mirror of
https://github.com/3b1b/manim.git
synced 2025-08-05 16:49:03 +00:00
Updated VectorField and StreamLines
This commit is contained in:
parent
d06b3769b8
commit
eec396681c
1 changed files with 153 additions and 210 deletions
|
@ -1,66 +1,32 @@
|
|||
import numpy as np
|
||||
import os
|
||||
import itertools as it
|
||||
from PIL import Image
|
||||
import random
|
||||
|
||||
from manimlib.constants import *
|
||||
|
||||
from manimlib.animation.composition import AnimationGroup
|
||||
from manimlib.animation.indication import ShowPassingFlash
|
||||
from manimlib.mobject.geometry import Vector
|
||||
from manimlib.animation.indication import VShowPassingFlash
|
||||
from manimlib.mobject.geometry import Arrow
|
||||
from manimlib.mobject.types.vectorized_mobject import VGroup
|
||||
from manimlib.mobject.types.vectorized_mobject import VMobject
|
||||
from manimlib.utils.bezier import inverse_interpolate
|
||||
from manimlib.utils.bezier import interpolate
|
||||
from manimlib.utils.color import color_to_rgb
|
||||
from manimlib.utils.color import rgb_to_color
|
||||
from manimlib.utils.color import get_colormap_list
|
||||
from manimlib.utils.config_ops import merge_dicts_recursively
|
||||
from manimlib.utils.config_ops import digest_config
|
||||
from manimlib.utils.rate_functions import linear
|
||||
from manimlib.utils.simple_functions import sigmoid
|
||||
from manimlib.utils.space_ops import get_norm
|
||||
# from manimlib.utils.space_ops import normalize
|
||||
|
||||
|
||||
DEFAULT_SCALAR_FIELD_COLORS = [BLUE_E, GREEN, YELLOW, RED]
|
||||
|
||||
|
||||
def get_colored_background_image(scalar_field_func,
|
||||
number_to_rgb_func,
|
||||
pixel_height=DEFAULT_PIXEL_HEIGHT,
|
||||
pixel_width=DEFAULT_PIXEL_WIDTH):
|
||||
ph = pixel_height
|
||||
pw = pixel_width
|
||||
fw = FRAME_WIDTH
|
||||
fh = FRAME_HEIGHT
|
||||
points_array = np.zeros((ph, pw, 3))
|
||||
x_array = np.linspace(-fw / 2, fw / 2, pw)
|
||||
x_array = x_array.reshape((1, len(x_array)))
|
||||
x_array = x_array.repeat(ph, axis=0)
|
||||
|
||||
y_array = np.linspace(fh / 2, -fh / 2, ph)
|
||||
y_array = y_array.reshape((len(y_array), 1))
|
||||
y_array.repeat(pw, axis=1)
|
||||
points_array[:, :, 0] = x_array
|
||||
points_array[:, :, 1] = y_array
|
||||
scalars = np.apply_along_axis(scalar_field_func, 2, points_array)
|
||||
rgb_array = number_to_rgb_func(scalars.flatten()).reshape((ph, pw, 3))
|
||||
return Image.fromarray((rgb_array * 255).astype('uint8'))
|
||||
|
||||
|
||||
def get_rgb_gradient_function(min_value=0, max_value=1,
|
||||
colors=[BLUE, RED],
|
||||
flip_alphas=True, # Why?
|
||||
):
|
||||
rgbs = np.array(list(map(color_to_rgb, colors)))
|
||||
def get_vectorized_rgb_gradient_function(min_value, max_value, color_map):
|
||||
rgbs = np.array(get_colormap_list(color_map))
|
||||
|
||||
def func(values):
|
||||
alphas = inverse_interpolate(
|
||||
min_value, max_value, np.array(values)
|
||||
)
|
||||
alphas = np.clip(alphas, 0, 1)
|
||||
# if flip_alphas:
|
||||
# alphas = 1 - alphas
|
||||
scaled_alphas = alphas * (len(rgbs) - 1)
|
||||
indices = scaled_alphas.astype(int)
|
||||
next_indices = np.clip(indices + 1, 0, len(rgbs) - 1)
|
||||
|
@ -71,29 +37,9 @@ def get_rgb_gradient_function(min_value=0, max_value=1,
|
|||
return func
|
||||
|
||||
|
||||
def get_color_field_image_file(scalar_func,
|
||||
min_value=0, max_value=2,
|
||||
colors=DEFAULT_SCALAR_FIELD_COLORS
|
||||
):
|
||||
# try_hash
|
||||
np.random.seed(0)
|
||||
sample_inputs = 5 * np.random.random(size=(10, 3)) - 10
|
||||
sample_outputs = np.apply_along_axis(scalar_func, 1, sample_inputs)
|
||||
func_hash = hash(
|
||||
str(min_value) + str(max_value) + str(colors) + str(sample_outputs)
|
||||
)
|
||||
file_name = "%d.png" % func_hash
|
||||
full_path = os.path.join(RASTER_IMAGE_DIR, file_name)
|
||||
if not os.path.exists(full_path):
|
||||
print("Rendering color field image " + str(func_hash))
|
||||
rgb_gradient_func = get_rgb_gradient_function(
|
||||
min_value=min_value,
|
||||
max_value=max_value,
|
||||
colors=colors
|
||||
)
|
||||
image = get_colored_background_image(scalar_func, rgb_gradient_func)
|
||||
image.save(full_path)
|
||||
return full_path
|
||||
def get_rgb_gradient_function(min_value, max_value, color_map):
|
||||
vectorized_func = get_vectorized_rgb_gradient_function(min_value, max_value, color_map)
|
||||
return lambda value: vectorized_func([value])[0]
|
||||
|
||||
|
||||
def move_along_vector_field(mobject, func):
|
||||
|
@ -125,166 +71,195 @@ def move_points_along_vector_field(mobject, func):
|
|||
return mobject
|
||||
|
||||
|
||||
def get_sample_points_from_coordinate_system(coordinate_system, step_multiple):
|
||||
ranges = []
|
||||
for range_args in coordinate_system.get_all_ranges():
|
||||
_min, _max, step = range_args
|
||||
step *= step_multiple
|
||||
ranges.append(np.arange(_min, _max + step, step))
|
||||
return it.product(*ranges)
|
||||
|
||||
|
||||
# Mobjects
|
||||
|
||||
class VectorField(VGroup):
|
||||
CONFIG = {
|
||||
"delta_x": 0.5,
|
||||
"delta_y": 0.5,
|
||||
"x_min": int(np.floor(-FRAME_WIDTH / 2)),
|
||||
"x_max": int(np.ceil(FRAME_WIDTH / 2)),
|
||||
"y_min": int(np.floor(-FRAME_HEIGHT / 2)),
|
||||
"y_max": int(np.ceil(FRAME_HEIGHT / 2)),
|
||||
"min_magnitude": 0,
|
||||
"max_magnitude": 2,
|
||||
"colors": DEFAULT_SCALAR_FIELD_COLORS,
|
||||
"step_multiple": 0.5,
|
||||
"magnitude_range": (0, 2),
|
||||
"color_map": "3b1b_colormap",
|
||||
# Takes in actual norm, spits out displayed norm
|
||||
"length_func": lambda norm: 0.45 * sigmoid(norm),
|
||||
"opacity": 1.0,
|
||||
"vector_config": {},
|
||||
}
|
||||
|
||||
def __init__(self, func, **kwargs):
|
||||
def __init__(self, func, coordinate_system, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.func = func
|
||||
self.rgb_gradient_function = get_rgb_gradient_function(
|
||||
self.min_magnitude,
|
||||
self.max_magnitude,
|
||||
self.colors,
|
||||
flip_alphas=False
|
||||
self.coordinate_system = coordinate_system
|
||||
self.value_to_rgb = get_rgb_gradient_function(
|
||||
*self.magnitude_range, self.color_map,
|
||||
)
|
||||
x_range = np.arange(
|
||||
self.x_min,
|
||||
self.x_max + self.delta_x,
|
||||
self.delta_x
|
||||
)
|
||||
y_range = np.arange(
|
||||
self.y_min,
|
||||
self.y_max + self.delta_y,
|
||||
self.delta_y
|
||||
)
|
||||
for x, y in it.product(x_range, y_range):
|
||||
point = x * RIGHT + y * UP
|
||||
self.add(self.get_vector(point))
|
||||
self.set_opacity(self.opacity)
|
||||
|
||||
def get_vector(self, point, **kwargs):
|
||||
output = np.array(self.func(point))
|
||||
norm = get_norm(output)
|
||||
if norm == 0:
|
||||
output *= 0
|
||||
else:
|
||||
output *= self.length_func(norm) / norm
|
||||
vector_config = dict(self.vector_config)
|
||||
vector_config.update(kwargs)
|
||||
vect = Vector(output, **vector_config)
|
||||
vect.shift(point)
|
||||
fill_color = rgb_to_color(
|
||||
self.rgb_gradient_function(np.array([norm]))[0]
|
||||
samples = get_sample_points_from_coordinate_system(
|
||||
coordinate_system, self.step_multiple
|
||||
)
|
||||
vect.set_color(fill_color)
|
||||
self.add(*(
|
||||
self.get_vector(coords)
|
||||
for coords in samples
|
||||
))
|
||||
|
||||
def get_vector(self, coords, **kwargs):
|
||||
vector_config = merge_dicts_recursively(
|
||||
self.vector_config,
|
||||
kwargs
|
||||
)
|
||||
|
||||
output = np.array(self.func(*coords))
|
||||
norm = get_norm(output)
|
||||
if norm > 0:
|
||||
output *= self.length_func(norm) / norm
|
||||
|
||||
origin = self.coordinate_system.get_origin()
|
||||
_input = self.coordinate_system.c2p(*coords)
|
||||
_output = self.coordinate_system.c2p(*output)
|
||||
|
||||
vect = Arrow(
|
||||
origin, _output, buff=0,
|
||||
**vector_config
|
||||
)
|
||||
vect.shift(_input)
|
||||
vect.set_rgba_array([[*self.value_to_rgb(norm), self.opacity]])
|
||||
return vect
|
||||
|
||||
|
||||
class StreamLines(VGroup):
|
||||
CONFIG = {
|
||||
# TODO, this is an awkward way to inherit
|
||||
# defaults to a method.
|
||||
"start_points_generator_config": {},
|
||||
# Config for choosing start points
|
||||
"x_min": -8,
|
||||
"x_max": 8,
|
||||
"y_min": -5,
|
||||
"y_max": 5,
|
||||
"delta_x": 0.5,
|
||||
"delta_y": 0.5,
|
||||
"step_multiple": 0.5,
|
||||
"n_repeats": 1,
|
||||
"noise_factor": None,
|
||||
# Config for drawing lines
|
||||
"dt": 0.05,
|
||||
"virtual_time": 3,
|
||||
"n_anchors_per_line": 100,
|
||||
"arc_len": 3,
|
||||
"max_time_steps": 200,
|
||||
"n_samples_per_line": 10,
|
||||
"cutoff_norm": 15,
|
||||
# Style info
|
||||
"stroke_width": 1,
|
||||
"stroke_color": WHITE,
|
||||
"color_by_arc_length": True,
|
||||
# Min and max arc lengths meant to define
|
||||
# the color range, should color_by_arc_length be True
|
||||
"min_arc_length": 0,
|
||||
"max_arc_length": 12,
|
||||
"color_by_magnitude": False,
|
||||
# Min and max magnitudes meant to define
|
||||
# the color range, should color_by_magnitude be True
|
||||
"min_magnitude": 0.5,
|
||||
"max_magnitude": 1.5,
|
||||
"colors": DEFAULT_SCALAR_FIELD_COLORS,
|
||||
"cutoff_norm": 15,
|
||||
"stroke_opacity": 1,
|
||||
"color_by_magnitude": True,
|
||||
"magnitude_range": (0, 2.0),
|
||||
"taper_stroke_width": False,
|
||||
"color_map": "3b1b_colormap",
|
||||
}
|
||||
|
||||
def __init__(self, func, **kwargs):
|
||||
VGroup.__init__(self, **kwargs)
|
||||
def __init__(self, func, coordinate_system, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.func = func
|
||||
dt = self.dt
|
||||
self.coordinate_system = coordinate_system
|
||||
self.draw_lines()
|
||||
self.init_style()
|
||||
|
||||
start_points = self.get_start_points(
|
||||
**self.start_points_generator_config
|
||||
def point_func(self, point):
|
||||
return self.coordinate_system.c2p(
|
||||
*self.func(*self.coordinate_system.p2c(point))
|
||||
)
|
||||
for point in start_points:
|
||||
|
||||
def draw_lines(self):
|
||||
lines = []
|
||||
for point in self.get_start_points():
|
||||
points = [point]
|
||||
for t in np.arange(0, self.virtual_time, dt):
|
||||
total_arc_len = 0
|
||||
# for t in np.arange(0, self.virtual_time, self.dt):
|
||||
for x in range(self.max_time_steps):
|
||||
last_point = points[-1]
|
||||
points.append(last_point + dt * func(last_point))
|
||||
new_point = last_point + self.dt * self.point_func(last_point)
|
||||
points.append(new_point)
|
||||
total_arc_len += get_norm(new_point - last_point)
|
||||
if get_norm(last_point) > self.cutoff_norm:
|
||||
break
|
||||
if total_arc_len > self.arc_len:
|
||||
break
|
||||
line = VMobject()
|
||||
step = max(1, int(len(points) / self.n_anchors_per_line))
|
||||
step = max(1, int(len(points) / self.n_samples_per_line))
|
||||
line.set_points_smoothly(points[::step])
|
||||
self.add(line)
|
||||
|
||||
self.set_stroke(self.stroke_color, self.stroke_width)
|
||||
|
||||
if self.color_by_arc_length:
|
||||
len_to_rgb = get_rgb_gradient_function(
|
||||
self.min_arc_length,
|
||||
self.max_arc_length,
|
||||
colors=self.colors,
|
||||
)
|
||||
for line in self:
|
||||
arc_length = line.get_arc_length()
|
||||
rgb = len_to_rgb([arc_length])[0]
|
||||
color = rgb_to_color(rgb)
|
||||
line.set_color(color)
|
||||
elif self.color_by_magnitude:
|
||||
image_file = get_color_field_image_file(
|
||||
lambda p: get_norm(func(p)),
|
||||
min_value=self.min_magnitude,
|
||||
max_value=self.max_magnitude,
|
||||
colors=self.colors,
|
||||
)
|
||||
self.color_using_background_image(image_file)
|
||||
lines.append(line)
|
||||
self.set_submobjects(lines)
|
||||
|
||||
def get_start_points(self):
|
||||
x_min = self.x_min
|
||||
x_max = self.x_max
|
||||
y_min = self.y_min
|
||||
y_max = self.y_max
|
||||
delta_x = self.delta_x
|
||||
delta_y = self.delta_y
|
||||
n_repeats = self.n_repeats
|
||||
noise_factor = self.noise_factor
|
||||
cs = self.coordinate_system
|
||||
sample_coords = get_sample_points_from_coordinate_system(
|
||||
cs, self.step_multiple,
|
||||
)
|
||||
|
||||
noise_factor = self.noise_factor
|
||||
if noise_factor is None:
|
||||
noise_factor = delta_y / 2
|
||||
noise_factor = cs.x_range[2] * self.step_multiple * 0.5
|
||||
|
||||
return np.array([
|
||||
x * RIGHT + y * UP + noise_factor * np.random.random(3)
|
||||
for n in range(n_repeats)
|
||||
for x in np.arange(x_min, x_max + delta_x, delta_x)
|
||||
for y in np.arange(y_min, y_max + delta_y, delta_y)
|
||||
cs.c2p(*coords) + noise_factor * np.random.random(3)
|
||||
for n in range(self.n_repeats)
|
||||
for coords in sample_coords
|
||||
])
|
||||
|
||||
def init_style(self):
|
||||
if self.color_by_magnitude:
|
||||
values_to_rgbs = get_vectorized_rgb_gradient_function(
|
||||
*self.magnitude_range, self.color_map,
|
||||
)
|
||||
cs = self.coordinate_system
|
||||
for line in self.submobjects:
|
||||
norms = [
|
||||
get_norm(self.func(*cs.p2c(point)))
|
||||
for point in line.get_points()
|
||||
]
|
||||
rgbs = values_to_rgbs(norms)
|
||||
rgbas = np.zeros((len(rgbs), 4))
|
||||
rgbas[:, :3] = rgbs
|
||||
rgbas[:, 3] = self.stroke_opacity
|
||||
line.set_rgba_array(rgbas, "stroke_rgba")
|
||||
else:
|
||||
self.set_stroke(self.stroke_color)
|
||||
|
||||
# TODO: Make it so that you can have a group of stream_lines
|
||||
# varying in response to a changing vector field, and still
|
||||
# animate the resulting flow
|
||||
if self.taper_stroke_width:
|
||||
width = [0, self.stroke_width, 0]
|
||||
else:
|
||||
width = self.stroke_width
|
||||
self.set_stroke(width=width)
|
||||
|
||||
|
||||
class AnimatedStreamLines(VGroup):
|
||||
CONFIG = {
|
||||
"lag_range": 4,
|
||||
"line_anim_class": VShowPassingFlash,
|
||||
"line_anim_config": {
|
||||
"run_time": 4,
|
||||
"rate_func": linear,
|
||||
"time_width": 0.5,
|
||||
},
|
||||
}
|
||||
|
||||
def __init__(self, stream_lines, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.stream_lines = stream_lines
|
||||
for line in stream_lines:
|
||||
line.anim = self.line_anim_class(line, **self.line_anim_config)
|
||||
line.anim.begin()
|
||||
line.time = -self.lag_range * random.random()
|
||||
self.add(line.anim.mobject)
|
||||
|
||||
self.add_updater(lambda m, dt: m.update(dt))
|
||||
|
||||
def update(self, dt):
|
||||
stream_lines = self.stream_lines
|
||||
for line in stream_lines:
|
||||
line.time += dt
|
||||
adjusted_time = max(line.time, 0) % line.anim.run_time
|
||||
line.anim.update(adjusted_time / line.anim.run_time)
|
||||
|
||||
|
||||
# TODO: This class should be deleted
|
||||
class ShowPassingFlashWithThinningStrokeWidth(AnimationGroup):
|
||||
CONFIG = {
|
||||
"n_segments": 10,
|
||||
|
@ -307,35 +282,3 @@ class ShowPassingFlashWithThinningStrokeWidth(AnimationGroup):
|
|||
np.linspace(max_time_width, 0, self.n_segments)
|
||||
)
|
||||
])
|
||||
|
||||
|
||||
# TODO, this is untested after turning it from a
|
||||
# ContinualAnimation into a VGroup
|
||||
class AnimatedStreamLines(VGroup):
|
||||
CONFIG = {
|
||||
"lag_range": 4,
|
||||
"line_anim_class": ShowPassingFlash,
|
||||
"line_anim_config": {
|
||||
"run_time": 4,
|
||||
"rate_func": linear,
|
||||
"time_width": 0.3,
|
||||
},
|
||||
}
|
||||
|
||||
def __init__(self, stream_lines, **kwargs):
|
||||
VGroup.__init__(self, **kwargs)
|
||||
self.stream_lines = stream_lines
|
||||
for line in stream_lines:
|
||||
line.anim = self.line_anim_class(line, **self.line_anim_config)
|
||||
line.anim.begin()
|
||||
line.time = -self.lag_range * random.random()
|
||||
self.add(line.anim.mobject)
|
||||
|
||||
self.add_updater(lambda m, dt: m.update(dt))
|
||||
|
||||
def update(self, dt):
|
||||
stream_lines = self.stream_lines
|
||||
for line in stream_lines:
|
||||
line.time += dt
|
||||
adjusted_time = max(line.time, 0) % line.anim.run_time
|
||||
line.anim.update(adjusted_time / line.anim.run_time)
|
||||
|
|
Loading…
Add table
Reference in a new issue