Merge branch 'master' into lighthouse2

This commit is contained in:
Ben Hambrecht 2018-02-15 09:38:38 +01:00
commit a3d21911fd
9 changed files with 410 additions and 72 deletions

View file

@ -39,55 +39,46 @@ class GaussianDistributionWrapper(Line):
"""
This is meant to encode a 2d normal distribution as
a mobject (so as to be able to have it be interpolated
during animations). It is a line whose start_point coordinates
encode the coordinates of mu, and whose end_point - start_point
encodes the coordinates of sigma.
during animations). It is a line whose center is the mean
mu of a distribution, and whose radial vector (center to end)
is the distribution's standard deviation
"""
CONFIG = {
"stroke_width" : 0,
"mu_x" : 0,
"sigma_x" : 1,
"mu_y" : 0,
"sigma_y" : 0,
"mu" : ORIGIN,
"sigma" : RIGHT,
}
def __init__(self, **kwargs):
Line.__init__(self, ORIGIN, RIGHT, **kwargs)
self.change_parameters(self.mu_x, self.mu_y, self.sigma_x, self.sigma_y)
self.change_parameters(self.mu, self.sigma)
def change_parameters(self, mu_x = None, mu_y = None, sigma_x = None, sigma_y = None):
curr_parameters = self.get_parameteters()
args = [mu_x, mu_y, sigma_x, sigma_y]
new_parameters = [
arg or curr
for curr, arg in zip(curr_parameters, args)
]
mu_x, mu_y, sigma_x, sigma_y = new_parameters
mu_point = mu_x*RIGHT + mu_y*UP
sigma_vect = sigma_x*RIGHT + sigma_y*UP
self.put_start_and_end_on(mu_point, mu_point + sigma_vect)
def change_parameters(self, mu = None, sigma = None):
curr_mu, curr_sigma = self.get_parameters()
mu = mu if mu is not None else curr_mu
sigma = sigma if sigma is not None else curr_sigma
self.put_start_and_end_on(mu - sigma, mu + sigma)
return self
def get_parameteters(self):
def get_parameters(self):
""" Return mu_x, mu_y, sigma_x, sigma_y"""
start, end = self.get_start_and_end()
return tuple(it.chain(start[:2], (end - start)[:2]))
center, end = self.get_center(), self.get_end()
return center, end-center
def get_random_points(self, size = 1):
mu_x, mu_y, sigma_x, sigma_y = self.get_parameteters()
x_vals = np.random.normal(mu_x, sigma_x, size)
y_vals = np.random.normal(mu_y, sigma_y, size)
mu, sigma = self.get_parameters()
return np.array([
x*RIGHT + y*UP
for x, y in zip(x_vals, y_vals)
np.array([
np.random.normal(mu_coord, sigma_coord)
for mu_coord, sigma_coord in zip(mu, sigma)
])
for x in range(size)
])
class ProbabalisticMobjectCloud(ContinualAnimation):
CONFIG = {
"fill_opacity" : 0.25,
"n_copies" : 100,
"gaussian_distribution_wrapper_config" : {
"sigma_x" : 1,
}
"gaussian_distribution_wrapper_config" : {}
}
def __init__(self, prototype, **kwargs):
digest_config(self, kwargs)
@ -142,6 +133,111 @@ class ProbabalisticVectorCloud(ProbabalisticMobjectCloud):
point
)
class RadarDish(SVGMobject):
CONFIG = {
"file_name" : "radar_dish",
"fill_color" : LIGHT_GREY,
"stroke_color" : WHITE,
"stroke_width" : 1,
"height" : 1,
}
class Plane(SVGMobject):
CONFIG = {
"file_name" : "plane",
"color" : GREY,
"height" : 1,
}
def __init__(self, **kwargs):
SVGMobject.__init__(self, **kwargs)
self.rotate(-TAU/8)
class RadarPulseSingleton(ContinualAnimation):
CONFIG = {
"speed" : 3.0,
"direction" : RIGHT,
"start_up_time" : 0,
"fade_in_time" : 0.5,
"color" : WHITE,
"stroke_width" : 3,
}
def __init__(self, radar_dish, target, **kwargs):
digest_config(self, kwargs)
self.direction = self.direction/np.linalg.norm(self.direction)
self.radar_dish = radar_dish
self.target = target
self.reflection_distance = None
self.arc = Arc(
start_angle = -30*DEGREES,
angle = 60*DEGREES,
)
self.arc.scale_to_fit_height(0.75*radar_dish.get_height())
self.arc.move_to(radar_dish, UP+RIGHT)
self.start_points = np.array(self.arc.points)
self.start_center = self.arc.get_center()
self.finished = False
ContinualAnimation.__init__(self, self.arc, **kwargs)
def update_mobject(self, dt):
arc = self.arc
total_distance = self.speed*self.internal_time
arc.points = np.array(self.start_points)
arc.shift(total_distance*self.direction)
if self.internal_time < self.fade_in_time:
alpha = np.clip(self.internal_time/self.fade_in_time, 0, 1)
arc.set_stroke(self.color, alpha*self.stroke_width)
if self.reflection_distance is None:
#Check if reflection is happening
arc_point = arc.get_edge_center(self.direction)
target_point = self.target.get_edge_center(-self.direction)
arc_distance = np.dot(arc_point, self.direction)
target_distance = np.dot(target_point, self.direction)
if arc_distance > target_distance:
self.reflection_distance = target_distance
#Don't use elif in case the above code creates reflection_distance
if self.reflection_distance is not None:
delta_distance = total_distance - self.reflection_distance
point_distances = np.dot(self.direction, arc.points.T)
diffs = point_distances - self.reflection_distance
shift_vals = np.outer(-2*np.maximum(diffs, 0), self.direction)
arc.points += shift_vals
#Check if done
arc_point = arc.get_edge_center(-self.direction)
if np.dot(arc_point, self.direction) < np.dot(self.start_center, self.direction):
self.finished = True
self.arc.fade(1)
def is_finished(self):
return self.finished
class RadarPulse(ContinualAnimation):
CONFIG = {
"n_pulse_singletons" : 8,
"frequency" : 0.05,
"colors" : [BLUE, YELLOW]
}
def __init__(self, *args, **kwargs):
digest_config(self, kwargs)
colors = color_gradient(self.colors, self.n_pulse_singletons)
self.pulse_singletons = [
RadarPulseSingleton(*args, color = color, **kwargs)
for color in colors
]
pluse_mobjects = VGroup(*[ps.mobject for ps in self.pulse_singletons])
ContinualAnimation.__init__(self, pluse_mobjects, **kwargs)
def update_mobject(self, dt):
for i, ps in enumerate(self.pulse_singletons):
ps.internal_time = self.internal_time - i*self.frequency
ps.update_mobject(dt)
def is_finished(self):
return all([ps.is_finished() for ps in self.pulse_singletons])
###################
class MentionUncertaintyPrinciple(TeacherStudentsScene):
@ -152,32 +248,33 @@ class MentionUncertaintyPrinciple(TeacherStudentsScene):
dot_cloud = ProbabalisticDotCloud()
vector_cloud = ProbabalisticVectorCloud(
gaussian_distribution_wrapper_config = {"sigma_x" : 0.2},
center_func = dot_cloud.gaussian_distribution_wrapper.get_start,
center_func = lambda : dot_cloud.gaussian_distribution_wrapper.get_parameters()[0],
)
for cloud in dot_cloud, vector_cloud:
gdw = cloud.gaussian_distribution_wrapper
gdw.move_to(title.get_center(), LEFT)
gdw.shift(2*DOWN)
cloud.gaussian_distribution_wrapper.next_to(
title, DOWN, 2*LARGE_BUFF
)
vector_cloud.gaussian_distribution_wrapper.shift(3*RIGHT)
def get_brace_text_group_update(gdw, vect, text):
def get_brace_text_group_update(gdw, vect, text, color):
brace = Brace(gdw, vect)
text = brace.get_tex("\\sigma_{\\text{%s}}"%text, buff = SMALL_BUFF)
text = brace.get_tex("2\\sigma_{\\text{%s}}"%text, buff = SMALL_BUFF)
group = VGroup(brace, text)
def update_group(group):
brace, text = group
brace.match_width(gdw, stretch = True)
brace.next_to(gdw, vect)
text.next_to(brace, vect, buff = SMALL_BUFF)
group.highlight(color)
return ContinualUpdateFromFunc(group, update_group)
dot_brace_anim = get_brace_text_group_update(
dot_cloud.gaussian_distribution_wrapper,
DOWN, "position",
DOWN, "position", dot_cloud.color
)
vector_brace_anim = get_brace_text_group_update(
vector_cloud.gaussian_distribution_wrapper,
UP, "momentum",
UP, "momentum", vector_cloud.color
)
self.add(title)
@ -195,7 +292,7 @@ class MentionUncertaintyPrinciple(TeacherStudentsScene):
# self.wait(2)
self.play(
dot_cloud.gaussian_distribution_wrapper.change_parameters,
{"sigma_x" : 0.1},
{"sigma" : 0.1*RIGHT},
run_time = 2,
)
self.wait()
@ -206,7 +303,7 @@ class MentionUncertaintyPrinciple(TeacherStudentsScene):
self.add(vector_brace_anim)
self.play(
vector_cloud.gaussian_distribution_wrapper.change_parameters,
{"sigma_x" : 1},
{"sigma" : RIGHT},
self.get_student_changes(*3*["confused"]),
run_time = 3,
)
@ -214,17 +311,17 @@ class MentionUncertaintyPrinciple(TeacherStudentsScene):
for x in range(2):
self.play(
dot_cloud.gaussian_distribution_wrapper.change_parameters,
{"sigma_x" : 2},
{"sigma" : 2*RIGHT},
vector_cloud.gaussian_distribution_wrapper.change_parameters,
{"sigma_x" : 0.1},
{"sigma" : 0.1*RIGHT},
run_time = 3,
)
self.change_student_modes("thinking", "erm", "sassy")
self.play(
dot_cloud.gaussian_distribution_wrapper.change_parameters,
{"sigma_x" : 0.1},
{"sigma" : 0.1*RIGHT},
vector_cloud.gaussian_distribution_wrapper.change_parameters,
{"sigma_x" : 1},
{"sigma" : 1*RIGHT},
run_time = 3,
)
self.wait()
@ -299,7 +396,8 @@ class FourierTradeoff(Scene):
t_min = time_mean - time_radius,
t_max = time_mean + time_radius,
n_samples = 2*time_radius*17,
complex_to_real_func = abs,
# complex_to_real_func = abs,
complex_to_real_func = lambda z : z.real,
color = FREQUENCY_COLOR,
)
@ -327,7 +425,7 @@ class FourierTradeoff(Scene):
#Draw items
self.add(time_axes, frequency_axes)
self.play(ShowCreation(wave_packet))
self.play(ShowCreation(wave_packet, rate_func = double_smooth))
self.play(
ReplacementTransform(
wave_packet.copy(),
@ -351,8 +449,131 @@ class FourierTradeoff(Scene):
self.wait()
self.wait()
class ShowPlan(PiCreatureScene):
def construct(self):
self.add_title()
words = self.get_words()
self.play_sound_anims(words[0])
self.play_doppler_anims(words[1], words[0])
self.play_quantum_anims(words[2], words[1])
def add_title(self):
title = TextMobject("The plan")
title.scale(1.5)
title.to_edge(UP)
h_line = Line(LEFT, RIGHT).scale(SPACE_WIDTH)
h_line.next_to(title, DOWN)
self.add(title, h_line)
def get_words(self):
colors = [YELLOW, GREEN, BLUE]
topics = ["sound waves", "Doppler radar", "quantum particles"]
words = VGroup()
for topic, color in zip(topics, colors):
word = TextMobject("Uncertainty for", topic)
word[1].highlight(color)
words.add(word)
words.arrange_submobjects(DOWN, aligned_edge = LEFT, buff = LARGE_BUFF)
words.to_edge(LEFT)
return words
def play_sound_anims(self, word):
morty = self.pi_creature
wave = FunctionGraph(
lambda x : 0.3*np.sin(15*x)*np.sin(0.5*x),
x_min = 0, x_max = 30,
num_anchor_points = 500,
)
wave.next_to(word, RIGHT)
rect = BackgroundRectangle(wave, fill_opacity = 1)
rect.stretch(2, 1)
rect.next_to(wave, LEFT, buff = 0)
wave_shift = AmbientMovement(
wave, direction = LEFT, rate = 5
)
wave_fader = UpdateFromAlphaFunc(
wave,
lambda w, a : w.set_stroke(width = 3*a)
)
checkmark = self.get_checkmark(word)
self.add(wave_shift)
self.add_foreground_mobjects(rect, word)
self.play(
Animation(word),
wave_fader,
morty.change, "raise_right_hand", word
)
self.wait(2)
wave_fader.rate_func = lambda a : 1-smooth(a)
self.add_foreground_mobjects(checkmark)
self.play(
Write(checkmark),
morty.change, "happy",
wave_fader,
)
self.remove_foreground_mobjects(rect, word)
self.add(word)
self.wait()
def play_doppler_anims(self, word, to_fade):
morty = self.pi_creature
radar_dish = RadarDish()
radar_dish.next_to(word, DOWN, aligned_edge = LEFT)
target = Plane()
# target.match_height(radar_dish)
target.next_to(radar_dish, RIGHT, buff = LARGE_BUFF)
target_movement = AmbientMovement(target, direction = RIGHT, rate = 1.25)
pulse = RadarPulse(radar_dish, target)
checkmark = self.get_checkmark(word)
self.add(target_movement)
self.play(
to_fade.fade, 0.5,
Write(word),
DrawBorderThenFill(radar_dish),
UpdateFromAlphaFunc(
target, lambda m, a : m.set_fill(opacity = a)
),
morty.change, "pondering",
run_time = 1
)
self.wait()
self.add(pulse)
count = it.count() #TODO, this is not a great hack...
while not pulse.is_finished() and count.next() < 15:
self.play(
morty.look_at, pulse.mobject,
run_time = 0.5
)
self.play(
Write(checkmark),
UpdateFromAlphaFunc(
target, lambda m, a : m.set_fill(opacity = 1-a)
),
FadeOut(radar_dish),
morty.change, "happy"
)
self.wait()
def play_quantum_anims(self, word, to_fade):
pass
##
def get_checkmark(self, word):
checkmark = TexMobject("\\checkmark")
checkmark.highlight(GREEN)
checkmark.scale(1.5)
checkmark.next_to(word, UP+RIGHT, buff = 0)
return checkmark

View file

@ -53,6 +53,9 @@ RIGHT = np.array(( 1., 0., 0.))
LEFT = np.array((-1., 0., 0.))
IN = np.array(( 0., 0.,-1.))
OUT = np.array(( 0., 0., 1.))
X_AXIS = np.array(( 1., 0., 0.))
Y_AXIS = np.array(( 0., 1., 0.))
Z_AXIS = np.array(( 0., 0., 1.))
TOP = SPACE_HEIGHT*UP
BOTTOM = SPACE_HEIGHT*DOWN

View file

@ -24,6 +24,8 @@ from topics.number_line import *
from topics.combinatorics import *
from topics.three_dimensions import *
from topics.three_dimensions import *
# To watch one of these scenes, run the following:
# python extract_scene.py file_name <SceneName> -p
#
@ -59,6 +61,67 @@ class WriteStuff(Scene):
self.play(Write(TextMobject("Stuff").scale(3)))
class Rotation3d(ThreeDScene):
def construct(self):
# STEP 1
# Build two cube in the 3D scene, one for around the origin,
# the other shifted along the vector RIGHT + UP + OUT
cube_origin = Cube(fill_opacity = 0.8, stroke_width = 1.,
side_length = 1., fill_color = WHITE)
# RIGHT side: Red
# UP side: Green
# OUT side: Blue
orientations = [IN, OUT, LEFT, RIGHT, UP, DOWN]
for face, orient in zip(cube_origin.family_members_with_points(), orientations):
if np.array_equal(orient, RIGHT):
face.set_style_data(fill_color = RED)
elif np.array_equal(orient, UP):
face.set_style_data(fill_color = GREEN)
elif np.array_equal(orient, OUT):
face.set_style_data(fill_color = BLUE)
cube_shifted = Cube(fill_opacity = 0.8, stroke_width = 1.,
side_length = 1., fill_color = BLUE)
shift_vec = 2*(RIGHT + UP + OUT)
cube_shifted.shift(shift_vec)
# STEP 2
# Add the cubes in the 3D scene
self.add(cube_origin)
self.add(cube_shifted)
# STEP 3
# Setup the camera position
phi, theta, distance = ThreeDCamera().get_spherical_coords()
angle_factor = 0.9
phi += 2*np.pi/4*angle_factor
theta += 3*2*np.pi/8
self.set_camera_position(phi, theta, distance)
self.wait()
# STEP 4
# Animation
# Animation 1: rotation around the Z-axis with the ORIGIN of the space
# as center of rotation
theta += 2*np.pi
self.move_camera(phi, theta, distance,
run_time = 5)
# Animation 2: shift the space in order of to get the center of the shifted cube
# as the next center of rotation
cube_center = cube_shifted.get_center()
self.move_camera(center_x = cube_center[0],
center_y = cube_center[1],
center_z = cube_center[2],
run_time = 2)
# Animation 3: rotation around the Z-axis with the center of the shifted cube
# as center of rotation
theta += 2*np.pi
self.move_camera(phi, theta, distance,
run_time = 5)
class SpinAroundCube(ThreeDScene):
# Take a look at ThreeDSCene in three_dimensions.py.

View file

@ -296,6 +296,7 @@ class Mobject(Container):
aligned_edge = ORIGIN,
submobject_to_align = None,
index_of_submobject_to_align = None,
coor_mask = np.array([1,1,1]),
):
if isinstance(mobject_or_point, Mobject):
mob = mobject_or_point
@ -315,7 +316,7 @@ class Mobject(Container):
else:
aligner = self
point_to_align = aligner.get_critical_point(aligned_edge - direction)
self.shift(target_point - point_to_align + buff*direction)
self.shift((target_point - point_to_align + buff*direction)*coor_mask)
return self
def align_to(self, mobject_or_point, direction = ORIGIN, alignment_vect = UP):
@ -403,13 +404,14 @@ class Mobject(Container):
submob.scale(1./factor)
return self
def move_to(self, point_or_mobject, aligned_edge = ORIGIN):
def move_to(self, point_or_mobject, aligned_edge = ORIGIN,
coor_mask = np.array([1,1,1])):
if isinstance(point_or_mobject, Mobject):
target = point_or_mobject.get_critical_point(aligned_edge)
else:
target = point_or_mobject
point_to_align = self.get_critical_point(aligned_edge)
self.shift(target - point_to_align)
self.shift((target - point_to_align)*coor_mask)
return self
def replace(self, mobject, dim_to_match = 0, stretch = False):

View file

@ -159,31 +159,52 @@ class SVGMobject(VMobject):
x = float(element.getAttribute('x'))
#Flip y
y = -float(element.getAttribute('y'))
mobject.shift(x*RIGHT+y*UP)
except:
pass
try:
transform = element.getAttribute('transform')
transform = element.getAttribute('transform')
try: # transform matrix
prefix = "matrix("
suffix = ")"
if not transform.startswith(prefix) or not transform.endswith(suffix): raise Exception()
transform = transform[len(prefix):-len(suffix)]
transform = string_to_numbers(transform)
transform = np.array(transform).reshape([3,2])
x += transform[2][0]
y -= transform[2][1]
x = transform[2][0]
y = -transform[2][1]
matrix = np.identity(self.dim)
matrix[:2,:2] = transform[:2,:]
t_matrix = np.transpose(matrix)
matrix[1] *= -1
matrix[:,1] *= -1
for mob in mobject.family_members_with_points():
mob.points = np.dot(mob.points, t_matrix)
mob.points = np.dot(mob.points, matrix)
mobject.shift(x*RIGHT+y*UP)
except:
pass
mobject.shift(x*RIGHT+y*UP)
#TODO, transforms
try: # transform scale
prefix = "scale("
suffix = ")"
if not transform.startswith(prefix) or not transform.endswith(suffix): raise Exception()
transform = transform[len(prefix):-len(suffix)]
scale_x, scale_y = string_to_numbers(transform)
mobject.scale(np.array([scale_x, scale_y, 1]))
except:
pass
try: # transform translate
prefix = "translate("
suffix = ")"
if not transform.startswith(prefix) or not transform.endswith(suffix): raise Exception()
transform = transform[len(prefix):-len(suffix)]
x, y = string_to_numbers(transform)
mobject.shift(x*RIGHT + y*DOWN)
except:
pass
#TODO, ...
def update_ref_to_element(self, defs):
new_refs = dict([

View file

@ -41,6 +41,7 @@ class Scene(Container):
"random_seed" : 0,
"start_at_animation_number" : None,
"end_at_animation_number" : None,
"include_render_quality_in_name" : False, #TODO, nothing uses this right now
}
def __init__(self, **kwargs):
Container.__init__(self, **kwargs) # Perhaps allow passing in a non-empty *mobjects parameter?
@ -55,6 +56,8 @@ class Scene(Container):
self.current_scene_time = 0
if self.name is None:
self.name = self.__class__.__name__
if self.include_render_quality_in_name:
self.name += str(self.camera.pixel_shape[0])
if self.random_seed is not None:
random.seed(self.random_seed)
np.random.seed(self.random_seed)

View file

@ -96,7 +96,6 @@ class Arc(VMobject):
return self
class Circle(Arc):
CONFIG = {
"color" : RED,
@ -137,7 +136,6 @@ class Ellipse(VMobject):
circle = circle.stretch_to_fit_height(self.height)
self.points = circle.points
class AnnularSector(VMobject):
CONFIG = {
"inner_radius" : 1,
@ -187,7 +185,6 @@ class AnnularSector(VMobject):
self.shift(v)
return self
class Sector(AnnularSector):
CONFIG = {
"outer_radius" : 1,

View file

@ -3,10 +3,10 @@ from helpers import *
from mobject import Mobject
from mobject.vectorized_mobject import VGroup, VMobject, VectorizedPoint
from mobject.svg_mobject import SVGMobject
from mobject.tex_mobject import TextMobject, TexMobject
from mobject.tex_mobject import TextMobject, TexMobject, Brace
from animation import Animation
from animation.simple_animations import Rotating, LaggedStart
from animation.simple_animations import Rotating, LaggedStart, AnimationGroup
from animation.transform import ApplyMethod, FadeIn, GrowFromCenter
from topics.geometry import Circle, Line, Rectangle, Square, \

View file

@ -36,15 +36,18 @@ class ThreeDCamera(CameraWithPerspective):
def __init__(self, *args, **kwargs):
Camera.__init__(self, *args, **kwargs)
self.unit_sun_vect = self.sun_vect/np.linalg.norm(self.sun_vect)
## Lives in the phi-theta-distance space
## rotation_mobject lives in the phi-theta-distance space
self.rotation_mobject = VectorizedPoint()
## moving_center lives in the x-y-z space
## It representes the center of rotation
self.moving_center = VectorizedPoint(self.space_center)
self.set_position(self.phi, self.theta, self.distance)
def modified_rgb(self, vmobject, rgb):
if should_shade_in_3d(vmobject):
return self.get_shaded_rgb(rgb, self.get_unit_normal_vect(vmobject))
else:
return color
return rgb
def get_stroke_rgb(self, vmobject):
return self.modified_rgb(vmobject, vmobject.get_stroke_rgb())
@ -128,10 +131,24 @@ class ThreeDCamera(CameraWithPerspective):
np.cos(phi)
])
def set_position(self, phi = None, theta = None, distance = None):
def get_center_of_rotation(self, x = None, y = None, z = None):
curr_x, curr_y, curr_z = self.moving_center.points[0]
if x is None:
x = curr_x
if y is None:
y = curr_y
if z is None:
z = curr_z
return np.array([x, y, z])
def set_position(self, phi = None, theta = None, distance = None,
center_x = None, center_y = None, center_z = None):
point = self.get_spherical_coords(phi, theta, distance)
self.rotation_mobject.move_to(point)
self.phi, self.theta, self.distance = point
center_of_rotation = self.get_center_of_rotation(center_x, center_y, center_z)
self.moving_center.move_to(center_of_rotation)
self.space_center = self.moving_center.points[0]
def get_view_transformation_matrix(self):
return (self.default_distance / self.get_distance()) * np.dot(
@ -142,6 +159,8 @@ class ThreeDCamera(CameraWithPerspective):
def points_to_pixel_coords(self, points):
matrix = self.get_view_transformation_matrix()
new_points = np.dot(points, matrix.T)
self.space_center = self.moving_center.points[0]
return Camera.points_to_pixel_coords(self, new_points)
class ThreeDScene(Scene):
@ -150,8 +169,9 @@ class ThreeDScene(Scene):
"ambient_camera_rotation" : None,
}
def set_camera_position(self, phi = None, theta = None, distance = None):
self.camera.set_position(phi, theta, distance)
def set_camera_position(self, phi = None, theta = None, distance = None,
center_x = None, center_y = None, center_z = None):
self.camera.set_position(phi, theta, distance, center_x, center_y, center_z)
def begin_ambient_camera_rotation(self, rate = 0.01):
self.ambient_camera_rotation = AmbientMovement(
@ -167,8 +187,9 @@ class ThreeDScene(Scene):
self.ambient_camera_rotation = None
def move_camera(
self,
self,
phi = None, theta = None, distance = None,
center_x = None, center_y = None, center_z = None,
added_anims = [],
**kwargs
):
@ -178,10 +199,17 @@ class ThreeDScene(Scene):
target_point,
**kwargs
)
target_center = self.camera.get_center_of_rotation(center_x, center_y, center_z)
movement_center = ApplyMethod(
self.camera.moving_center.move_to,
target_center,
**kwargs
)
is_camera_rotating = self.ambient_camera_rotation in self.continual_animations
if is_camera_rotating:
self.remove(self.ambient_camera_rotation)
self.play(movement, *added_anims)
self.play(movement, movement_center, *added_anims)
target_point = self.camera.get_spherical_coords(phi, theta, distance)
if is_camera_rotating:
self.add(self.ambient_camera_rotation)