, mobjects) return self def add_to_back(self, *mobjects): self.remove(*mobjects) self.submobjects = list(mobjects) + self.submobjects return self def remove(self, *mobjects): for mobject in mobjects: if mobject in self.submobjects: self.submobjects.remove(mobject) return self def get_array_attrs(self): return ["points"] def digest_mobject_attrs(self): """ Ensures all attributes which are mobjects are included in the submobjects list. """ mobject_attrs = filter( lambda x : isinstance(x, Mobject), self.__dict__.values() ) self.submobjects = list_update(self.submobjects, mobject_attrs) return self def apply_over_attr_arrays(self, func): for attr in self.get_array_attrs(): setattr(self, attr, func(getattr(self, attr))) return self def get_image(self, camera = None): if camera is None: from camera import Camera camera = Camera() camera.capture_mobject(self) return camera.get_image() def show(self, camera = None): self.get_image(camera = camera).show() def save_image(self, name = None): self.get_image().save( os.path.join(ANIMATIONS_DIR, (name or str(self)) + ".png") ) def copy(self): #TODO, either justify reason for shallow copy, or #remove this redundancy everywhere return self.deepcopy() copy_mobject = copy.copy(self) copy_mobject.points = np.array(self.points) copy_mobject.submobjects = [ submob.copy() for submob in self.submobjects ] family = self.submobject_family() for attr, value in self.__dict__.items(): if isinstance(value, Mobject) and value in family and value is not self: setattr(copy_mobject, attr, value.copy()) return copy_mobject def deepcopy(self): return copy.deepcopy(self) def generate_target(self, use_deepcopy = False): self.target = None #Prevent exponential explosion if use_deepcopy: self.target = self.deepcopy() else: self.target = self.copy() return self.target #### Transforming operations ###### def apply_to_family(self, func): for mob in self.family_members_with_points(): func(mob) def shift(self, *vectors): total_vector = reduce(op.add, vectors) for mob in self.family_members_with_points(): mob.points = mob.points.astype('float') mob.points += total_vector return self def scale(self, scale_factor, **kwargs): """ Default behavior is to scale about the center of the mobject. The argument about_edge can be a vector, indicating which side of the mobject to scale about, e.g., mob.scale(about_edge = RIGHT) scales about mob.get_right(). Otherwise, if about_point is given a value, scaling is done with respect to that point. """ self.apply_points_function_about_point( lambda points : scale_factor*points, **kwargs ) return self def rotate_about_origin(self, angle, axis = OUT, axes = []): return self.rotate(angle, axis, about_point = ORIGIN) def rotate(self, angle, axis = OUT, **kwargs): rot_matrix = rotation_matrix(angle, axis) self.apply_points_function_about_point( lambda points : np.dot(points, rot_matrix.T), **kwargs ) return self def flip(self, axis = UP, **kwargs): return self.rotate(TAU/2, axis, **kwargs) def stretch(self, factor, dim, **kwargs): def func(points): points[:,dim] *= factor return points self.apply_points_function_about_point(func, **kwargs) return self def apply_function(self, function, **kwargs): #Default to applying matrix about the origin, not mobjects center if len(kwargs) == 0: kwargs["about_point"] = ORIGIN self.apply_points_function_about_point( lambda points : np.apply_along_axis(function, 1, points), **kwargs ) return self def apply_matrix(self, matrix, **kwargs): #Default to applying matrix about the origin, not mobjects center if len(kwargs) == 0: kwargs["about_point"] = ORIGIN full_matrix = np.identity(self.dim) matrix = np.array(matrix) full_matrix[:matrix.shape[0],:matrix.shape[1]] = matrix self.apply_points_function_about_point( lambda points : np.dot(points, full_matrix.T), **kwargs ) return self def apply_complex_function(self, function, **kwargs): return self.apply_function( lambda (x, y, z) : complex_to_R3(function(complex(x, y))), **kwargs ) def wag(self, direction = RIGHT, axis = DOWN, wag_factor = 1.0): for mob in self.family_members_with_points(): alphas = np.dot(mob.points, np.transpose(axis)) alphas -= min(alphas) alphas /= max(alphas) alphas = alphas**wag_factor mob.points += np.dot( alphas.reshape((len(alphas), 1)), np.array(direction).reshape((1, mob.dim)) ) return self def reverse_points(self): for mob in self.family_members_with_points(): mob.apply_over_attr_arrays( lambda arr : np.array(list(reversed(arr))) ) return self def repeat(self, count): """ This can make transition animations nicer """ def repeat_array(array): return reduce( lambda a1, a2 : np.append(a1, a2, axis = 0), [array]*count ) for mob in self.family_members_with_points(): mob.apply_over_attr_arrays(repeat_array) return self #### In place operations ###### #Note, much of these are now redundant with default behavior of #above methods def apply_points_function_about_point(self, func, about_point = None, about_edge = ORIGIN): if about_point is None: about_point = self.get_critical_point(about_edge) for mob in self.family_members_with_points(): mob.points -= about_point mob.points = func(mob.points) mob.points += about_point return self def rotate_in_place(self, angle, axis = OUT): # redundant with default behavior of rotate now. return self.rotate(angle, axis = axis) def scale_in_place(self, scale_factor, **kwargs): #Redundant with default behavior of scale now. return self.scale(scale_factor, **kwargs) def scale_about_point(self, scale_factor, point): #Redundant with default behavior of scale now. return self.scale(scale_factor, about_point = point) def pose_at_angle(self, **kwargs): self.rotate(TAU/14, RIGHT+UP, **kwargs) return self #### Positioning methods #### def center(self): self.shift(-self.get_center()) return self def align_on_border(self, direction, buff = DEFAULT_MOBJECT_TO_EDGE_BUFFER): """ Direction just needs to be a vector pointing towards side or corner in the 2d plane. """ target_point = np.sign(direction) * (SPACE_X_RADIUS, SPACE_Y_RADIUS, 0) point_to_align = self.get_critical_point(direction) shift_val = target_point - point_to_align - buff * np.array(direction) shift_val = shift_val * abs(np.sign(direction)) self.shift(shift_val) return self def to_corner(self, corner = LEFT+DOWN, buff = DEFAULT_MOBJECT_TO_EDGE_BUFFER): return self.align_on_border(corner, buff) def to_edge(self, edge = LEFT, buff = DEFAULT_MOBJECT_TO_EDGE_BUFFER): return self.align_on_border(edge, buff) def next_to(self, mobject_or_point, direction = RIGHT, buff = DEFAULT_MOBJECT_TO_MOBJECT_BUFFER, aligned_edge = ORIGIN, submobject_to_align = None, index_of_submobject_to_align = None, coor_mask = np.array([1,1,1]), ): if isinstance(mobject_or_point, Mobject): mob = mobject_or_point if index_of_submobject_to_align is not None: target_aligner = mob[index_of_submobject_to_align] else: target_aligner = mob target_point = target_aligner.get_critical_point( aligned_edge + direction ) else: target_point = mobject_or_point if submobject_to_align is not None: aligner = submobject_to_align elif index_of_submobject_to_align is not None: aligner = self[index_of_submobject_to_align] else: aligner = self point_to_align = aligner.get_critical_point(aligned_edge - direction) self.shift((target_point - point_to_align + buff*direction)*coor_mask) return self def align_to(self, mobject_or_point, direction = ORIGIN, alignment_vect = UP): """ Examples: mob1.align_to(mob2, UP) moves mob1 vertically so that its top edge lines ups with mob2's top edge. mob1.align_to(mob2, alignment_vector = RIGHT) moves mob1 horizontally so that it's center is directly above/below the center of mob2 """ if isinstance(mobject_or_point, Mobject): mob = mobject_or_point target_point = mob.get_critical_point(direction) else: target_point = mobject_or_point direction_norm = np.linalg.norm(direction) if direction_norm > 0: alignment_vect = np.array(direction)/direction_norm reference_point = self.get_critical_point(direction) else: reference_point = self.get_center() diff = target_point - reference_point self.shift(alignment_vect*np.dot(diff, alignment_vect)) return self def shift_onto_screen(self, **kwargs): space_lengths = [SPACE_X_RADIUS, SPACE_Y_RADIUS] for vect in UP, DOWN, LEFT, RIGHT: dim = np.argmax(np.abs(vect)) buff = kwargs.get("buff", DEFAULT_MOBJECT_TO_EDGE_BUFFER) max_val = space_lengths[dim] - buff edge_center = self.get_edge_center(vect) if np.dot(edge_center, vect) > max_val: self.to_edge(vect, **kwargs) return self def is_off_screen(self): if self.get_left()[0] > SPACE_X_RADIUS: return True if self.get_right()[0] < -SPACE_X_RADIUS: return True if self.get_bottom()[1] > SPACE_Y_RADIUS: return True if self.get_top()[1] < -SPACE_Y_RADIUS: return True return False def stretch_about_point(self, factor, dim, point): return self.stretch(factor, dim, about_point = point) def stretch_in_place(self, factor, dim): #Now redundant with stretch return self.stretch(factor, dim) def rescale_to_fit(self, length, dim, stretch = False, **kwargs): old_length = self.length_over_dim(dim) if old_length == 0: return self if stretch: self.stretch(length/old_length, dim, **kwargs) else: self.scale(length/old_length, **kwargs) return self def stretch_to_fit_width(self, width, **kwargs): return self.rescale_to_fit(width, 0, stretch = True, **kwargs) def stretch_to_fit_height(self, height, **kwargs): return self.rescale_to_fit(height, 1, stretch = True, **kwargs) def stretch_to_fit_depth(self, depth, **kwargs): return self.rescale_to_fit(depth, 1, stretch = True, **kwargs) def scale_to_fit_width(self, width, **kwargs): return self.rescale_to_fit(width, 0, stretch = False, **kwargs) def scale_to_fit_height(self, height, **kwargs): return self.rescale_to_fit(height, 1, stretch = False, **kwargs) def scale_to_fit_depth(self, depth, **kwargs): return self.rescale_to_fit(depth, 2, stretch = False, **kwargs) def space_out_submobjects(self, factor = 1.5, **kwargs): self.scale(factor, **kwargs) for submob in self.submobjects: submob.scale(1./factor) return self def move_to(self, point_or_mobject, aligned_edge = ORIGIN, coor_mask = np.array([1,1,1])): if isinstance(point_or_mobject, Mobject): target = point_or_mobject.get_critical_point(aligned_edge) else: target = point_or_mobject point_to_align = self.get_critical_point(aligned_edge) self.shift((target - point_to_align)*coor_mask) return self def replace(self, mobject, dim_to_match = 0, stretch = False): if not mobject.get_num_points() and not mobject.submobjects: raise Warning("Attempting to replace mobject with no points") return self if stretch: self.stretch_to_fit_width(mobject.get_width()) self.stretch_to_fit_height(mobject.get_height()) else: self.rescale_to_fit( mobject.length_over_dim(dim_to_match), dim_to_match, stretch = False ) self.shift(mobject.get_center() - self.get_center()) return self def surround(self, mobject, dim_to_match = 0, stretch = False, buffer_factor = 1.2): self.replace(mobject, dim_to_match, stretch) self.scale_in_place(buffer_factor) def position_endpoints_on(self, start, end): curr_vect = self.points[-1] - self.points[0] if np.all(curr_vect == 0): raise Exception("Cannot position endpoints of closed loop") target_vect = end - start self.scale(np.linalg.norm(target_vect)/np.linalg.norm(curr_vect)) self.rotate( angle_of_vector(target_vect) - \ angle_of_vector(curr_vect) ) self.shift(start-self.points[0]) return self ## Match other mobvject properties def match_color(self, mobject): return self.highlight(mobject.get_color()) def match_dim(self, mobject, dim, **kwargs): return self.rescale_to_fit( mobject.length_over_dim(dim), dim, **kwargs ) def match_width(self, mobject, **kwargs): return self.match_dim(mobject, 0, **kwargs) def match_height(self, mobject, **kwargs): return self.match_dim(mobject, 1, **kwargs) def match_depth(self, mobject, **kwargs): return self.match_dim(mobject, 2, **kwargs) ## Color functions def highlight(self, color = YELLOW_C, family = True): """ Condition is function which takes in one arguments, (x, y, z). Here it just recurses to submobjects, but in subclasses this should be further implemented based on the the inner workings of color """ if family: for submob in self.submobjects: submob.highlight(color, family = family) return self def gradient_highlight(self, *colors): self.submobject_gradient_highlight(*colors) return self def radial_gradient_highlight(self, center = None, radius = 1, inner_color = WHITE, outer_color = BLACK): self.submobject_radial_gradient_highlight(center, radius, inner_color, outer_color) return self def submobject_gradient_highlight(self, *colors): if len(colors) == 0: raise Exception("Need at least one color") elif len(colors) == 1: return self.highlight(*colors) mobs = self.family_members_with_points() new_colors = color_gradient(colors, len(mobs)) for mob, color in zip(mobs, new_colors): mob.highlight(color, family = False) return self def submobject_radial_gradient_highlight(self, center = None, radius = 1, inner_color = WHITE, outer_color = BLACK): mobs = self.family_members_with_points() if center == None: center = self.get_center() for mob in self.family_members_with_points(): t = np.linalg.norm(mob.get_center() - center)/radius t = min(t,1) mob_color = interpolate_color(inner_color, outer_color, t) mob.highlight(mob_color, family = False) return self def set_color(self, color): self.highlight(color) self.color = Color(color) return self def to_original_color(self): self.highlight(self.color) return self # Some objects (e.g., VMobjects) have special fading # behavior. We let every object handle its individual # fading via fade_no_recurse (notionally a purely internal method), # and then have fade() itself call this recursively on each submobject # # Similarly for fade_to_no_recurse and fade_to, the underlying functions # used by default for fade()ing def fade_to_no_recurse(self, color, alpha): if self.get_num_points() > 0: start = color_to_rgb(self.get_color()) end = color_to_rgb(color) new_rgb = interpolate(start, end, alpha) self.highlight(Color(rgb = new_rgb), family = False) return self def fade_to(self, color, alpha): for mob in self.subobject_family(): mob.fade_to_no_recurse(self, color, alpha) return self def fade_no_recurse(self, darkness): self.fade_to_no_recurse(BLACK, darkness) return self def fade(self, darkness = 0.5): for submob in self.submobject_family(): submob.fade_no_recurse(darkness) return self def get_color(self): return self.color ## def save_state(self, use_deepcopy = False): if hasattr(self, "saved_state"): #Prevent exponential growth of data self.saved_state = None if use_deepcopy: self.saved_state = self.deepcopy() else: self.saved_state = self.copy() return self def restore(self): if not hasattr(self, "saved_state") or self.save_state is None: raise Exception("Trying to restore without having saved") self.align_data(self.saved_state) for sm1, sm2 in zip(self.submobject_family(), self.saved_state.submobject_family()): sm1.interpolate(sm1, sm2, 1) return self ## def reduce_across_dimension(self, points_func, reduce_func, dim): try: points = self.get_points_defining_boundary() values = [points_func(points[:, dim])] except: values = [] values += [ mob.reduce_across_dimension(points_func, reduce_func, dim) for mob in self.submobjects ] try: return reduce_func(values) except: return 0 def get_merged_array(self, array_attr): result = None for mob in self.family_members_with_points(): if result is None: result = getattr(mob, array_attr) else: result = np.append(result, getattr(mob, array_attr), 0) return result def get_all_points(self): return self.get_merged_array("points") ### Getters ### def get_points_defining_boundary(self): return self.points def get_num_points(self): return len(self.points) def get_critical_point(self, direction): result = np.zeros(self.dim) for dim in range(self.dim): if direction[dim] <= 0: min_point = self.reduce_across_dimension(np.min, np.min, dim) if direction[dim] >= 0: max_point = self.reduce_across_dimension(np.max, np.max, dim) if direction[dim] == 0: result[dim] = (max_point+min_point)/2 elif direction[dim] < 0: result[dim] = min_point else: result[dim] = max_point return result # Pseudonyms for more general get_critical_point method def get_edge_center(self, direction): return self.get_critical_point(direction) def get_corner(self, direction): return self.get_critical_point(direction) def get_center(self): return self.get_critical_point(np.zeros(self.dim)) def get_center_of_mass(self): return np.apply_along_axis(np.mean, 0, self.get_all_points()) def get_boundary_point(self, direction): all_points = self.get_all_points() return all_points[np.argmax(np.dot(all_points, direction))] def get_top(self): return self.get_edge_center(UP) def get_bottom(self): return self.get_edge_center(DOWN) def get_right(self): return self.get_edge_center(RIGHT) def get_left(self): return self.get_edge_center(LEFT) def get_zenith(self): return self.get_edge_center(OUT) def get_nadir(self): return self.get_edge_center(IN) def length_over_dim(self, dim): return ( self.reduce_across_dimension(np.max, np.max, dim) - self.reduce_across_dimension(np.min, np.min, dim) ) def get_width(self): return self.length_over_dim(0) def get_height(self): return self.length_over_dim(1) def get_depth(self): return self.length_over_dim(2) def point_from_proportion(self, alpha): raise Exception("Not implemented") ## Family matters def __getitem__(self, value): self_list = self.split() if isinstance(value, slice): GroupClass = self.get_group_class() return GroupClass(*self_list.__getitem__(value)) return self_list.__getitem__(value) def __iter__(self): return iter(self.split()) def __len__(self): return len(self.split()) def get_group_class(self): return Group def split(self): result = [self] if len(self.points) > 0 else [] return result + self.submobjects def submobject_family(self): sub_families = map(Mobject.submobject_family, self.submobjects) all_mobjects = [self] + list(it.chain(*sub_families)) return remove_list_redundancies(all_mobjects) def family_members_with_points(self): return filter( lambda m : m.get_num_points() > 0, self.submobject_family() ) def arrange_submobjects(self, direction = RIGHT, center = True, **kwargs): for m1, m2 in zip(self.submobjects, self.submobjects[1:]): m2.next_to(m1, direction, **kwargs) if center: self.center() return self def arrange_submobjects_in_grid(self, n_rows = None, n_cols = None, **kwargs): submobs = self.submobjects if n_rows is None and n_cols is None: n_cols = int(np.sqrt(len(submobs))) if n_rows is not None: v1 = RIGHT v2 = DOWN n = len(submobs) / n_rows elif n_cols is not None: v1 = DOWN v2 = RIGHT n = len(submobs) / n_cols Group(*[ Group(*submobs[i:i+n]).arrange_submobjects(v1, **kwargs) for i in range(0, len(submobs), n) ]).arrange_submobjects(v2, **kwargs) return self def sort_submobjects(self, point_to_num_func = lambda p : p[0]): self.submobjects.sort( lambda *mobs : cmp(*[ point_to_num_func(mob.get_center()) for mob in mobs ]) ) return self ## Alignment def align_data(self, mobject): self.align_submobjects(mobject) self.align_points(mobject) #Recurse for m1, m2 in zip(self.submobjects, mobject.submobjects): m1.align_data(m2) def get_point_mobject(self, center = None): """ The simplest mobject to be transformed to or from self. Should by a point of the appropriate type """ raise Exception("Not implemented") def align_points(self, mobject): count1 = self.get_num_points() count2 = mobject.get_num_points() if count1 < count2: self.align_points_with_larger(mobject) elif count2 < count1: mobject.align_points_with_larger(self) return self def align_points_with_larger(self, larger_mobject): raise Exception("Not implemented") def align_submobjects(self, mobject): #If one is empty, and the other is not, #push it into its submobject list self_has_points, mob_has_points = [ mob.get_num_points() > 0 for mob in self, mobject ] if self_has_points and not mob_has_points: mobject.null_point_align(self) elif mob_has_points and not self_has_points: self.null_point_align(mobject) self_count = len(self.submobjects) mob_count = len(mobject.submobjects) diff = self_count-mob_count if diff < 0: self.add_n_more_submobjects(-diff) elif diff > 0: mobject.add_n_more_submobjects(diff) return self def null_point_align(self, mobject): """ If self has no points, but needs to align with mobject, which has points """ if self.submobjects: mobject.push_self_into_submobjects() else: self.points = np.array([mobject.points[0]]) return self def push_self_into_submobjects(self): copy = self.copy() copy.submobjects = [] self.init_points() self.add(copy) return self def add_n_more_submobjects(self, n): curr = len(self.submobjects) if n > 0 and curr == 0: self.add(self.copy()) n -= 1 curr += 1 indices = curr*np.arange(curr+n)/(curr+n) new_submobjects = [] for index in indices: submob = self.submobjects[index] if submob in new_submobjects: submob = self.repeat_submobject(submob) new_submobjects.append(submob) self.submobjects = new_submobjects return self def repeat_submobject(self, submob): return submob.copy() def interpolate(self, mobject1, mobject2, alpha, path_func = straight_path): """ Turns self into an interpolation between mobject1 and mobject2. """ self.points = path_func( mobject1.points, mobject2.points, alpha ) self.interpolate_color(mobject1, mobject2, alpha) def interpolate_color(self, mobject1, mobject2, alpha): pass #To implement in subclass def become_partial(self, mobject, a, b): """ Set points in such a way as to become only part of mobject. Inputs 0 <= a < b <= 1 determine what portion of mobject to become. """ pass #To implement in subclasses #TODO, color? def pointwise_become_partial(self, mobject, a, b): pass #To implement in subclass class Group(Mobject): #Alternate name to improve readibility in cases where #the mobject is used primarily for its submobject housing #functionality. pass