import inspect import random import platform import itertools as it import logging from functools import wraps from tqdm import tqdm as ProgressDisplay import numpy as np import time from manimlib.animation.animation import prepare_animation from manimlib.animation.transform import MoveToTarget from manimlib.mobject.mobject import Point from manimlib.camera.camera import Camera from manimlib.constants import DEFAULT_WAIT_TIME from manimlib.mobject.mobject import Mobject from manimlib.scene.scene_file_writer import SceneFileWriter from manimlib.utils.config_ops import digest_config from manimlib.utils.family_ops import extract_mobject_family_members from manimlib.utils.family_ops import restructure_list_to_exclude_certain_family_members from manimlib.event_handler.event_type import EventType from manimlib.event_handler import EVENT_DISPATCHER class Scene(object): CONFIG = { "window_config": {}, "camera_class": Camera, "camera_config": {}, "file_writer_config": {}, "skip_animations": False, "always_update_mobjects": False, "random_seed": 0, "start_at_animation_number": None, "end_at_animation_number": None, "leave_progress_bars": False, "preview": True, "linger_after_completion": True, } def __init__(self, **kwargs): digest_config(self, kwargs) if self.preview: from manimlib.window import Window self.window = Window(scene=self, **self.window_config) self.camera_config["ctx"] = self.window.ctx self.camera_config["frame_rate"] = 30 # Where's that 30 from? else: self.window = None self.camera = self.camera_class(**self.camera_config) self.file_writer = SceneFileWriter(self, **self.file_writer_config) self.mobjects = [self.camera.frame] self.num_plays = 0 self.time = 0 self.skip_time = 0 self.original_skipping_status = self.skip_animations # Items associated with interaction self.mouse_point = Point() self.mouse_drag_point = Point() # Much nicer to work with deterministic scenes if self.random_seed is not None: random.seed(self.random_seed) np.random.seed(self.random_seed) def run(self): self.virtual_animation_start_time = 0 self.real_animation_start_time = time.time() self.file_writer.begin() self.setup() try: self.construct() except EndSceneEarlyException: pass self.tear_down() def setup(self): """ This is meant to be implement by any scenes which are comonly subclassed, and have some common setup involved before the construct method is called. """ pass def construct(self): # Where all the animation happens # To be implemented in subclasses pass def tear_down(self): self.stop_skipping() self.file_writer.finish() if self.window and self.linger_after_completion: self.interact() def interact(self): # If there is a window, enter a loop # which updates the frame while under # the hood calling the pyglet event loop self.quit_interaction = False self.lock_static_mobject_data() while not (self.window.is_closing or self.quit_interaction): self.update_frame(1 / self.camera.frame_rate) if self.window.is_closing: self.window.destroy() if self.quit_interaction: self.unlock_mobject_data() def embed(self): if not self.preview: # If the scene is just being # written, ignore embed calls return self.stop_skipping() self.linger_after_completion = False self.update_frame() from IPython.terminal.embed import InteractiveShellEmbed shell = InteractiveShellEmbed() # Have the frame update after each command shell.events.register('post_run_cell', lambda *a, **kw: self.update_frame()) # Use the locals of the caller as the local namespace # once embedded, and add a few custom shortcuts local_ns = inspect.currentframe().f_back.f_locals local_ns["touch"] = self.interact for term in ("play", "wait", "add", "remove", "clear", "save_state", "restore"): local_ns[term] = getattr(self, term) shell(local_ns=local_ns, stack_depth=2) # End scene when exiting an embed. raise EndSceneEarlyException() def __str__(self): return self.__class__.__name__ # Only these methods should touch the camera def get_image(self): return self.camera.get_image() def show(self): self.update_frame(ignore_skipping=True) self.get_image().show() def update_frame(self, dt=0, ignore_skipping=False): self.increment_time(dt) self.update_mobjects(dt) if self.skip_animations and not ignore_skipping: return if self.window: self.window.clear() self.camera.clear() self.camera.capture(*self.mobjects) if self.window: self.window.swap_buffers() vt = self.time - self.virtual_animation_start_time rt = time.time() - self.real_animation_start_time if rt < vt: self.update_frame(0) def emit_frame(self): if not self.skip_animations: self.file_writer.write_frame(self.camera) # Related to updating def update_mobjects(self, dt): for mobject in self.mobjects: mobject.update(dt) def should_update_mobjects(self): return self.always_update_mobjects or any([ len(mob.get_family_updaters()) > 0 for mob in self.mobjects ]) # Related to time def get_time(self): return self.time def increment_time(self, dt): self.time += dt # Related to internal mobject organization def get_top_level_mobjects(self): # Return only those which are not in the family # of another mobject from the scene mobjects = self.get_mobjects() families = [m.get_family() for m in mobjects] def is_top_level(mobject): num_families = sum([ (mobject in family) for family in families ]) return num_families == 1 return list(filter(is_top_level, mobjects)) def get_mobject_family_members(self): return extract_mobject_family_members(self.mobjects) def add(self, *new_mobjects): """ Mobjects will be displayed, from background to foreground in the order with which they are added. """ self.remove(*new_mobjects) self.mobjects += new_mobjects return self def add_mobjects_among(self, values): """ This is meant mostly for quick prototyping, e.g. to add all mobjects defined up to a point, call self.add_mobjects_among(locals().values()) """ self.add(*filter( lambda m: isinstance(m, Mobject), values )) return self def remove(self, *mobjects_to_remove): self.mobjects = restructure_list_to_exclude_certain_family_members( self.mobjects, mobjects_to_remove ) return self def bring_to_front(self, *mobjects): self.add(*mobjects) return self def bring_to_back(self, *mobjects): self.remove(*mobjects) self.mobjects = list(mobjects) + self.mobjects return self def clear(self): self.mobjects = [] return self def get_mobjects(self): return list(self.mobjects) def get_mobject_copies(self): return [m.copy() for m in self.mobjects] def point_to_mobject(self, point, search_set=None, buff=0): """ E.g. if clicking on the scene, this returns the top layer mobject under a given point """ if search_set is None: search_set = self.mobjects for mobject in reversed(search_set): if mobject.is_point_touching(point, buff=buff): return mobject return None # Related to skipping def update_skipping_status(self): if self.start_at_animation_number is not None: if self.num_plays == self.start_at_animation_number: self.stop_skipping() if self.end_at_animation_number is not None: if self.num_plays >= self.end_at_animation_number: raise EndSceneEarlyException() def stop_skipping(self): if self.skip_animations: self.skip_animations = False self.skip_time += self.time # Methods associated with running animations def get_time_progression(self, run_time, n_iterations=None, override_skip_animations=False): if self.skip_animations and not override_skip_animations: times = [run_time] else: step = 1 / self.camera.frame_rate times = np.arange(0, run_time, step) time_progression = ProgressDisplay( times, total=n_iterations, leave=self.leave_progress_bars, ascii=True if platform.system() == 'Windows' else None ) return time_progression def get_run_time(self, animations): return np.max([animation.run_time for animation in animations]) def get_animation_time_progression(self, animations): run_time = self.get_run_time(animations) time_progression = self.get_time_progression(run_time) time_progression.set_description("".join([ f"Animation {self.num_plays}: {animations[0]}", ", etc." if len(animations) > 1 else "", ])) return time_progression def get_wait_time_progression(self, duration, stop_condition): if stop_condition is not None: time_progression = self.get_time_progression( duration, n_iterations=-1, # So it doesn't show % progress override_skip_animations=True ) time_progression.set_description( "Waiting for {}".format(stop_condition.__name__) ) else: time_progression = self.get_time_progression(duration) time_progression.set_description( "Waiting {}".format(self.num_plays) ) return time_progression def anims_from_play_args(self, *args, **kwargs): """ Each arg can either be an animation, or a mobject method followed by that methods arguments (and potentially follow by a dict of kwargs for that method). This animation list is built by going through the args list, and each animation is simply added, but when a mobject method s hit, a MoveToTarget animation is built using the args that follow up until either another animation is hit, another method is hit, or the args list runs out. """ animations = [] state = { "curr_method": None, "last_method": None, "method_args": [], } def compile_method(state): if state["curr_method"] is None: return mobject = state["curr_method"].__self__ if state["last_method"] and state["last_method"].__self__ is mobject: animations.pop() # method should already have target then. else: mobject.generate_target() # if len(state["method_args"]) > 0 and isinstance(state["method_args"][-1], dict): method_kwargs = state["method_args"].pop() else: method_kwargs = {} state["curr_method"].__func__( mobject.target, *state["method_args"], **method_kwargs ) animations.append(MoveToTarget(mobject)) state["last_method"] = state["curr_method"] state["curr_method"] = None state["method_args"] = [] for arg in args: if inspect.ismethod(arg): compile_method(state) state["curr_method"] = arg elif state["curr_method"] is not None: state["method_args"].append(arg) elif isinstance(arg, Mobject): raise Exception(""" I think you may have invoked a method you meant to pass in as a Scene.play argument """) else: try: anim = prepare_animation(arg) except TypeError: raise TypeError(f"Unexpected argument {arg} passed to Scene.play()") compile_method(state) animations.append(anim) compile_method(state) for animation in animations: # This is where kwargs to play like run_time and rate_func # get applied to all animations animation.update_config(**kwargs) return animations def handle_play_like_call(func): @wraps(func) def wrapper(self, *args, **kwargs): self.update_skipping_status() should_write = not self.skip_animations if should_write: self.file_writer.begin_animation() if self.window: self.real_animation_start_time = time.time() self.virtual_animation_start_time = self.time func(self, *args, **kwargs) if should_write: self.file_writer.end_animation() self.num_plays += 1 return wrapper def lock_static_mobject_data(self, *animations): movers = list(it.chain(*[ anim.mobject.get_family() for anim in animations ])) for mobject in self.mobjects: if mobject in movers or mobject.get_family_updaters(): continue self.camera.set_mobjects_as_static(mobject) def unlock_mobject_data(self): self.camera.release_static_mobjects() def begin_animations(self, animations): for animation in animations: animation.begin() # Anything animated that's not already in the # scene gets added to the scene. Note, for # animated mobjects that are in the family of # those on screen, this can result in a restructuring # of the scene.mobjects list, which is usually desired. if animation.mobject not in self.mobjects: self.add(animation.mobject) def progress_through_animations(self, animations): last_t = 0 for t in self.get_animation_time_progression(animations): dt = t - last_t last_t = t for animation in animations: animation.update_mobjects(dt) alpha = t / animation.run_time animation.interpolate(alpha) self.update_frame(dt) self.emit_frame() def finish_animations(self, animations): for animation in animations: animation.finish() animation.clean_up_from_scene(self) if self.skip_animations: self.update_mobjects(self.get_run_time(animations)) else: self.update_mobjects(0) @handle_play_like_call def play(self, *args, **kwargs): if len(args) == 0: logging.log( logging.WARNING, "Called Scene.play with no animations" ) return animations = self.anims_from_play_args(*args, **kwargs) self.lock_static_mobject_data(*animations) self.begin_animations(animations) self.progress_through_animations(animations) self.finish_animations(animations) self.unlock_mobject_data() @handle_play_like_call def wait(self, duration=DEFAULT_WAIT_TIME, stop_condition=None): self.update_mobjects(dt=0) # Any problems with this? if self.should_update_mobjects(): self.lock_static_mobject_data() time_progression = self.get_wait_time_progression(duration, stop_condition) last_t = 0 for t in time_progression: dt = t - last_t last_t = t self.update_frame(dt) self.emit_frame() if stop_condition is not None and stop_condition(): time_progression.close() break self.unlock_mobject_data() elif self.skip_animations: # Do nothing return self else: self.update_frame(duration) n_frames = int(duration * self.camera.frame_rate) for n in range(n_frames): self.emit_frame() return self def wait_until(self, stop_condition, max_time=60): self.wait(max_time, stop_condition=stop_condition) def force_skipping(self): self.original_skipping_status = self.skip_animations self.skip_animations = True return self def revert_to_original_skipping_status(self): if hasattr(self, "original_skipping_status"): self.skip_animations = self.original_skipping_status return self def add_sound(self, sound_file, time_offset=0, gain=None, **kwargs): if self.skip_animations: return time = self.get_time() + time_offset self.file_writer.add_sound(sound_file, time, gain, **kwargs) # Helpers for interactive development def save_state(self): self.saved_state = { "mobjects": self.mobjects, "mobject_states": [ mob.copy() for mob in self.mobjects ], } def restore(self): if not hasattr(self, "saved_state"): raise Exception("Trying to restore scene without having saved") mobjects = self.saved_state["mobjects"] states = self.saved_state["mobject_states"] for mob, state in zip(mobjects, states): mob.become(state) self.mobjects = mobjects # Event handling def on_mouse_motion(self, point, d_point): self.mouse_point.move_to(point) event_data = {"point": point, "d_point": d_point} propagate_event = EVENT_DISPATCHER.dispatch(EventType.MouseMotionEvent, **event_data) if propagate_event is not None and propagate_event is False: return frame = self.camera.frame if self.window.is_key_pressed(ord("d")): frame.increment_theta(-d_point[0]) frame.increment_phi(d_point[1]) elif self.window.is_key_pressed(ord("s")): shift = -d_point shift[0] *= frame.get_width() / 2 shift[1] *= frame.get_height() / 2 transform = frame.get_inverse_camera_rotation_matrix() shift = np.dot(np.transpose(transform), shift) frame.shift(shift) def on_mouse_drag(self, point, d_point, buttons, modifiers): self.mouse_drag_point.move_to(point) event_data = {"point": point, "d_point": d_point, "buttons": buttons, "modifiers": modifiers} propagate_event = EVENT_DISPATCHER.dispatch(EventType.MouseDragEvent, **event_data) if propagate_event is not None and propagate_event is False: return def on_mouse_press(self, point, button, mods): event_data = {"point": point, "button": button, "mods": mods} propagate_event = EVENT_DISPATCHER.dispatch(EventType.MousePressEvent, **event_data) if propagate_event is not None and propagate_event is False: return def on_mouse_release(self, point, button, mods): event_data = {"point": point, "button": button, "mods": mods} propagate_event = EVENT_DISPATCHER.dispatch(EventType.MouseReleaseEvent, **event_data) if propagate_event is not None and propagate_event is False: return def on_mouse_scroll(self, point, offset): event_data = {"point": point, "offset": offset} propagate_event = EVENT_DISPATCHER.dispatch(EventType.MouseScrollEvent, **event_data) if propagate_event is not None and propagate_event is False: return frame = self.camera.frame if self.window.is_key_pressed(ord("z")): factor = 1 + np.arctan(10 * offset[1]) frame.scale(1/factor, about_point=point) else: transform = frame.get_inverse_camera_rotation_matrix() shift = np.dot(np.transpose(transform), offset) frame.shift(-20.0 * shift) def on_key_release(self, symbol, modifiers): event_data = {"symbol": symbol, "modifiers": modifiers} propagate_event = EVENT_DISPATCHER.dispatch(EventType.KeyReleaseEvent, **event_data) if propagate_event is not None and propagate_event is False: return def on_key_press(self, symbol, modifiers): try: char = chr(symbol) except OverflowError: print(" Warning: The value of the pressed key is too large.") return event_data = {"symbol": symbol, "modifiers": modifiers} propagate_event = EVENT_DISPATCHER.dispatch(EventType.KeyPressEvent, **event_data) if propagate_event is not None and propagate_event is False: return if char == "r": self.camera.frame.to_default_state() elif char == "q": self.quit_interaction = True def on_resize(self, width: int, height: int): self.camera.reset_pixel_shape(width, height) def on_show(self): pass def on_hide(self): pass def on_close(self): pass class EndSceneEarlyException(Exception): pass