mirror of
https://github.com/3b1b/manim.git
synced 2025-11-14 12:37:44 +00:00
Small style change to get_xy_to_uv
This commit is contained in:
parent
394d87effb
commit
e534206eb6
3 changed files with 12 additions and 17 deletions
|
|
@ -8,7 +8,7 @@ vec2 complex_div(vec2 v, vec2 w){
|
|||
}
|
||||
|
||||
|
||||
vec2 xs_on_clean_parabola(vec2 controls[3]){
|
||||
vec2 xs_on_clean_parabola(vec2 b0, vec2 b1, vec2 b2){
|
||||
/*
|
||||
Given three control points for a quadratic bezier,
|
||||
this returns the two values (x0, x2) such that the
|
||||
|
|
@ -17,10 +17,6 @@ vec2 xs_on_clean_parabola(vec2 controls[3]){
|
|||
|
||||
Adapated from https://github.com/raphlinus/raphlinus.github.io/blob/master/_posts/2019-12-23-flatten-quadbez.md
|
||||
*/
|
||||
vec2 b0 = controls[0];
|
||||
vec2 b1 = controls[1];
|
||||
vec2 b2 = controls[2];
|
||||
|
||||
vec2 dd = normalize(2 * b1 - b0 - b2);
|
||||
|
||||
float u0 = dot(b1 - b0, dd);
|
||||
|
|
@ -59,35 +55,34 @@ mat3 map_point_pairs(vec2 src0, vec2 src1, vec2 dest0, vec2 dest1){
|
|||
}
|
||||
|
||||
|
||||
mat3 get_xy_to_uv(vec2 controls[3], float temp_is_linear, out float is_linear){
|
||||
mat3 get_xy_to_uv(vec2 b0, vec2 b1, vec2 b2, float temp_is_linear, out float is_linear){
|
||||
/*
|
||||
Returns a matrix for an affine transformation which maps a set of quadratic
|
||||
bezier controls points into a new coordinate system such that the bezier curve
|
||||
coincides with y = x^2, or in the case of a linear curve, it's mapped to the x-axis.
|
||||
*/
|
||||
vec2[2] dest;
|
||||
vec2 dest0;
|
||||
vec2 dest1;
|
||||
is_linear = temp_is_linear;
|
||||
// Portions of the parabola y = x^2 where abs(x) exceeds
|
||||
// this value are treated as straight lines.
|
||||
float thresh = 2.0;
|
||||
if (!bool(is_linear)){
|
||||
vec2 xs = xs_on_clean_parabola(controls);
|
||||
vec2 xs = xs_on_clean_parabola(b0, b1, b2);
|
||||
float x0 = xs.x;
|
||||
float x2 = xs.y;
|
||||
if((x0 > thresh && x2 > thresh) || (x0 < -thresh && x2 < -thresh)){
|
||||
is_linear = 1.0;
|
||||
}else{
|
||||
dest[0] = vec2(x0, x0 * x0);
|
||||
dest[1] = vec2(x2, x2 * x2);
|
||||
dest0 = vec2(x0, x0 * x0);
|
||||
dest1 = vec2(x2, x2 * x2);
|
||||
}
|
||||
}
|
||||
// Check if is_linear status changed above
|
||||
if (bool(is_linear)){
|
||||
dest[0] = vec2(0, 0);
|
||||
dest[1] = vec2(1, 0);
|
||||
dest0 = vec2(0, 0);
|
||||
dest1 = vec2(1, 0);
|
||||
}
|
||||
|
||||
return map_point_pairs(
|
||||
controls[0], controls[2], dest[0], dest[1]
|
||||
);
|
||||
return map_point_pairs(b0, b2, dest0, dest1);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -96,7 +96,7 @@ void emit_pentagon(vec3 p0, vec3 p1, vec3 p2, vec3 normal){
|
|||
}
|
||||
|
||||
// Compute xy_to_uv matrix, and potentially re-evaluate bezier degree
|
||||
mat3 xy_to_uv = get_xy_to_uv(vec2[3](p0.xy, p1.xy, p2.xy), is_linear, is_linear);
|
||||
mat3 xy_to_uv = get_xy_to_uv(p0.xy, p1.xy, p2.xy, is_linear, is_linear);
|
||||
uv_anti_alias_width = aaw * length(xy_to_uv[0].xy);
|
||||
|
||||
for(int i = 0; i < 5; i++){
|
||||
|
|
|
|||
|
|
@ -164,7 +164,7 @@ void main() {
|
|||
// coincides with y = x^2, between some values x0 and x2. Or, in
|
||||
// the case of a linear curve (bezier degree 1), just put it on
|
||||
// the segment from (0, 0) to (1, 0)
|
||||
mat3 xy_to_uv = get_xy_to_uv(vec2[3](p0.xy, p1.xy, p2.xy), is_linear, is_linear);
|
||||
mat3 xy_to_uv = get_xy_to_uv(p0.xy, p1.xy, p2.xy, is_linear, is_linear);
|
||||
|
||||
float uv_scale_factor = length(xy_to_uv[0].xy);
|
||||
float scaled_aaw = anti_alias_width * (frame_shape.y / pixel_shape.y);
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue