import copy import itertools as it import random import sys import moderngl from functools import wraps from collections.abc import Iterable import numpy as np from manimlib.constants import * from manimlib.utils.color import color_gradient from manimlib.utils.color import get_colormap_list from manimlib.utils.color import rgb_to_hex from manimlib.utils.color import color_to_rgb from manimlib.utils.config_ops import digest_config from manimlib.utils.iterables import batch_by_property from manimlib.utils.iterables import list_update from manimlib.utils.iterables import resize_array from manimlib.utils.iterables import resize_preserving_order from manimlib.utils.iterables import resize_with_interpolation from manimlib.utils.iterables import make_even from manimlib.utils.iterables import listify from manimlib.utils.bezier import interpolate from manimlib.utils.bezier import integer_interpolate from manimlib.utils.paths import straight_path from manimlib.utils.simple_functions import get_parameters from manimlib.utils.space_ops import angle_of_vector from manimlib.utils.space_ops import get_norm from manimlib.utils.space_ops import rotation_matrix_transpose from manimlib.shader_wrapper import ShaderWrapper from manimlib.shader_wrapper import get_colormap_code from manimlib.event_handler import EVENT_DISPATCHER from manimlib.event_handler.event_listner import EventListner from manimlib.event_handler.event_type import EventType class Mobject(object): """ Mathematical Object """ CONFIG = { "color": WHITE, "opacity": 1, "dim": 3, # TODO, get rid of this # Lighting parameters # ... # Larger reflectiveness makes things brighter when facing the light "reflectiveness": 0.0, # Larger shadow makes faces opposite the light darker "shadow": 0.0, # Makes parts bright where light gets reflected toward the camera "gloss": 0.0, # For shaders "shader_folder": "", "render_primitive": moderngl.TRIANGLE_STRIP, "texture_paths": None, "depth_test": False, # If true, the mobject will not get rotated according to camera position "is_fixed_in_frame": False, # Must match in attributes of vert shader "shader_dtype": [ ('point', np.float32, (3,)), ] } def __init__(self, **kwargs): digest_config(self, kwargs) self.submobjects = [] self.parents = [] self.family = [self] self.locked_data_keys = set() self.needs_new_bounding_box = True self.init_data() self.init_uniforms() self.init_updaters() self.init_event_listners() self.init_points() self.init_colors() self.init_shader_data() if self.depth_test: self.apply_depth_test() def __str__(self): return self.__class__.__name__ def __add__(self, other: 'Mobject') -> 'Mobject': assert(isinstance(other, Mobject)) return self.get_group_class()(self, other) def __mul__(self, other: 'int') -> 'Mobject': assert(isinstance(other, int)) return self.replicate(other) def init_data(self): self.data = { "points": np.zeros((0, 3)), "bounding_box": np.zeros((3, 3)), "rgbas": np.zeros((1, 4)), } def init_uniforms(self): self.uniforms = { "is_fixed_in_frame": float(self.is_fixed_in_frame), "gloss": self.gloss, "shadow": self.shadow, "reflectiveness": self.reflectiveness, } def init_colors(self): self.set_color(self.color, self.opacity) def init_points(self): # Typically implemented in subclass, unlpess purposefully left blank pass def set_data(self, data): for key in data: self.data[key] = data[key].copy() return self def set_uniforms(self, uniforms): for key in uniforms: self.uniforms[key] = uniforms[key] # Copy? return self @property def animate(self): # Borrowed from https://github.com/ManimCommunity/manim/ return _AnimationBuilder(self) # Only these methods should directly affect points def resize_points(self, new_length, resize_func=resize_array): if new_length != len(self.data["points"]): self.data["points"] = resize_func(self.data["points"], new_length) self.refresh_bounding_box() return self def set_points(self, points): if len(points) == len(self.data["points"]): self.data["points"][:] = points elif isinstance(points, np.ndarray): self.data["points"] = points.copy() else: self.data["points"] = np.array(points) self.refresh_bounding_box() return self def append_points(self, new_points): self.data["points"] = np.vstack([self.data["points"], new_points]) self.refresh_bounding_box() return self def reverse_points(self): for mob in self.get_family(): for key in mob.data: mob.data[key] = mob.data[key][::-1] self.refresh_unit_normal() return self def apply_points_function(self, func, about_point=None, about_edge=ORIGIN, works_on_bounding_box=False): if about_point is None and about_edge is not None: about_point = self.get_bounding_box_point(about_edge) for mob in self.get_family(): arrs = [] if mob.has_points(): arrs.append(mob.get_points()) if works_on_bounding_box: arrs.append(mob.get_bounding_box()) for arr in arrs: if about_point is None: arr[:] = func(arr) else: arr[:] = func(arr - about_point) + about_point if not works_on_bounding_box: self.refresh_bounding_box(recurse_down=True) else: for parent in self.parents: parent.refresh_bounding_box() return self # Others related to points def match_points(self, mobject): self.set_points(mobject.get_points()) return self def get_points(self): return self.data["points"] def clear_points(self): self.resize_points(0) def get_num_points(self): return len(self.data["points"]) def get_all_points(self): if self.submobjects: return np.vstack([sm.get_points() for sm in self.get_family()]) else: return self.get_points() def has_points(self): return self.get_num_points() > 0 def get_bounding_box(self): if self.needs_new_bounding_box: self.data["bounding_box"] = self.compute_bounding_box() self.needs_new_bounding_box = False return self.data["bounding_box"] def compute_bounding_box(self): all_points = np.vstack([ self.get_points(), *( mob.get_bounding_box() for mob in self.get_family()[1:] if mob.has_points() ) ]) if len(all_points) == 0: return np.zeros((3, self.dim)) else: # Lower left and upper right corners mins = all_points.min(0) maxs = all_points.max(0) mids = (mins + maxs) / 2 return np.array([mins, mids, maxs]) def refresh_bounding_box(self, recurse_down=False, recurse_up=True): for mob in self.get_family(recurse_down): mob.needs_new_bounding_box = True if recurse_up: for parent in self.parents: parent.refresh_bounding_box() return self def is_point_touching(self, point, buff=MED_SMALL_BUFF): bb = self.get_bounding_box() mins = (bb[0] - buff) maxs = (bb[2] + buff) return (point >= mins).all() and (point <= maxs).all() # Family matters def __getitem__(self, value): if isinstance(value, slice): GroupClass = self.get_group_class() return GroupClass(*self.split().__getitem__(value)) return self.split().__getitem__(value) def __iter__(self): return iter(self.split()) def __len__(self): return len(self.split()) def split(self): return self.submobjects def assemble_family(self): sub_families = (sm.get_family() for sm in self.submobjects) self.family = [self, *it.chain(*sub_families)] self.refresh_has_updater_status() self.refresh_bounding_box() for parent in self.parents: parent.assemble_family() return self def get_family(self, recurse=True): if recurse: return self.family else: return [self] def family_members_with_points(self): return [m for m in self.get_family() if m.has_points()] def add(self, *mobjects): if self in mobjects: raise Exception("Mobject cannot contain self") for mobject in mobjects: if mobject not in self.submobjects: self.submobjects.append(mobject) if self not in mobject.parents: mobject.parents.append(self) self.assemble_family() return self def remove(self, *mobjects): for mobject in mobjects: if mobject in self.submobjects: self.submobjects.remove(mobject) if self in mobject.parents: mobject.parents.remove(self) self.assemble_family() return self def add_to_back(self, *mobjects): self.set_submobjects(list_update(mobjects, self.submobjects)) return self def replace_submobject(self, index, new_submob): old_submob = self.submobjects[index] if self in old_submob.parents: old_submob.parents.remove(self) self.submobjects[index] = new_submob self.assemble_family() return self def insert_submobject(self, index, new_submob): self.submobjects.insert(index, new_submob) self.assemble_family() return self def set_submobjects(self, submobject_list): self.remove(*self.submobjects) self.add(*submobject_list) return self def digest_mobject_attrs(self): """ Ensures all attributes which are mobjects are included in the submobjects list. """ mobject_attrs = [x for x in list(self.__dict__.values()) if isinstance(x, Mobject)] self.set_submobjects(list_update(self.submobjects, mobject_attrs)) return self # Submobject organization def arrange(self, direction=RIGHT, center=True, **kwargs): for m1, m2 in zip(self.submobjects, self.submobjects[1:]): m2.next_to(m1, direction, **kwargs) if center: self.center() return self def arrange_in_grid(self, n_rows=None, n_cols=None, buff=None, h_buff=None, v_buff=None, buff_ratio=None, h_buff_ratio=0.5, v_buff_ratio=0.5, aligned_edge=ORIGIN, fill_rows_first=True): submobs = self.submobjects if n_rows is None and n_cols is None: n_rows = int(np.sqrt(len(submobs))) if n_rows is None: n_rows = len(submobs) // n_cols if n_cols is None: n_cols = len(submobs) // n_rows if buff is not None: h_buff = buff v_buff = buff else: if buff_ratio is not None: v_buff_ratio = buff_ratio h_buff_ratio = buff_ratio if h_buff is None: h_buff = h_buff_ratio * self[0].get_width() if v_buff is None: v_buff = v_buff_ratio * self[0].get_height() x_unit = h_buff + max([sm.get_width() for sm in submobs]) y_unit = v_buff + max([sm.get_height() for sm in submobs]) for index, sm in enumerate(submobs): if fill_rows_first: x, y = index % n_cols, index // n_cols else: x, y = index // n_rows, index % n_rows sm.move_to(ORIGIN, aligned_edge) sm.shift(x * x_unit * RIGHT + y * y_unit * DOWN) self.center() return self def replicate(self, n): return self.get_group_class()( *(self.copy() for x in range(n)) ) def get_grid(self, n_rows, n_cols, height=None, **kwargs): """ Returns a new mobject containing multiple copies of this one arranged in a grid """ grid = self.replicate(n_rows * n_cols) grid.arrange_in_grid(n_rows, n_cols, **kwargs) if height is not None: grid.set_height(height) return grid def sort(self, point_to_num_func=lambda p: p[0], submob_func=None): if submob_func is not None: self.submobjects.sort(key=submob_func) else: self.submobjects.sort(key=lambda m: point_to_num_func(m.get_center())) self.assemble_family() return self def shuffle(self, recurse=False): if recurse: for submob in self.submobjects: submob.shuffle(recurse=True) random.shuffle(self.submobjects) self.assemble_family() return self # Copying def copy(self): # TODO, either justify reason for shallow copy, or # remove this redundancy everywhere # return self.deepcopy() parents = self.parents self.parents = [] copy_mobject = copy.copy(self) self.parents = parents copy_mobject.data = dict(self.data) for key in self.data: copy_mobject.data[key] = self.data[key].copy() copy_mobject.uniforms = dict(self.uniforms) for key in self.uniforms: if isinstance(self.uniforms[key], np.ndarray): copy_mobject.uniforms[key] = self.uniforms[key].copy() copy_mobject.submobjects = [] copy_mobject.add(*[sm.copy() for sm in self.submobjects]) copy_mobject.match_updaters(self) copy_mobject.needs_new_bounding_box = self.needs_new_bounding_box # Make sure any mobject or numpy array attributes are copied family = self.get_family() for attr, value in list(self.__dict__.items()): if isinstance(value, Mobject) and value in family and value is not self: setattr(copy_mobject, attr, value.copy()) if isinstance(value, np.ndarray): setattr(copy_mobject, attr, value.copy()) if isinstance(value, ShaderWrapper): setattr(copy_mobject, attr, value.copy()) return copy_mobject def deepcopy(self): parents = self.parents self.parents = [] result = copy.deepcopy(self) self.parents = parents return result def generate_target(self, use_deepcopy=False): self.target = None # Prevent exponential explosion if use_deepcopy: self.target = self.deepcopy() else: self.target = self.copy() return self.target def save_state(self, use_deepcopy=False): if hasattr(self, "saved_state"): # Prevent exponential growth of data self.saved_state = None if use_deepcopy: self.saved_state = self.deepcopy() else: self.saved_state = self.copy() return self def restore(self): if not hasattr(self, "saved_state") or self.save_state is None: raise Exception("Trying to restore without having saved") self.become(self.saved_state) return self # Updating def init_updaters(self): self.time_based_updaters = [] self.non_time_updaters = [] self.has_updaters = False self.updating_suspended = False def update(self, dt=0, recurse=True): if not self.has_updaters or self.updating_suspended: return self for updater in self.time_based_updaters: updater(self, dt) for updater in self.non_time_updaters: updater(self) if recurse: for submob in self.submobjects: submob.update(dt, recurse) return self def get_time_based_updaters(self): return self.time_based_updaters def has_time_based_updater(self): return len(self.time_based_updaters) > 0 def get_updaters(self): return self.time_based_updaters + self.non_time_updaters def get_family_updaters(self): return list(it.chain(*[sm.get_updaters() for sm in self.get_family()])) def add_updater(self, update_function, index=None, call_updater=True): if "dt" in get_parameters(update_function): updater_list = self.time_based_updaters else: updater_list = self.non_time_updaters if index is None: updater_list.append(update_function) else: updater_list.insert(index, update_function) self.refresh_has_updater_status() if call_updater: self.update(dt=0) return self def remove_updater(self, update_function): for updater_list in [self.time_based_updaters, self.non_time_updaters]: while update_function in updater_list: updater_list.remove(update_function) self.refresh_has_updater_status() return self def clear_updaters(self, recurse=True): self.time_based_updaters = [] self.non_time_updaters = [] self.refresh_has_updater_status() if recurse: for submob in self.submobjects: submob.clear_updaters() return self def match_updaters(self, mobject): self.clear_updaters() for updater in mobject.get_updaters(): self.add_updater(updater) return self def suspend_updating(self, recurse=True): self.updating_suspended = True if recurse: for submob in self.submobjects: submob.suspend_updating(recurse) return self def resume_updating(self, recurse=True, call_updater=True): self.updating_suspended = False if recurse: for submob in self.submobjects: submob.resume_updating(recurse) for parent in self.parents: parent.resume_updating(recurse=False, call_updater=False) if call_updater: self.update(dt=0, recurse=recurse) return self def refresh_has_updater_status(self): self.has_updaters = any(mob.get_updaters() for mob in self.get_family()) return self # Transforming operations def shift(self, vector): self.apply_points_function( lambda points: points + vector, about_edge=None, works_on_bounding_box=True, ) return self def scale(self, scale_factor, min_scale_factor=1e-8, about_point=None, about_edge=ORIGIN): """ Default behavior is to scale about the center of the mobject. The argument about_edge can be a vector, indicating which side of the mobject to scale about, e.g., mob.scale(about_edge = RIGHT) scales about mob.get_right(). Otherwise, if about_point is given a value, scaling is done with respect to that point. """ if isinstance(scale_factor, Iterable): scale_factor = np.array(scale_factor).clip(min=min_scale_factor) else: scale_factor = max(scale_factor, min_scale_factor) self.apply_points_function( lambda points: scale_factor * points, about_point=about_point, about_edge=about_edge, works_on_bounding_box=True, ) for mob in self.get_family(): mob._handle_scale_side_effects(scale_factor) return self def _handle_scale_side_effects(self, scale_factor): # In case subclasses, such as DecimalNumber, need to make # any other changes when the size gets altered pass def stretch(self, factor, dim, **kwargs): def func(points): points[:, dim] *= factor return points self.apply_points_function(func, works_on_bounding_box=True, **kwargs) return self def rotate_about_origin(self, angle, axis=OUT): return self.rotate(angle, axis, about_point=ORIGIN) def rotate(self, angle, axis=OUT, **kwargs): rot_matrix_T = rotation_matrix_transpose(angle, axis) self.apply_points_function( lambda points: np.dot(points, rot_matrix_T), **kwargs ) return self def flip(self, axis=UP, **kwargs): return self.rotate(TAU / 2, axis, **kwargs) def apply_function(self, function, **kwargs): # Default to applying matrix about the origin, not mobjects center if len(kwargs) == 0: kwargs["about_point"] = ORIGIN self.apply_points_function( lambda points: np.array([function(p) for p in points]), **kwargs ) return self def apply_function_to_position(self, function): self.move_to(function(self.get_center())) return self def apply_function_to_submobject_positions(self, function): for submob in self.submobjects: submob.apply_function_to_position(function) return self def apply_matrix(self, matrix, **kwargs): # Default to applying matrix about the origin, not mobjects center if ("about_point" not in kwargs) and ("about_edge" not in kwargs): kwargs["about_point"] = ORIGIN full_matrix = np.identity(self.dim) matrix = np.array(matrix) full_matrix[:matrix.shape[0], :matrix.shape[1]] = matrix self.apply_points_function( lambda points: np.dot(points, full_matrix.T), **kwargs ) return self def apply_complex_function(self, function, **kwargs): def R3_func(point): x, y, z = point xy_complex = function(complex(x, y)) return [ xy_complex.real, xy_complex.imag, z ] return self.apply_function(R3_func) def wag(self, direction=RIGHT, axis=DOWN, wag_factor=1.0): for mob in self.family_members_with_points(): alphas = np.dot(mob.get_points(), np.transpose(axis)) alphas -= min(alphas) alphas /= max(alphas) alphas = alphas**wag_factor mob.set_points(mob.get_points() + np.dot( alphas.reshape((len(alphas), 1)), np.array(direction).reshape((1, mob.dim)) )) return self # Positioning methods def center(self): self.shift(-self.get_center()) return self def align_on_border(self, direction, buff=DEFAULT_MOBJECT_TO_EDGE_BUFFER): """ Direction just needs to be a vector pointing towards side or corner in the 2d plane. """ target_point = np.sign(direction) * (FRAME_X_RADIUS, FRAME_Y_RADIUS, 0) point_to_align = self.get_bounding_box_point(direction) shift_val = target_point - point_to_align - buff * np.array(direction) shift_val = shift_val * abs(np.sign(direction)) self.shift(shift_val) return self def to_corner(self, corner=LEFT + DOWN, buff=DEFAULT_MOBJECT_TO_EDGE_BUFFER): return self.align_on_border(corner, buff) def to_edge(self, edge=LEFT, buff=DEFAULT_MOBJECT_TO_EDGE_BUFFER): return self.align_on_border(edge, buff) def next_to(self, mobject_or_point, direction=RIGHT, buff=DEFAULT_MOBJECT_TO_MOBJECT_BUFFER, aligned_edge=ORIGIN, submobject_to_align=None, index_of_submobject_to_align=None, coor_mask=np.array([1, 1, 1]), ): if isinstance(mobject_or_point, Mobject): mob = mobject_or_point if index_of_submobject_to_align is not None: target_aligner = mob[index_of_submobject_to_align] else: target_aligner = mob target_point = target_aligner.get_bounding_box_point( aligned_edge + direction ) else: target_point = mobject_or_point if submobject_to_align is not None: aligner = submobject_to_align elif index_of_submobject_to_align is not None: aligner = self[index_of_submobject_to_align] else: aligner = self point_to_align = aligner.get_bounding_box_point(aligned_edge - direction) self.shift((target_point - point_to_align + buff * direction) * coor_mask) return self def shift_onto_screen(self, **kwargs): space_lengths = [FRAME_X_RADIUS, FRAME_Y_RADIUS] for vect in UP, DOWN, LEFT, RIGHT: dim = np.argmax(np.abs(vect)) buff = kwargs.get("buff", DEFAULT_MOBJECT_TO_EDGE_BUFFER) max_val = space_lengths[dim] - buff edge_center = self.get_edge_center(vect) if np.dot(edge_center, vect) > max_val: self.to_edge(vect, **kwargs) return self def is_off_screen(self): if self.get_left()[0] > FRAME_X_RADIUS: return True if self.get_right()[0] < -FRAME_X_RADIUS: return True if self.get_bottom()[1] > FRAME_Y_RADIUS: return True if self.get_top()[1] < -FRAME_Y_RADIUS: return True return False def stretch_about_point(self, factor, dim, point): return self.stretch(factor, dim, about_point=point) def stretch_in_place(self, factor, dim): # Now redundant with stretch return self.stretch(factor, dim) def rescale_to_fit(self, length, dim, stretch=False, **kwargs): old_length = self.length_over_dim(dim) if old_length == 0: return self if stretch: self.stretch(length / old_length, dim, **kwargs) else: self.scale(length / old_length, **kwargs) return self def stretch_to_fit_width(self, width, **kwargs): return self.rescale_to_fit(width, 0, stretch=True, **kwargs) def stretch_to_fit_height(self, height, **kwargs): return self.rescale_to_fit(height, 1, stretch=True, **kwargs) def stretch_to_fit_depth(self, depth, **kwargs): return self.rescale_to_fit(depth, 2, stretch=True, **kwargs) def set_width(self, width, stretch=False, **kwargs): return self.rescale_to_fit(width, 0, stretch=stretch, **kwargs) def set_height(self, height, stretch=False, **kwargs): return self.rescale_to_fit(height, 1, stretch=stretch, **kwargs) def set_depth(self, depth, stretch=False, **kwargs): return self.rescale_to_fit(depth, 2, stretch=stretch, **kwargs) def set_max_width(self, max_width, **kwargs): if self.get_width() > max_width: self.set_width(max_width, **kwargs) return self def set_max_height(self, max_height, **kwargs): if self.get_height() > max_height: self.set_height(max_height, **kwargs) return self def set_max_depth(self, max_depth, **kwargs): if self.get_depth() > max_depth: self.set_depth(max_depth, **kwargs) return self def set_coord(self, value, dim, direction=ORIGIN): curr = self.get_coord(dim, direction) shift_vect = np.zeros(self.dim) shift_vect[dim] = value - curr self.shift(shift_vect) return self def set_x(self, x, direction=ORIGIN): return self.set_coord(x, 0, direction) def set_y(self, y, direction=ORIGIN): return self.set_coord(y, 1, direction) def set_z(self, z, direction=ORIGIN): return self.set_coord(z, 2, direction) def space_out_submobjects(self, factor=1.5, **kwargs): self.scale(factor, **kwargs) for submob in self.submobjects: submob.scale(1. / factor) return self def move_to(self, point_or_mobject, aligned_edge=ORIGIN, coor_mask=np.array([1, 1, 1])): if isinstance(point_or_mobject, Mobject): target = point_or_mobject.get_bounding_box_point(aligned_edge) else: target = point_or_mobject point_to_align = self.get_bounding_box_point(aligned_edge) self.shift((target - point_to_align) * coor_mask) return self def replace(self, mobject, dim_to_match=0, stretch=False): if not mobject.get_num_points() and not mobject.submobjects: self.scale(0) return self if stretch: for i in range(self.dim): self.rescale_to_fit(mobject.length_over_dim(i), i, stretch=True) else: self.rescale_to_fit( mobject.length_over_dim(dim_to_match), dim_to_match, stretch=False ) self.shift(mobject.get_center() - self.get_center()) return self def surround(self, mobject, dim_to_match=0, stretch=False, buff=MED_SMALL_BUFF): self.replace(mobject, dim_to_match, stretch) length = mobject.length_over_dim(dim_to_match) self.scale((length + buff) / length) return self def put_start_and_end_on(self, start, end): curr_start, curr_end = self.get_start_and_end() curr_vect = curr_end - curr_start if np.all(curr_vect == 0): raise Exception("Cannot position endpoints of closed loop") target_vect = end - start self.scale( get_norm(target_vect) / get_norm(curr_vect), about_point=curr_start, ) self.rotate( angle_of_vector(target_vect) - angle_of_vector(curr_vect), ) self.rotate( np.arctan2(curr_vect[2], get_norm(curr_vect[:2])) - np.arctan2(target_vect[2], get_norm(target_vect[:2])), axis=np.array([-target_vect[1], target_vect[0], 0]), ) self.shift(start - self.get_start()) return self # Color functions def set_rgba_array(self, rgba_array, name="rgbas", recurse=False): for mob in self.get_family(recurse): mob.data[name] = np.array(rgba_array) return self def set_color_by_rgba_func(self, func, recurse=True): """ Func should take in a point in R3 and output an rgba value """ for mob in self.get_family(recurse): rgba_array = [func(point) for point in mob.get_points()] mob.set_rgba_array(rgba_array) return self def set_color_by_rgb_func(self, func, opacity=1, recurse=True): """ Func should take in a point in R3 and output an rgb value """ for mob in self.get_family(recurse): rgba_array = [[*func(point), opacity] for point in mob.get_points()] mob.set_rgba_array(rgba_array) return self def set_rgba_array_by_color(self, color=None, opacity=None, name="rgbas", recurse=True): if color is not None: rgbs = np.array([color_to_rgb(c) for c in listify(color)]) if opacity is not None: opacities = listify(opacity) # Color only if color is not None and opacity is None: for mob in self.get_family(recurse): mob.data[name] = resize_array(mob.data[name], len(rgbs)) mob.data[name][:, :3] = rgbs # Opacity only if color is None and opacity is not None: for mob in self.get_family(recurse): mob.data[name] = resize_array(mob.data[name], len(opacities)) mob.data[name][:, 3] = opacities # Color and opacity if color is not None and opacity is not None: rgbas = np.array([ [*rgb, o] for rgb, o in zip(*make_even(rgbs, opacities)) ]) for mob in self.get_family(recurse): mob.data[name] = rgbas.copy() return self def set_color(self, color, opacity=None, recurse=True): self.set_rgba_array_by_color(color, opacity, recurse=False) # Recurse to submobjects differently from how set_rgba_array_by_color # in case they implement set_color differently if recurse: for submob in self.submobjects: submob.set_color(color, recurse=True) return self def set_opacity(self, opacity, recurse=True): self.set_rgba_array_by_color(color=None, opacity=opacity, recurse=False) if recurse: for submob in self.submobjects: submob.set_opacity(opacity, recurse=True) return self def get_color(self): return rgb_to_hex(self.data["rgbas"][0, :3]) def get_opacity(self): return self.data["rgbas"][0, 3] def set_color_by_gradient(self, *colors): self.set_submobject_colors_by_gradient(*colors) return self def set_submobject_colors_by_gradient(self, *colors): if len(colors) == 0: raise Exception("Need at least one color") elif len(colors) == 1: return self.set_color(*colors) # mobs = self.family_members_with_points() mobs = self.submobjects new_colors = color_gradient(colors, len(mobs)) for mob, color in zip(mobs, new_colors): mob.set_color(color) return self def fade(self, darkness=0.5, recurse=True): self.set_opacity(1.0 - darkness, recurse=recurse) def get_reflectiveness(self): return self.uniforms["reflectiveness"] def set_reflectiveness(self, reflectiveness, recurse=True): for mob in self.get_family(recurse): mob.uniforms["reflectiveness"] = reflectiveness return self def get_shadow(self): return self.uniforms["shadow"] def set_shadow(self, shadow, recurse=True): for mob in self.get_family(recurse): mob.uniforms["shadow"] = shadow return self def get_gloss(self): return self.uniforms["gloss"] def set_gloss(self, gloss, recurse=True): for mob in self.get_family(recurse): mob.uniforms["gloss"] = gloss return self # Background rectangle def add_background_rectangle(self, color=None, opacity=0.75, **kwargs): # TODO, this does not behave well when the mobject has points, # since it gets displayed on top from manimlib.mobject.shape_matchers import BackgroundRectangle self.background_rectangle = BackgroundRectangle( self, color=color, fill_opacity=opacity, **kwargs ) self.add_to_back(self.background_rectangle) return self def add_background_rectangle_to_submobjects(self, **kwargs): for submobject in self.submobjects: submobject.add_background_rectangle(**kwargs) return self def add_background_rectangle_to_family_members_with_points(self, **kwargs): for mob in self.family_members_with_points(): mob.add_background_rectangle(**kwargs) return self # Getters def get_bounding_box_point(self, direction): bb = self.get_bounding_box() indices = (np.sign(direction) + 1).astype(int) return np.array([ bb[indices[i]][i] for i in range(3) ]) def get_edge_center(self, direction): return self.get_bounding_box_point(direction) def get_corner(self, direction): return self.get_bounding_box_point(direction) def get_center(self): return self.get_bounding_box()[1] def get_center_of_mass(self): return self.get_all_points().mean(0) def get_boundary_point(self, direction): all_points = self.get_all_points() boundary_directions = all_points - self.get_center() norms = np.linalg.norm(boundary_directions, axis=1) boundary_directions /= np.repeat(norms, 3).reshape((len(norms), 3)) index = np.argmax(np.dot(boundary_directions, np.array(direction).T)) return all_points[index] def get_continuous_bounding_box_point(self, direction): dl, center, ur = self.get_bounding_box() corner_vect = (ur - center) return center + direction / np.max(np.abs(np.true_divide( direction, corner_vect, out=np.zeros(len(direction)), where=((corner_vect) != 0) ))) def get_top(self): return self.get_edge_center(UP) def get_bottom(self): return self.get_edge_center(DOWN) def get_right(self): return self.get_edge_center(RIGHT) def get_left(self): return self.get_edge_center(LEFT) def get_zenith(self): return self.get_edge_center(OUT) def get_nadir(self): return self.get_edge_center(IN) def length_over_dim(self, dim): bb = self.get_bounding_box() return abs((bb[2] - bb[0])[dim]) def get_width(self): return self.length_over_dim(0) def get_height(self): return self.length_over_dim(1) def get_depth(self): return self.length_over_dim(2) def get_coord(self, dim, direction=ORIGIN): """ Meant to generalize get_x, get_y, get_z """ return self.get_bounding_box_point(direction)[dim] def get_x(self, direction=ORIGIN): return self.get_coord(0, direction) def get_y(self, direction=ORIGIN): return self.get_coord(1, direction) def get_z(self, direction=ORIGIN): return self.get_coord(2, direction) def get_start(self): self.throw_error_if_no_points() return self.get_points()[0].copy() def get_end(self): self.throw_error_if_no_points() return self.get_points()[-1].copy() def get_start_and_end(self): self.throw_error_if_no_points() points = self.get_points() return (points[0].copy(), points[-1].copy()) def point_from_proportion(self, alpha): points = self.get_points() i, subalpha = integer_interpolate(0, len(points) - 1, alpha) return interpolate(points[i], points[i + 1], subalpha) def pfp(self, alpha): """Abbreviation fo point_from_proportion""" return self.point_from_proportion(alpha) def get_pieces(self, n_pieces): template = self.copy() template.set_submobjects([]) alphas = np.linspace(0, 1, n_pieces + 1) return Group(*[ template.copy().pointwise_become_partial( self, a1, a2 ) for a1, a2 in zip(alphas[:-1], alphas[1:]) ]) def get_z_index_reference_point(self): # TODO, better place to define default z_index_group? z_index_group = getattr(self, "z_index_group", self) return z_index_group.get_center() # Match other mobject properties def match_color(self, mobject): return self.set_color(mobject.get_color()) def match_dim_size(self, mobject, dim, **kwargs): return self.rescale_to_fit( mobject.length_over_dim(dim), dim, **kwargs ) def match_width(self, mobject, **kwargs): return self.match_dim_size(mobject, 0, **kwargs) def match_height(self, mobject, **kwargs): return self.match_dim_size(mobject, 1, **kwargs) def match_depth(self, mobject, **kwargs): return self.match_dim_size(mobject, 2, **kwargs) def match_coord(self, mobject, dim, direction=ORIGIN): return self.set_coord( mobject.get_coord(dim, direction), dim=dim, direction=direction, ) def match_x(self, mobject, direction=ORIGIN): return self.match_coord(mobject, 0, direction) def match_y(self, mobject, direction=ORIGIN): return self.match_coord(mobject, 1, direction) def match_z(self, mobject, direction=ORIGIN): return self.match_coord(mobject, 2, direction) def align_to(self, mobject_or_point, direction=ORIGIN): """ Examples: mob1.align_to(mob2, UP) moves mob1 vertically so that its top edge lines ups with mob2's top edge. mob1.align_to(mob2, alignment_vect = RIGHT) moves mob1 horizontally so that it's center is directly above/below the center of mob2 """ if isinstance(mobject_or_point, Mobject): point = mobject_or_point.get_bounding_box_point(direction) else: point = mobject_or_point for dim in range(self.dim): if direction[dim] != 0: self.set_coord(point[dim], dim, direction) return self def get_group_class(self): return Group # Alignment def align_data_and_family(self, mobject): self.align_family(mobject) self.align_data(mobject) def align_data(self, mobject): # In case any data arrays get resized when aligned to shader data self.refresh_shader_data() for mob1, mob2 in zip(self.get_family(), mobject.get_family()): # Separate out how points are treated so that subclasses # can handle that case differently if they choose mob1.align_points(mob2) for key in mob1.data.keys() & mob2.data.keys(): if key == "points": continue arr1 = mob1.data[key] arr2 = mob2.data[key] if len(arr2) > len(arr1): mob1.data[key] = resize_preserving_order(arr1, len(arr2)) elif len(arr1) > len(arr2): mob2.data[key] = resize_preserving_order(arr2, len(arr1)) def align_points(self, mobject): max_len = max(self.get_num_points(), mobject.get_num_points()) for mob in (self, mobject): mob.resize_points(max_len, resize_func=resize_preserving_order) return self def align_family(self, mobject): mob1 = self mob2 = mobject n1 = len(mob1) n2 = len(mob2) if n1 != n2: mob1.add_n_more_submobjects(max(0, n2 - n1)) mob2.add_n_more_submobjects(max(0, n1 - n2)) # Recurse for sm1, sm2 in zip(mob1.submobjects, mob2.submobjects): sm1.align_family(sm2) return self def push_self_into_submobjects(self): copy = self.deepcopy() copy.set_submobjects([]) self.resize_points(0) self.add(copy) return self def add_n_more_submobjects(self, n): if n == 0: return self curr = len(self.submobjects) if curr == 0: # If empty, simply add n point mobjects null_mob = self.copy() null_mob.set_points([self.get_center()]) self.set_submobjects([ null_mob.copy() for k in range(n) ]) return self target = curr + n repeat_indices = (np.arange(target) * curr) // target split_factors = [ (repeat_indices == i).sum() for i in range(curr) ] new_submobs = [] for submob, sf in zip(self.submobjects, split_factors): new_submobs.append(submob) for k in range(1, sf): new_submob = submob.copy() # If the submobject is at all transparent, then # make the copy completely transparent if submob.get_opacity() < 1: new_submob.set_opacity(0) new_submobs.append(new_submob) self.set_submobjects(new_submobs) return self # Interpolate def interpolate(self, mobject1, mobject2, alpha, path_func=straight_path): for key in self.data: if key in self.locked_data_keys: continue if len(self.data[key]) == 0: continue if key not in mobject1.data or key not in mobject2.data: continue if key in ("points", "bounding_box"): func = path_func else: func = interpolate self.data[key][:] = func( mobject1.data[key], mobject2.data[key], alpha ) for key in self.uniforms: self.uniforms[key] = interpolate( mobject1.uniforms[key], mobject2.uniforms[key], alpha ) return self def pointwise_become_partial(self, mobject, a, b): """ Set points in such a way as to become only part of mobject. Inputs 0 <= a < b <= 1 determine what portion of mobject to become. """ pass # To implement in subclass def become(self, mobject): """ Edit all data and submobjects to be idential to another mobject """ self.align_family(mobject) for sm1, sm2 in zip(self.get_family(), mobject.get_family()): sm1.set_data(sm2.data) sm1.set_uniforms(sm2.uniforms) self.refresh_bounding_box(recurse_down=True) return self # Locking data def lock_data(self, keys): """ To speed up some animations, particularly transformations, it can be handy to acknowledge which pieces of data won't change during the animation so that calls to interpolate can skip this, and so that it's not read into the shader_wrapper objects needlessly """ if self.has_updaters: return # Be sure shader data has most up to date information self.refresh_shader_data() self.locked_data_keys = set(keys) def lock_matching_data(self, mobject1, mobject2): for sm, sm1, sm2 in zip(self.get_family(), mobject1.get_family(), mobject2.get_family()): keys = sm.data.keys() & sm1.data.keys() & sm2.data.keys() sm.lock_data(list(filter( lambda key: np.all(sm1.data[key] == sm2.data[key]), keys, ))) return self def unlock_data(self): for mob in self.get_family(): mob.locked_data_keys = set() # Operations touching shader uniforms def affects_shader_info_id(func): @wraps(func) def wrapper(self): for mob in self.get_family(): func(mob) mob.refresh_shader_wrapper_id() return self return wrapper @affects_shader_info_id def fix_in_frame(self): self.uniforms["is_fixed_in_frame"] = 1.0 self.is_fixed_in_frame = True return self @affects_shader_info_id def unfix_from_frame(self): self.uniforms["is_fixed_in_frame"] = 0.0 self.is_fixed_in_frame = False return self @affects_shader_info_id def apply_depth_test(self): self.depth_test = True return self @affects_shader_info_id def deactivate_depth_test(self): self.depth_test = False return self # Shader code manipulation def replace_shader_code(self, old, new): # TODO, will this work with VMobject structure, given # that it does not simpler return shader_wrappers of # family? for wrapper in self.get_shader_wrapper_list(): wrapper.replace_code(old, new) return self def set_color_by_code(self, glsl_code): """ Takes a snippet of code and inserts it into a context which has the following variables: vec4 color, vec3 point, vec3 unit_normal. The code should change the color variable """ self.replace_shader_code( "///// INSERT COLOR FUNCTION HERE /////", glsl_code ) return self def set_color_by_xyz_func(self, glsl_snippet, min_value=-5.0, max_value=5.0, colormap="viridis"): """ Pass in a glsl expression in terms of x, y and z which returns a float. """ # TODO, add a version of this which changes the point data instead # of the shader code for char in "xyz": glsl_snippet = glsl_snippet.replace(char, "point." + char) rgb_list = get_colormap_list(colormap) self.set_color_by_code( "color.rgb = float_to_color({}, {}, {}, {});".format( glsl_snippet, float(min_value), float(max_value), get_colormap_code(rgb_list) ) ) return self # For shader data def init_shader_data(self): # TODO, only call this when needed? self.shader_data = np.zeros(len(self.get_points()), dtype=self.shader_dtype) self.shader_indices = None self.shader_wrapper = ShaderWrapper( vert_data=self.shader_data, shader_folder=self.shader_folder, texture_paths=self.texture_paths, depth_test=self.depth_test, render_primitive=self.render_primitive, ) def refresh_shader_wrapper_id(self): self.shader_wrapper.refresh_id() return self def get_shader_wrapper(self): self.shader_wrapper.vert_data = self.get_shader_data() self.shader_wrapper.vert_indices = self.get_shader_vert_indices() self.shader_wrapper.uniforms = self.get_shader_uniforms() self.shader_wrapper.depth_test = self.depth_test return self.shader_wrapper def get_shader_wrapper_list(self): shader_wrappers = it.chain( [self.get_shader_wrapper()], *[sm.get_shader_wrapper_list() for sm in self.submobjects] ) batches = batch_by_property(shader_wrappers, lambda sw: sw.get_id()) result = [] for wrapper_group, sid in batches: shader_wrapper = wrapper_group[0] if not shader_wrapper.is_valid(): continue shader_wrapper.combine_with(*wrapper_group[1:]) if len(shader_wrapper.vert_data) > 0: result.append(shader_wrapper) return result def check_data_alignment(self, array, data_key): # Makes sure that self.data[key] can be broadcast into # the given array, meaning its length has to be either 1 # or the length of the array d_len = len(self.data[data_key]) if d_len != 1 and d_len != len(array): self.data[data_key] = resize_with_interpolation( self.data[data_key], len(array) ) return self def get_resized_shader_data_array(self, length): # If possible, try to populate an existing array, rather # than recreating it each frame if len(self.shader_data) != length: self.shader_data = resize_array(self.shader_data, length) return self.shader_data def read_data_to_shader(self, shader_data, shader_data_key, data_key): if data_key in self.locked_data_keys: return self.check_data_alignment(shader_data, data_key) shader_data[shader_data_key] = self.data[data_key] def get_shader_data(self): shader_data = self.get_resized_shader_data_array(self.get_num_points()) self.read_data_to_shader(shader_data, "point", "points") return shader_data def refresh_shader_data(self): self.get_shader_data() def get_shader_uniforms(self): return self.uniforms def get_shader_vert_indices(self): return self.shader_indices # Event Handlers """ Event handling follows the Event Bubbling model of DOM in javascript. Return false to stop the event bubbling. To learn more visit https://www.quirksmode.org/js/events_order.html Event Callback Argument is a callable function taking two arguments: 1. Mobject 2. EventData """ def init_event_listners(self): self.event_listners = [] def add_event_listner(self, event_type, event_callback): event_listner = EventListner(self, event_type, event_callback) self.event_listners.append(event_listner) EVENT_DISPATCHER.add_listner(event_listner) return self def remove_event_listner(self, event_type, event_callback): event_listner = EventListner(self, event_type, event_callback) while event_listner in self.event_listners: self.event_listners.remove(event_listner) EVENT_DISPATCHER.remove_listner(event_listner) return self def clear_event_listners(self, recurse=True): self.event_listners = [] if recurse: for submob in self.submobjects: submob.clear_event_listners(recurse=recurse) return self def get_event_listners(self): return self.event_listners def get_family_event_listners(self): return list(it.chain(*[sm.get_event_listners() for sm in self.get_family()])) def get_has_event_listner(self): return any( mob.get_event_listners() for mob in self.get_family() ) def add_mouse_motion_listner(self, callback): self.add_event_listner(EventType.MouseMotionEvent, callback) def remove_mouse_motion_listner(self, callback): self.remove_event_listner(EventType.MouseMotionEvent, callback) def add_mouse_press_listner(self, callback): self.add_event_listner(EventType.MousePressEvent, callback) def remove_mouse_press_listner(self, callback): self.remove_event_listner(EventType.MousePressEvent, callback) def add_mouse_release_listner(self, callback): self.add_event_listner(EventType.MouseReleaseEvent, callback) def remove_mouse_release_listner(self, callback): self.remove_event_listner(EventType.MouseReleaseEvent, callback) def add_mouse_drag_listner(self, callback): self.add_event_listner(EventType.MouseDragEvent, callback) def remove_mouse_drag_listner(self, callback): self.remove_event_listner(EventType.MouseDragEvent, callback) def add_mouse_scroll_listner(self, callback): self.add_event_listner(EventType.MouseScrollEvent, callback) def remove_mouse_scroll_listner(self, callback): self.remove_event_listner(EventType.MouseScrollEvent, callback) def add_key_press_listner(self, callback): self.add_event_listner(EventType.KeyPressEvent, callback) def remove_key_press_listner(self, callback): self.remove_event_listner(EventType.KeyPressEvent, callback) def add_key_release_listner(self, callback): self.add_event_listner(EventType.KeyReleaseEvent, callback) def remove_key_release_listner(self, callback): self.remove_event_listner(EventType.KeyReleaseEvent, callback) # Errors def throw_error_if_no_points(self): if not self.has_points(): message = "Cannot call Mobject.{} " +\ "for a Mobject with no points" caller_name = sys._getframe(1).f_code.co_name raise Exception(message.format(caller_name)) class Group(Mobject): def __init__(self, *mobjects, **kwargs): if not all([isinstance(m, Mobject) for m in mobjects]): raise Exception("All submobjects must be of type Mobject") Mobject.__init__(self, **kwargs) self.add(*mobjects) def __add__(self, other: 'Mobject' or 'Group'): assert(isinstance(other, Mobject)) return self.add(other) class Point(Mobject): CONFIG = { "artificial_width": 1e-6, "artificial_height": 1e-6, } def __init__(self, location=ORIGIN, **kwargs): Mobject.__init__(self, **kwargs) self.set_location(location) def get_width(self): return self.artificial_width def get_height(self): return self.artificial_height def get_location(self): return self.get_points()[0].copy() def get_bounding_box_point(self, *args, **kwargs): return self.get_location() def set_location(self, new_loc): self.set_points(np.array(new_loc, ndmin=2, dtype=float)) class _AnimationBuilder: def __init__(self, mobject): self.mobject = mobject self.overridden_animation = None self.mobject.generate_target() self.is_chaining = False self.methods = [] def __getattr__(self, method_name): method = getattr(self.mobject.target, method_name) self.methods.append(method) has_overridden_animation = hasattr(method, "_override_animate") if (self.is_chaining and has_overridden_animation) or self.overridden_animation: raise NotImplementedError( "Method chaining is currently not supported for " "overridden animations" ) def update_target(*method_args, **method_kwargs): if has_overridden_animation: self.overridden_animation = method._override_animate( self.mobject, *method_args, **method_kwargs ) else: method(*method_args, **method_kwargs) return self self.is_chaining = True return update_target def build(self): from manimlib.animation.transform import _MethodAnimation if self.overridden_animation: return self.overridden_animation return _MethodAnimation(self.mobject, self.methods) def override_animate(method): def decorator(animation_method): method._override_animate = animation_method return animation_method return decorator