mirror of
https://github.com/3b1b/manim.git
synced 2025-09-19 04:41:56 +00:00
Clean up a few messes from previous commit
This commit is contained in:
parent
c67ae08b62
commit
f75df1e26e
3 changed files with 35 additions and 24 deletions
|
@ -59,8 +59,9 @@ mat3 map_point_pairs(vec2 src0, vec2 src1, vec2 dest0, vec2 dest1){
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
mat3 get_xy_to_uv(vec2 controls[3], float bezier_degree){
|
mat3 get_xy_to_uv(vec2 controls[3], float bezier_degree, out float new_bezier_degree){
|
||||||
vec2[2] dest;
|
vec2[2] dest;
|
||||||
|
new_bezier_degree = bezier_degree;
|
||||||
if (bezier_degree == 1.0){
|
if (bezier_degree == 1.0){
|
||||||
dest[0] = vec2(0, 0);
|
dest[0] = vec2(0, 0);
|
||||||
dest[1] = vec2(1, 0);
|
dest[1] = vec2(1, 0);
|
||||||
|
@ -68,9 +69,16 @@ mat3 get_xy_to_uv(vec2 controls[3], float bezier_degree){
|
||||||
vec2 xs = xs_on_clean_parabola(controls);
|
vec2 xs = xs_on_clean_parabola(controls);
|
||||||
float x0 = xs.x;
|
float x0 = xs.x;
|
||||||
float x2 = xs.y;
|
float x2 = xs.y;
|
||||||
|
float thresh = 2.0;
|
||||||
|
if((x0 > thresh && x2 > thresh) || (x0 < -thresh && x2 < -thresh)){
|
||||||
|
dest[0] = vec2(0, 0);
|
||||||
|
dest[1] = vec2(1, 0);
|
||||||
|
new_bezier_degree = 1.0;
|
||||||
|
}else{
|
||||||
dest[0] = vec2(x0, x0 * x0);
|
dest[0] = vec2(x0, x0 * x0);
|
||||||
dest[1] = vec2(x2, x2 * x2);
|
dest[1] = vec2(x2, x2 * x2);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
return map_point_pairs(
|
return map_point_pairs(
|
||||||
controls[0], controls[2], dest[0], dest[1]
|
controls[0], controls[2], dest[0], dest[1]
|
||||||
);
|
);
|
||||||
|
|
|
@ -12,7 +12,7 @@ in float bezier_degree;
|
||||||
|
|
||||||
out vec4 frag_color;
|
out vec4 frag_color;
|
||||||
|
|
||||||
const float QUICK_DIST_WIDTH = 0.1;
|
const float QUICK_DIST_WIDTH = 0.2;
|
||||||
|
|
||||||
|
|
||||||
float cube_root(float x){
|
float cube_root(float x){
|
||||||
|
@ -23,17 +23,18 @@ float cube_root(float x){
|
||||||
// Distance from (x0, y0) to the curve y = x^2
|
// Distance from (x0, y0) to the curve y = x^2
|
||||||
float dist_to_curve(float x0, float y0){
|
float dist_to_curve(float x0, float y0){
|
||||||
if(bezier_degree == 1.0){
|
if(bezier_degree == 1.0){
|
||||||
|
// In this case, the curve will actually have
|
||||||
|
// been set to equal the x axis
|
||||||
return y0;
|
return y0;
|
||||||
}
|
}
|
||||||
if(false && uv_stroke_width < QUICK_DIST_WIDTH){
|
if(uv_stroke_width < QUICK_DIST_WIDTH){
|
||||||
// This is a quick approximation for computing
|
// This is a quick approximation for computing
|
||||||
// the distance to the curve.
|
// the distance to the curve.
|
||||||
// Evaluate F(x, y) = y - x^2
|
// Evaluate F(x, y) = y - x^2
|
||||||
// divide by its gradient's magnitude
|
// divide by its gradient's magnitude
|
||||||
return (y0 - x0 * x0) / sqrt(1 + 4 * x0 * x0);
|
return (y0 - x0 * x0) / sqrt(1 + 4 * x0 * x0);
|
||||||
}
|
}
|
||||||
// Otherwise, explicit solve for the minmal distance using the cubic formula
|
// Otherwise, solve for the minimal distance.
|
||||||
//
|
|
||||||
// The distance squared between (x0, y0) and a point (x, x^2) looks like
|
// The distance squared between (x0, y0) and a point (x, x^2) looks like
|
||||||
//
|
//
|
||||||
// (x0 - x)^2 + (y0 - x^2)^2 = x^4 + (1 - 2y0)x^2 - 2x0 * x + (x0^2 + y0^2)
|
// (x0 - x)^2 + (y0 - x^2)^2 = x^4 + (1 - 2y0)x^2 - 2x0 * x + (x0^2 + y0^2)
|
||||||
|
@ -42,12 +43,7 @@ float dist_to_curve(float x0, float y0){
|
||||||
//
|
//
|
||||||
// x^3 + (0.5 - y0) * x - 0.5 * x0 = 0
|
// x^3 + (0.5 - y0) * x - 0.5 * x0 = 0
|
||||||
//
|
//
|
||||||
// float p = 0.5 - y0;
|
// Use two rounds of Newton's method
|
||||||
// float mhq = 0.25 * x0; // negative half of q
|
|
||||||
// float sqrt_disc = sqrt(mhq * mhq + p * p * p / 27.0);
|
|
||||||
// float x = cube_root(mhq + sqrt_disc) + cube_root(mhq - sqrt_disc);
|
|
||||||
// return distance(uv_coords, vec2(x, x * x));
|
|
||||||
|
|
||||||
float x = x0;
|
float x = x0;
|
||||||
float p = (0.5 - y0);
|
float p = (0.5 - y0);
|
||||||
float q = -0.5 * x0;
|
float q = -0.5 * x0;
|
||||||
|
@ -69,6 +65,5 @@ void main() {
|
||||||
float signed_dist = abs(dist_to_curve(x0, y0)) - 0.5 * uv_stroke_width;
|
float signed_dist = abs(dist_to_curve(x0, y0)) - 0.5 * uv_stroke_width;
|
||||||
|
|
||||||
frag_color = color;
|
frag_color = color;
|
||||||
// if(uv_stroke_width > QUICK_DIST_WIDTH) frag_color = vec4(1, 0, 0, 1);
|
|
||||||
frag_color.a *= smoothstep(0.5, -0.5, signed_dist / uv_anti_alias_width);
|
frag_color.a *= smoothstep(0.5, -0.5, signed_dist / uv_anti_alias_width);
|
||||||
}
|
}
|
|
@ -131,7 +131,6 @@ int get_corners(
|
||||||
void main() {
|
void main() {
|
||||||
if (distance(verts[0], verts[1]) == 0 && distance(verts[1], verts[2]) == 0) return;
|
if (distance(verts[0], verts[1]) == 0 && distance(verts[1], verts[2]) == 0) return;
|
||||||
|
|
||||||
bezier_degree = (abs(v_joint_angle[1]) < ANGLE_THRESHOLD) ? 1.0 : 2.0;
|
|
||||||
vec3 unit_normal = camera_rotation * vec3(0.0, 0.0, 1.0); // TODO, track true unit normal globally
|
vec3 unit_normal = camera_rotation * vec3(0.0, 0.0, 1.0); // TODO, track true unit normal globally
|
||||||
|
|
||||||
// Control points are projected to the xy plane before drawing, which in turn
|
// Control points are projected to the xy plane before drawing, which in turn
|
||||||
|
@ -150,10 +149,6 @@ void main() {
|
||||||
scaled_strokes[i] = v_stroke_width[i] * sf;
|
scaled_strokes[i] = v_stroke_width[i] * sf;
|
||||||
}
|
}
|
||||||
|
|
||||||
// If the curve is flat, put the middle control in the midpoint
|
|
||||||
if (bezier_degree == 1.0){
|
|
||||||
flat_controls[1] = 0.5 * (flat_controls[0] + flat_controls[2]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Set joint information
|
// Set joint information
|
||||||
float angle_from_prev = v_joint_angle[0];
|
float angle_from_prev = v_joint_angle[0];
|
||||||
|
@ -167,6 +162,24 @@ void main() {
|
||||||
angle_to_next = 0.0;
|
angle_to_next = 0.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// We want to change the coordinates to a space where the curve
|
||||||
|
// coincides with y = x^2, between some values x0 and x2. Or, in
|
||||||
|
// the case of a linear curve (bezier degree 1), just put it on
|
||||||
|
// the segment from (0, 0) to (1, 0)
|
||||||
|
bezier_degree = (abs(v_joint_angle[1]) < ANGLE_THRESHOLD) ? 1.0 : 2.0;
|
||||||
|
|
||||||
|
float new_bezier_degree;
|
||||||
|
mat3 xy_to_uv = get_xy_to_uv(flat_controls, bezier_degree, new_bezier_degree);
|
||||||
|
bezier_degree = new_bezier_degree;
|
||||||
|
|
||||||
|
float scale_factor = length(xy_to_uv[0].xy);
|
||||||
|
uv_anti_alias_width = scale_factor * anti_alias_width * (frame_shape.y / pixel_shape.y);
|
||||||
|
|
||||||
|
// If the curve is flat, put the middle control in the midpoint
|
||||||
|
if (bezier_degree == 1.0){
|
||||||
|
flat_controls[1] = 0.5 * (flat_controls[0] + flat_controls[2]);
|
||||||
|
}
|
||||||
|
|
||||||
// Corners of a bounding region around curve
|
// Corners of a bounding region around curve
|
||||||
vec2 corners[5];
|
vec2 corners[5];
|
||||||
int n_corners = get_corners(
|
int n_corners = get_corners(
|
||||||
|
@ -178,11 +191,6 @@ void main() {
|
||||||
int index_map[5] = int[5](0, 0, 1, 2, 2);
|
int index_map[5] = int[5](0, 0, 1, 2, 2);
|
||||||
if(n_corners == 4) index_map[2] = 2;
|
if(n_corners == 4) index_map[2] = 2;
|
||||||
|
|
||||||
// Find uv conversion
|
|
||||||
mat3 xy_to_uv = get_xy_to_uv(flat_controls, bezier_degree);
|
|
||||||
float scale_factor = length(xy_to_uv[0].xy);
|
|
||||||
uv_anti_alias_width = scale_factor * anti_alias_width * (frame_shape.y / pixel_shape.y);
|
|
||||||
|
|
||||||
// Emit each corner
|
// Emit each corner
|
||||||
for(int i = 0; i < n_corners; i++){
|
for(int i = 0; i < n_corners; i++){
|
||||||
uv_coords = (xy_to_uv * vec3(corners[i], 1.0)).xy;
|
uv_coords = (xy_to_uv * vec3(corners[i], 1.0)).xy;
|
||||||
|
|
Loading…
Add table
Reference in a new issue