mirror of
https://github.com/3b1b/manim.git
synced 2025-08-05 16:49:03 +00:00
Updated VectorField and StreamLines
This commit is contained in:
parent
d06b3769b8
commit
eec396681c
1 changed files with 153 additions and 210 deletions
|
@ -1,66 +1,32 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import os
|
|
||||||
import itertools as it
|
import itertools as it
|
||||||
from PIL import Image
|
|
||||||
import random
|
import random
|
||||||
|
|
||||||
from manimlib.constants import *
|
from manimlib.constants import *
|
||||||
|
|
||||||
from manimlib.animation.composition import AnimationGroup
|
from manimlib.animation.composition import AnimationGroup
|
||||||
from manimlib.animation.indication import ShowPassingFlash
|
from manimlib.animation.indication import VShowPassingFlash
|
||||||
from manimlib.mobject.geometry import Vector
|
from manimlib.mobject.geometry import Arrow
|
||||||
from manimlib.mobject.types.vectorized_mobject import VGroup
|
from manimlib.mobject.types.vectorized_mobject import VGroup
|
||||||
from manimlib.mobject.types.vectorized_mobject import VMobject
|
from manimlib.mobject.types.vectorized_mobject import VMobject
|
||||||
from manimlib.utils.bezier import inverse_interpolate
|
from manimlib.utils.bezier import inverse_interpolate
|
||||||
from manimlib.utils.bezier import interpolate
|
from manimlib.utils.bezier import interpolate
|
||||||
from manimlib.utils.color import color_to_rgb
|
from manimlib.utils.color import get_colormap_list
|
||||||
from manimlib.utils.color import rgb_to_color
|
from manimlib.utils.config_ops import merge_dicts_recursively
|
||||||
from manimlib.utils.config_ops import digest_config
|
from manimlib.utils.config_ops import digest_config
|
||||||
from manimlib.utils.rate_functions import linear
|
from manimlib.utils.rate_functions import linear
|
||||||
from manimlib.utils.simple_functions import sigmoid
|
from manimlib.utils.simple_functions import sigmoid
|
||||||
from manimlib.utils.space_ops import get_norm
|
from manimlib.utils.space_ops import get_norm
|
||||||
# from manimlib.utils.space_ops import normalize
|
|
||||||
|
|
||||||
|
|
||||||
DEFAULT_SCALAR_FIELD_COLORS = [BLUE_E, GREEN, YELLOW, RED]
|
def get_vectorized_rgb_gradient_function(min_value, max_value, color_map):
|
||||||
|
rgbs = np.array(get_colormap_list(color_map))
|
||||||
|
|
||||||
def get_colored_background_image(scalar_field_func,
|
|
||||||
number_to_rgb_func,
|
|
||||||
pixel_height=DEFAULT_PIXEL_HEIGHT,
|
|
||||||
pixel_width=DEFAULT_PIXEL_WIDTH):
|
|
||||||
ph = pixel_height
|
|
||||||
pw = pixel_width
|
|
||||||
fw = FRAME_WIDTH
|
|
||||||
fh = FRAME_HEIGHT
|
|
||||||
points_array = np.zeros((ph, pw, 3))
|
|
||||||
x_array = np.linspace(-fw / 2, fw / 2, pw)
|
|
||||||
x_array = x_array.reshape((1, len(x_array)))
|
|
||||||
x_array = x_array.repeat(ph, axis=0)
|
|
||||||
|
|
||||||
y_array = np.linspace(fh / 2, -fh / 2, ph)
|
|
||||||
y_array = y_array.reshape((len(y_array), 1))
|
|
||||||
y_array.repeat(pw, axis=1)
|
|
||||||
points_array[:, :, 0] = x_array
|
|
||||||
points_array[:, :, 1] = y_array
|
|
||||||
scalars = np.apply_along_axis(scalar_field_func, 2, points_array)
|
|
||||||
rgb_array = number_to_rgb_func(scalars.flatten()).reshape((ph, pw, 3))
|
|
||||||
return Image.fromarray((rgb_array * 255).astype('uint8'))
|
|
||||||
|
|
||||||
|
|
||||||
def get_rgb_gradient_function(min_value=0, max_value=1,
|
|
||||||
colors=[BLUE, RED],
|
|
||||||
flip_alphas=True, # Why?
|
|
||||||
):
|
|
||||||
rgbs = np.array(list(map(color_to_rgb, colors)))
|
|
||||||
|
|
||||||
def func(values):
|
def func(values):
|
||||||
alphas = inverse_interpolate(
|
alphas = inverse_interpolate(
|
||||||
min_value, max_value, np.array(values)
|
min_value, max_value, np.array(values)
|
||||||
)
|
)
|
||||||
alphas = np.clip(alphas, 0, 1)
|
alphas = np.clip(alphas, 0, 1)
|
||||||
# if flip_alphas:
|
|
||||||
# alphas = 1 - alphas
|
|
||||||
scaled_alphas = alphas * (len(rgbs) - 1)
|
scaled_alphas = alphas * (len(rgbs) - 1)
|
||||||
indices = scaled_alphas.astype(int)
|
indices = scaled_alphas.astype(int)
|
||||||
next_indices = np.clip(indices + 1, 0, len(rgbs) - 1)
|
next_indices = np.clip(indices + 1, 0, len(rgbs) - 1)
|
||||||
|
@ -71,29 +37,9 @@ def get_rgb_gradient_function(min_value=0, max_value=1,
|
||||||
return func
|
return func
|
||||||
|
|
||||||
|
|
||||||
def get_color_field_image_file(scalar_func,
|
def get_rgb_gradient_function(min_value, max_value, color_map):
|
||||||
min_value=0, max_value=2,
|
vectorized_func = get_vectorized_rgb_gradient_function(min_value, max_value, color_map)
|
||||||
colors=DEFAULT_SCALAR_FIELD_COLORS
|
return lambda value: vectorized_func([value])[0]
|
||||||
):
|
|
||||||
# try_hash
|
|
||||||
np.random.seed(0)
|
|
||||||
sample_inputs = 5 * np.random.random(size=(10, 3)) - 10
|
|
||||||
sample_outputs = np.apply_along_axis(scalar_func, 1, sample_inputs)
|
|
||||||
func_hash = hash(
|
|
||||||
str(min_value) + str(max_value) + str(colors) + str(sample_outputs)
|
|
||||||
)
|
|
||||||
file_name = "%d.png" % func_hash
|
|
||||||
full_path = os.path.join(RASTER_IMAGE_DIR, file_name)
|
|
||||||
if not os.path.exists(full_path):
|
|
||||||
print("Rendering color field image " + str(func_hash))
|
|
||||||
rgb_gradient_func = get_rgb_gradient_function(
|
|
||||||
min_value=min_value,
|
|
||||||
max_value=max_value,
|
|
||||||
colors=colors
|
|
||||||
)
|
|
||||||
image = get_colored_background_image(scalar_func, rgb_gradient_func)
|
|
||||||
image.save(full_path)
|
|
||||||
return full_path
|
|
||||||
|
|
||||||
|
|
||||||
def move_along_vector_field(mobject, func):
|
def move_along_vector_field(mobject, func):
|
||||||
|
@ -125,166 +71,195 @@ def move_points_along_vector_field(mobject, func):
|
||||||
return mobject
|
return mobject
|
||||||
|
|
||||||
|
|
||||||
|
def get_sample_points_from_coordinate_system(coordinate_system, step_multiple):
|
||||||
|
ranges = []
|
||||||
|
for range_args in coordinate_system.get_all_ranges():
|
||||||
|
_min, _max, step = range_args
|
||||||
|
step *= step_multiple
|
||||||
|
ranges.append(np.arange(_min, _max + step, step))
|
||||||
|
return it.product(*ranges)
|
||||||
|
|
||||||
|
|
||||||
# Mobjects
|
# Mobjects
|
||||||
|
|
||||||
class VectorField(VGroup):
|
class VectorField(VGroup):
|
||||||
CONFIG = {
|
CONFIG = {
|
||||||
"delta_x": 0.5,
|
"step_multiple": 0.5,
|
||||||
"delta_y": 0.5,
|
"magnitude_range": (0, 2),
|
||||||
"x_min": int(np.floor(-FRAME_WIDTH / 2)),
|
"color_map": "3b1b_colormap",
|
||||||
"x_max": int(np.ceil(FRAME_WIDTH / 2)),
|
|
||||||
"y_min": int(np.floor(-FRAME_HEIGHT / 2)),
|
|
||||||
"y_max": int(np.ceil(FRAME_HEIGHT / 2)),
|
|
||||||
"min_magnitude": 0,
|
|
||||||
"max_magnitude": 2,
|
|
||||||
"colors": DEFAULT_SCALAR_FIELD_COLORS,
|
|
||||||
# Takes in actual norm, spits out displayed norm
|
# Takes in actual norm, spits out displayed norm
|
||||||
"length_func": lambda norm: 0.45 * sigmoid(norm),
|
"length_func": lambda norm: 0.45 * sigmoid(norm),
|
||||||
"opacity": 1.0,
|
"opacity": 1.0,
|
||||||
"vector_config": {},
|
"vector_config": {},
|
||||||
}
|
}
|
||||||
|
|
||||||
def __init__(self, func, **kwargs):
|
def __init__(self, func, coordinate_system, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
self.func = func
|
self.func = func
|
||||||
self.rgb_gradient_function = get_rgb_gradient_function(
|
self.coordinate_system = coordinate_system
|
||||||
self.min_magnitude,
|
self.value_to_rgb = get_rgb_gradient_function(
|
||||||
self.max_magnitude,
|
*self.magnitude_range, self.color_map,
|
||||||
self.colors,
|
|
||||||
flip_alphas=False
|
|
||||||
)
|
)
|
||||||
x_range = np.arange(
|
|
||||||
self.x_min,
|
|
||||||
self.x_max + self.delta_x,
|
|
||||||
self.delta_x
|
|
||||||
)
|
|
||||||
y_range = np.arange(
|
|
||||||
self.y_min,
|
|
||||||
self.y_max + self.delta_y,
|
|
||||||
self.delta_y
|
|
||||||
)
|
|
||||||
for x, y in it.product(x_range, y_range):
|
|
||||||
point = x * RIGHT + y * UP
|
|
||||||
self.add(self.get_vector(point))
|
|
||||||
self.set_opacity(self.opacity)
|
|
||||||
|
|
||||||
def get_vector(self, point, **kwargs):
|
samples = get_sample_points_from_coordinate_system(
|
||||||
output = np.array(self.func(point))
|
coordinate_system, self.step_multiple
|
||||||
norm = get_norm(output)
|
|
||||||
if norm == 0:
|
|
||||||
output *= 0
|
|
||||||
else:
|
|
||||||
output *= self.length_func(norm) / norm
|
|
||||||
vector_config = dict(self.vector_config)
|
|
||||||
vector_config.update(kwargs)
|
|
||||||
vect = Vector(output, **vector_config)
|
|
||||||
vect.shift(point)
|
|
||||||
fill_color = rgb_to_color(
|
|
||||||
self.rgb_gradient_function(np.array([norm]))[0]
|
|
||||||
)
|
)
|
||||||
vect.set_color(fill_color)
|
self.add(*(
|
||||||
|
self.get_vector(coords)
|
||||||
|
for coords in samples
|
||||||
|
))
|
||||||
|
|
||||||
|
def get_vector(self, coords, **kwargs):
|
||||||
|
vector_config = merge_dicts_recursively(
|
||||||
|
self.vector_config,
|
||||||
|
kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
output = np.array(self.func(*coords))
|
||||||
|
norm = get_norm(output)
|
||||||
|
if norm > 0:
|
||||||
|
output *= self.length_func(norm) / norm
|
||||||
|
|
||||||
|
origin = self.coordinate_system.get_origin()
|
||||||
|
_input = self.coordinate_system.c2p(*coords)
|
||||||
|
_output = self.coordinate_system.c2p(*output)
|
||||||
|
|
||||||
|
vect = Arrow(
|
||||||
|
origin, _output, buff=0,
|
||||||
|
**vector_config
|
||||||
|
)
|
||||||
|
vect.shift(_input)
|
||||||
|
vect.set_rgba_array([[*self.value_to_rgb(norm), self.opacity]])
|
||||||
return vect
|
return vect
|
||||||
|
|
||||||
|
|
||||||
class StreamLines(VGroup):
|
class StreamLines(VGroup):
|
||||||
CONFIG = {
|
CONFIG = {
|
||||||
# TODO, this is an awkward way to inherit
|
"step_multiple": 0.5,
|
||||||
# defaults to a method.
|
|
||||||
"start_points_generator_config": {},
|
|
||||||
# Config for choosing start points
|
|
||||||
"x_min": -8,
|
|
||||||
"x_max": 8,
|
|
||||||
"y_min": -5,
|
|
||||||
"y_max": 5,
|
|
||||||
"delta_x": 0.5,
|
|
||||||
"delta_y": 0.5,
|
|
||||||
"n_repeats": 1,
|
"n_repeats": 1,
|
||||||
"noise_factor": None,
|
"noise_factor": None,
|
||||||
# Config for drawing lines
|
# Config for drawing lines
|
||||||
"dt": 0.05,
|
"dt": 0.05,
|
||||||
"virtual_time": 3,
|
"arc_len": 3,
|
||||||
"n_anchors_per_line": 100,
|
"max_time_steps": 200,
|
||||||
|
"n_samples_per_line": 10,
|
||||||
|
"cutoff_norm": 15,
|
||||||
|
# Style info
|
||||||
"stroke_width": 1,
|
"stroke_width": 1,
|
||||||
"stroke_color": WHITE,
|
"stroke_color": WHITE,
|
||||||
"color_by_arc_length": True,
|
"stroke_opacity": 1,
|
||||||
# Min and max arc lengths meant to define
|
"color_by_magnitude": True,
|
||||||
# the color range, should color_by_arc_length be True
|
"magnitude_range": (0, 2.0),
|
||||||
"min_arc_length": 0,
|
"taper_stroke_width": False,
|
||||||
"max_arc_length": 12,
|
"color_map": "3b1b_colormap",
|
||||||
"color_by_magnitude": False,
|
|
||||||
# Min and max magnitudes meant to define
|
|
||||||
# the color range, should color_by_magnitude be True
|
|
||||||
"min_magnitude": 0.5,
|
|
||||||
"max_magnitude": 1.5,
|
|
||||||
"colors": DEFAULT_SCALAR_FIELD_COLORS,
|
|
||||||
"cutoff_norm": 15,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
def __init__(self, func, **kwargs):
|
def __init__(self, func, coordinate_system, **kwargs):
|
||||||
VGroup.__init__(self, **kwargs)
|
super().__init__(**kwargs)
|
||||||
self.func = func
|
self.func = func
|
||||||
dt = self.dt
|
self.coordinate_system = coordinate_system
|
||||||
|
self.draw_lines()
|
||||||
|
self.init_style()
|
||||||
|
|
||||||
start_points = self.get_start_points(
|
def point_func(self, point):
|
||||||
**self.start_points_generator_config
|
return self.coordinate_system.c2p(
|
||||||
|
*self.func(*self.coordinate_system.p2c(point))
|
||||||
)
|
)
|
||||||
for point in start_points:
|
|
||||||
|
def draw_lines(self):
|
||||||
|
lines = []
|
||||||
|
for point in self.get_start_points():
|
||||||
points = [point]
|
points = [point]
|
||||||
for t in np.arange(0, self.virtual_time, dt):
|
total_arc_len = 0
|
||||||
|
# for t in np.arange(0, self.virtual_time, self.dt):
|
||||||
|
for x in range(self.max_time_steps):
|
||||||
last_point = points[-1]
|
last_point = points[-1]
|
||||||
points.append(last_point + dt * func(last_point))
|
new_point = last_point + self.dt * self.point_func(last_point)
|
||||||
|
points.append(new_point)
|
||||||
|
total_arc_len += get_norm(new_point - last_point)
|
||||||
if get_norm(last_point) > self.cutoff_norm:
|
if get_norm(last_point) > self.cutoff_norm:
|
||||||
break
|
break
|
||||||
|
if total_arc_len > self.arc_len:
|
||||||
|
break
|
||||||
line = VMobject()
|
line = VMobject()
|
||||||
step = max(1, int(len(points) / self.n_anchors_per_line))
|
step = max(1, int(len(points) / self.n_samples_per_line))
|
||||||
line.set_points_smoothly(points[::step])
|
line.set_points_smoothly(points[::step])
|
||||||
self.add(line)
|
lines.append(line)
|
||||||
|
self.set_submobjects(lines)
|
||||||
self.set_stroke(self.stroke_color, self.stroke_width)
|
|
||||||
|
|
||||||
if self.color_by_arc_length:
|
|
||||||
len_to_rgb = get_rgb_gradient_function(
|
|
||||||
self.min_arc_length,
|
|
||||||
self.max_arc_length,
|
|
||||||
colors=self.colors,
|
|
||||||
)
|
|
||||||
for line in self:
|
|
||||||
arc_length = line.get_arc_length()
|
|
||||||
rgb = len_to_rgb([arc_length])[0]
|
|
||||||
color = rgb_to_color(rgb)
|
|
||||||
line.set_color(color)
|
|
||||||
elif self.color_by_magnitude:
|
|
||||||
image_file = get_color_field_image_file(
|
|
||||||
lambda p: get_norm(func(p)),
|
|
||||||
min_value=self.min_magnitude,
|
|
||||||
max_value=self.max_magnitude,
|
|
||||||
colors=self.colors,
|
|
||||||
)
|
|
||||||
self.color_using_background_image(image_file)
|
|
||||||
|
|
||||||
def get_start_points(self):
|
def get_start_points(self):
|
||||||
x_min = self.x_min
|
cs = self.coordinate_system
|
||||||
x_max = self.x_max
|
sample_coords = get_sample_points_from_coordinate_system(
|
||||||
y_min = self.y_min
|
cs, self.step_multiple,
|
||||||
y_max = self.y_max
|
)
|
||||||
delta_x = self.delta_x
|
|
||||||
delta_y = self.delta_y
|
|
||||||
n_repeats = self.n_repeats
|
|
||||||
noise_factor = self.noise_factor
|
|
||||||
|
|
||||||
|
noise_factor = self.noise_factor
|
||||||
if noise_factor is None:
|
if noise_factor is None:
|
||||||
noise_factor = delta_y / 2
|
noise_factor = cs.x_range[2] * self.step_multiple * 0.5
|
||||||
|
|
||||||
return np.array([
|
return np.array([
|
||||||
x * RIGHT + y * UP + noise_factor * np.random.random(3)
|
cs.c2p(*coords) + noise_factor * np.random.random(3)
|
||||||
for n in range(n_repeats)
|
for n in range(self.n_repeats)
|
||||||
for x in np.arange(x_min, x_max + delta_x, delta_x)
|
for coords in sample_coords
|
||||||
for y in np.arange(y_min, y_max + delta_y, delta_y)
|
|
||||||
])
|
])
|
||||||
|
|
||||||
|
def init_style(self):
|
||||||
|
if self.color_by_magnitude:
|
||||||
|
values_to_rgbs = get_vectorized_rgb_gradient_function(
|
||||||
|
*self.magnitude_range, self.color_map,
|
||||||
|
)
|
||||||
|
cs = self.coordinate_system
|
||||||
|
for line in self.submobjects:
|
||||||
|
norms = [
|
||||||
|
get_norm(self.func(*cs.p2c(point)))
|
||||||
|
for point in line.get_points()
|
||||||
|
]
|
||||||
|
rgbs = values_to_rgbs(norms)
|
||||||
|
rgbas = np.zeros((len(rgbs), 4))
|
||||||
|
rgbas[:, :3] = rgbs
|
||||||
|
rgbas[:, 3] = self.stroke_opacity
|
||||||
|
line.set_rgba_array(rgbas, "stroke_rgba")
|
||||||
|
else:
|
||||||
|
self.set_stroke(self.stroke_color)
|
||||||
|
|
||||||
# TODO: Make it so that you can have a group of stream_lines
|
if self.taper_stroke_width:
|
||||||
# varying in response to a changing vector field, and still
|
width = [0, self.stroke_width, 0]
|
||||||
# animate the resulting flow
|
else:
|
||||||
|
width = self.stroke_width
|
||||||
|
self.set_stroke(width=width)
|
||||||
|
|
||||||
|
|
||||||
|
class AnimatedStreamLines(VGroup):
|
||||||
|
CONFIG = {
|
||||||
|
"lag_range": 4,
|
||||||
|
"line_anim_class": VShowPassingFlash,
|
||||||
|
"line_anim_config": {
|
||||||
|
"run_time": 4,
|
||||||
|
"rate_func": linear,
|
||||||
|
"time_width": 0.5,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
def __init__(self, stream_lines, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.stream_lines = stream_lines
|
||||||
|
for line in stream_lines:
|
||||||
|
line.anim = self.line_anim_class(line, **self.line_anim_config)
|
||||||
|
line.anim.begin()
|
||||||
|
line.time = -self.lag_range * random.random()
|
||||||
|
self.add(line.anim.mobject)
|
||||||
|
|
||||||
|
self.add_updater(lambda m, dt: m.update(dt))
|
||||||
|
|
||||||
|
def update(self, dt):
|
||||||
|
stream_lines = self.stream_lines
|
||||||
|
for line in stream_lines:
|
||||||
|
line.time += dt
|
||||||
|
adjusted_time = max(line.time, 0) % line.anim.run_time
|
||||||
|
line.anim.update(adjusted_time / line.anim.run_time)
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: This class should be deleted
|
||||||
class ShowPassingFlashWithThinningStrokeWidth(AnimationGroup):
|
class ShowPassingFlashWithThinningStrokeWidth(AnimationGroup):
|
||||||
CONFIG = {
|
CONFIG = {
|
||||||
"n_segments": 10,
|
"n_segments": 10,
|
||||||
|
@ -307,35 +282,3 @@ class ShowPassingFlashWithThinningStrokeWidth(AnimationGroup):
|
||||||
np.linspace(max_time_width, 0, self.n_segments)
|
np.linspace(max_time_width, 0, self.n_segments)
|
||||||
)
|
)
|
||||||
])
|
])
|
||||||
|
|
||||||
|
|
||||||
# TODO, this is untested after turning it from a
|
|
||||||
# ContinualAnimation into a VGroup
|
|
||||||
class AnimatedStreamLines(VGroup):
|
|
||||||
CONFIG = {
|
|
||||||
"lag_range": 4,
|
|
||||||
"line_anim_class": ShowPassingFlash,
|
|
||||||
"line_anim_config": {
|
|
||||||
"run_time": 4,
|
|
||||||
"rate_func": linear,
|
|
||||||
"time_width": 0.3,
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
def __init__(self, stream_lines, **kwargs):
|
|
||||||
VGroup.__init__(self, **kwargs)
|
|
||||||
self.stream_lines = stream_lines
|
|
||||||
for line in stream_lines:
|
|
||||||
line.anim = self.line_anim_class(line, **self.line_anim_config)
|
|
||||||
line.anim.begin()
|
|
||||||
line.time = -self.lag_range * random.random()
|
|
||||||
self.add(line.anim.mobject)
|
|
||||||
|
|
||||||
self.add_updater(lambda m, dt: m.update(dt))
|
|
||||||
|
|
||||||
def update(self, dt):
|
|
||||||
stream_lines = self.stream_lines
|
|
||||||
for line in stream_lines:
|
|
||||||
line.time += dt
|
|
||||||
adjusted_time = max(line.time, 0) % line.anim.run_time
|
|
||||||
line.anim.update(adjusted_time / line.anim.run_time)
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue