mirror of
https://github.com/3b1b/manim.git
synced 2025-09-19 04:41:56 +00:00
Up to group structure description of efvgt
This commit is contained in:
parent
be56ffa687
commit
79435859de
3 changed files with 597 additions and 28 deletions
604
efvgt.py
604
efvgt.py
|
@ -26,6 +26,33 @@ from camera import Camera
|
|||
from mobject.svg_mobject import *
|
||||
from mobject.tex_mobject import *
|
||||
|
||||
def get_composite_rotation_angle_and_axis(angles, axes):
|
||||
matrices = [
|
||||
rotation_matrix(angle = angle, axis = axis)
|
||||
for angle, axis in zip(angles, axes)
|
||||
]
|
||||
result_matrix = reduce(
|
||||
np.dot, reversed(matrices), np.identity(3)
|
||||
)
|
||||
eigenvalues, eigenvectors = np.linalg.eig(result_matrix)
|
||||
axis_index = np.argmin(np.abs(eigenvalues-1))
|
||||
axis = np.round(eigenvectors[axis_index].astype('float'))
|
||||
|
||||
possible_angles = [
|
||||
np.angle(eigenvalues[(axis_index+i)%3])
|
||||
for i in 1, 2
|
||||
]
|
||||
angle_index = np.argmin([
|
||||
np.linalg.norm(
|
||||
rotation_matrix(angle = angle, axis = axis) -\
|
||||
result_matrix
|
||||
)
|
||||
for angle in possible_angles
|
||||
])
|
||||
angle = possible_angles[angle_index]
|
||||
|
||||
return angle, axis
|
||||
|
||||
class ConfettiSpiril(Animation):
|
||||
CONFIG = {
|
||||
"x_start" : 0,
|
||||
|
@ -305,6 +332,7 @@ class SymmetriesOfSquare(ThreeDScene):
|
|||
"fill_color" : BLUE,
|
||||
"fill_opacity" : 0.75,
|
||||
},
|
||||
"dashed_line_config" : {},
|
||||
}
|
||||
def construct(self):
|
||||
self.add_title()
|
||||
|
@ -376,23 +404,13 @@ class SymmetriesOfSquare(ThreeDScene):
|
|||
self.randy = randy
|
||||
|
||||
def add_labels(self):
|
||||
labels = VGroup()
|
||||
dots = VGroup()
|
||||
for tex, vertex in zip("ABCD", self.square.get_anchors()):
|
||||
label = TexMobject(tex)
|
||||
label.next_to(vertex, vertex, SMALL_BUFF)
|
||||
labels.add(label)
|
||||
dot = Dot(vertex, color = WHITE)
|
||||
dots.add(dot)
|
||||
self.square.add(labels, dots)
|
||||
self.square.labels = labels
|
||||
self.square.dots = dots
|
||||
self.add_labels_and_dots(self.square)
|
||||
|
||||
self.play(
|
||||
Write(labels),
|
||||
Write(dots),
|
||||
Write(self.square.labels),
|
||||
Write(self.square.dots),
|
||||
self.randy.change_mode, "happy",
|
||||
self.randy.look_at, labels[0]
|
||||
self.randy.look_at, self.square.labels[0]
|
||||
)
|
||||
self.play(Blink(self.randy))
|
||||
self.play(FadeOut(self.randy))
|
||||
|
@ -546,26 +564,568 @@ class SymmetriesOfSquare(ThreeDScene):
|
|||
color = YELLOW
|
||||
)
|
||||
arc.add_tip()
|
||||
if abs(angle) < np.pi:
|
||||
angle_multiple_range = range(1, 4)
|
||||
else:
|
||||
angle_multiple_range = [2]
|
||||
arcs = VGroup(arc, *[
|
||||
arc.copy().rotate(i*np.pi/2)
|
||||
for i in range(1, 4)
|
||||
for i in angle_multiple_range
|
||||
])
|
||||
arcs.move_to(square[0])
|
||||
|
||||
return arcs
|
||||
|
||||
def get_axis_line(self, square, axis):
|
||||
axis_line = DashedLine(2*axis, -2*axis)
|
||||
axis_line = DashedLine(2*axis, -2*axis, **self.dashed_line_config)
|
||||
axis_line.replace(square, dim_to_match = np.argmax(np.abs(axis)))
|
||||
axis_line.scale_in_place(1.2)
|
||||
return axis_line
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def add_labels_and_dots(self, square):
|
||||
labels = VGroup()
|
||||
dots = VGroup()
|
||||
for tex, vertex in zip("ABCD", square.get_anchors()):
|
||||
label = TexMobject(tex)
|
||||
label.add_background_rectangle()
|
||||
label.next_to(vertex, vertex-square.get_center(), SMALL_BUFF)
|
||||
labels.add(label)
|
||||
dot = Dot(vertex, color = WHITE)
|
||||
dots.add(dot)
|
||||
square.add(labels, dots)
|
||||
square.labels = labels
|
||||
square.dots = dots
|
||||
|
||||
class ManyGroupsAreInfinite(TeacherStudentsScene):
|
||||
def construct(self):
|
||||
self.teacher_says("Many groups are infinite")
|
||||
self.change_student_modes(*["pondering"]*3)
|
||||
self.dither(2)
|
||||
|
||||
class CircleSymmetries(Scene):
|
||||
CONFIG = {
|
||||
"circle_radius" : 2,
|
||||
}
|
||||
def construct(self):
|
||||
self.add_circle_and_title()
|
||||
self.show_range_of_angles()
|
||||
self.associate_rotations_with_points()
|
||||
|
||||
def add_circle_and_title(self):
|
||||
title = TextMobject("Group of rotations")
|
||||
title.to_edge(UP)
|
||||
|
||||
circle = self.get_circle()
|
||||
|
||||
self.play(Write(title), ShowCreation(circle, run_time = 2))
|
||||
self.dither()
|
||||
angles = [
|
||||
np.pi/2, -np.pi/3, 5*np.pi/6,
|
||||
3*np.pi/2 + 0.1
|
||||
]
|
||||
angles.append(-sum(angles))
|
||||
for angle in angles:
|
||||
self.play(Rotate(circle, angle = angle))
|
||||
self.dither()
|
||||
|
||||
self.circle = circle
|
||||
|
||||
def show_range_of_angles(self):
|
||||
self.add_radial_line()
|
||||
arc_circle = self.get_arc_circle()
|
||||
|
||||
theta = TexMobject("\\theta = ")
|
||||
theta_value = DecimalNumber(0.00)
|
||||
theta_value.next_to(theta, RIGHT)
|
||||
theta_group = VGroup(theta, theta_value)
|
||||
theta_group.next_to(arc_circle, UP)
|
||||
def theta_value_update(theta_value, alpha):
|
||||
new_theta_value = DecimalNumber(alpha*2*np.pi)
|
||||
new_theta_value.scale_to_fit_height(theta.get_height())
|
||||
new_theta_value.next_to(theta, RIGHT)
|
||||
Transform(theta_value, new_theta_value).update(1)
|
||||
return new_theta_value
|
||||
|
||||
|
||||
self.play(FadeIn(theta_group))
|
||||
for rate_func in smooth, lambda t : smooth(1-t):
|
||||
self.play(
|
||||
Rotate(self.circle, 2*np.pi-0.001),
|
||||
ShowCreation(arc_circle),
|
||||
UpdateFromAlphaFunc(theta_value, theta_value_update),
|
||||
run_time = 7,
|
||||
rate_func = rate_func
|
||||
)
|
||||
self.dither()
|
||||
self.play(FadeOut(theta_group))
|
||||
self.dither()
|
||||
|
||||
def associate_rotations_with_points(self):
|
||||
zero_dot = Dot(self.circle.point_from_proportion(0))
|
||||
zero_dot.highlight(RED)
|
||||
zero_arrow = Arrow(UP+RIGHT, ORIGIN)
|
||||
zero_arrow.highlight(zero_dot.get_color())
|
||||
zero_arrow.next_to(zero_dot, UP+RIGHT, buff = SMALL_BUFF)
|
||||
|
||||
self.play(
|
||||
ShowCreation(zero_arrow),
|
||||
DrawBorderThenFill(zero_dot)
|
||||
)
|
||||
self.circle.add(zero_dot)
|
||||
self.dither()
|
||||
|
||||
for alpha in 0.2, 0.6, 0.4, 0.8:
|
||||
point = self.circle.point_from_proportion(alpha)
|
||||
dot = Dot(point, color = YELLOW)
|
||||
vect = np.sign(point)
|
||||
arrow = Arrow(vect, ORIGIN)
|
||||
arrow.next_to(dot, vect, buff = SMALL_BUFF)
|
||||
arrow.highlight(dot.get_color())
|
||||
angle = alpha*2*np.pi
|
||||
|
||||
self.play(
|
||||
ShowCreation(arrow),
|
||||
DrawBorderThenFill(dot)
|
||||
)
|
||||
self.play(
|
||||
Rotate(self.circle, angle, run_time = 2),
|
||||
Animation(dot)
|
||||
)
|
||||
self.dither()
|
||||
self.play(
|
||||
Rotate(self.circle, -angle, run_time = 2),
|
||||
FadeOut(dot),
|
||||
FadeOut(arrow),
|
||||
)
|
||||
self.dither()
|
||||
|
||||
####
|
||||
|
||||
def get_circle(self):
|
||||
circle = Circle(color = MAROON_B, radius = self.circle_radius)
|
||||
circle.ticks = VGroup()
|
||||
for alpha in np.arange(0, 1, 1./8):
|
||||
point = circle.point_from_proportion(alpha)
|
||||
tick = Line((1 - 0.05)*point, (1 + 0.05)*point)
|
||||
circle.ticks.add(tick)
|
||||
circle.add(circle.ticks)
|
||||
return circle
|
||||
|
||||
def add_radial_line(self):
|
||||
radius = Line(
|
||||
self.circle.get_center(),
|
||||
self.circle.point_from_proportion(0)
|
||||
)
|
||||
static_radius = radius.copy().highlight(GREY)
|
||||
|
||||
self.play(ShowCreation(radius))
|
||||
self.add(static_radius, radius)
|
||||
self.circle.radius = radius
|
||||
self.circle.static_radius = static_radius
|
||||
self.circle.add(radius)
|
||||
|
||||
def get_arc_circle(self):
|
||||
arc_radius = self.circle_radius/5.0
|
||||
arc_circle = Circle(
|
||||
radius = arc_radius,
|
||||
color = WHITE
|
||||
)
|
||||
return arc_circle
|
||||
|
||||
class GroupOfCubeSymmetries(ThreeDScene):
|
||||
CONFIG = {
|
||||
"cube_opacity" : 0.9,
|
||||
"cube_colors" : [RED, RED, GREEN, GREEN, BLUE, BLUE]
|
||||
}
|
||||
def construct(self):
|
||||
title = TextMobject("Group of cube symmetries")
|
||||
title.to_edge(UP)
|
||||
self.add(title)
|
||||
|
||||
cube = self.get_cube()
|
||||
|
||||
face_centers = np.array([
|
||||
face.get_center() for face in cube[::2]
|
||||
])
|
||||
angle_axis_pairs = []
|
||||
for axis in face_centers:
|
||||
angle_axis_pairs.append((np.pi/2, axis))
|
||||
for i in range(3):
|
||||
ones = np.ones(3)
|
||||
ones[i] = -1
|
||||
axis = np.dot(ones, face_centers)
|
||||
angle_axis_pairs.append((2*np.pi/3, axis))
|
||||
|
||||
for angle, axis in angle_axis_pairs:
|
||||
self.play(Rotate(
|
||||
cube, angle = angle, axis = axis,
|
||||
run_time = 2
|
||||
))
|
||||
self.dither()
|
||||
|
||||
def get_cube(self):
|
||||
cube = Cube(fill_opacity = self.cube_opacity)
|
||||
cube.gradient_highlight(*self.cube_colors)
|
||||
pose_matrix = self.get_pose_matrix()
|
||||
cube.apply_function(
|
||||
lambda p : np.dot(p, pose_matrix.T),
|
||||
maintain_smoothness = False
|
||||
)
|
||||
return cube
|
||||
|
||||
def get_pose_matrix(self):
|
||||
return np.dot(
|
||||
rotation_matrix(np.pi/8, UP),
|
||||
rotation_matrix(np.pi/24, RIGHT)
|
||||
)
|
||||
|
||||
class HowDoSymmetriesPlayWithEachOther(TeacherStudentsScene):
|
||||
def construct(self):
|
||||
self.teacher_says(
|
||||
"How do symmetries \\\\ play with each other?",
|
||||
target_mode = "hesitant",
|
||||
)
|
||||
self.change_student_modes("pondering", "maybe", "confused")
|
||||
self.dither(2)
|
||||
|
||||
class AddSquareSymmetries(SymmetriesOfSquare):
|
||||
def construct(self):
|
||||
square = Square(**self.square_config)
|
||||
square.flip(RIGHT)
|
||||
square.shift(DOWN)
|
||||
self.add_labels_and_dots(square)
|
||||
alt_square = square.copy()
|
||||
equals = TexMobject("=")
|
||||
equals.move_to(square)
|
||||
|
||||
equation_square = Square(**self.square_config)
|
||||
equation = VGroup(
|
||||
equation_square, TexMobject("+"),
|
||||
equation_square.copy(), TexMobject("="),
|
||||
equation_square.copy(),
|
||||
)
|
||||
equation[0].add(self.get_rotation_arcs(
|
||||
equation[0], np.pi/2,
|
||||
))
|
||||
equation[2].add(self.get_axis_line(equation[4], UP))
|
||||
equation[4].add(self.get_axis_line(equation[4], UP+RIGHT))
|
||||
for mob in equation[::2]:
|
||||
mob.scale(0.5)
|
||||
equation.arrange_submobjects(RIGHT)
|
||||
equation.to_edge(UP)
|
||||
|
||||
arcs = self.get_rotation_arcs(square, np.pi/2)
|
||||
|
||||
self.add(square)
|
||||
self.play(FadeIn(arcs))
|
||||
self.rotate_square(
|
||||
square = square, angle = np.pi/2,
|
||||
added_anims = map(FadeIn, equation[:2])
|
||||
)
|
||||
self.dither()
|
||||
self.play(FadeOut(arcs))
|
||||
self.flip_square(
|
||||
square = square, axis = UP,
|
||||
added_anims = map(FadeIn, equation[2:4])
|
||||
)
|
||||
self.dither()
|
||||
alt_square.next_to(equals, RIGHT, buff = LARGE_BUFF)
|
||||
alt_square.save_state()
|
||||
alt_square.move_to(square)
|
||||
alt_square.set_fill(opacity = 0)
|
||||
self.play(
|
||||
square.next_to, equals, LEFT, LARGE_BUFF,
|
||||
alt_square.restore,
|
||||
Write(equals)
|
||||
)
|
||||
self.flip_square(
|
||||
square = alt_square, axis = UP+RIGHT,
|
||||
added_anims = map(FadeIn, equation[4:]),
|
||||
)
|
||||
self.dither(2)
|
||||
|
||||
## Reiterate composition
|
||||
self.rotate_square(square = square, angle = np.pi/2)
|
||||
self.flip_square(square = square, axis = UP)
|
||||
self.dither()
|
||||
self.flip_square(square = alt_square, axis = UP+RIGHT)
|
||||
self.dither()
|
||||
|
||||
class AddCircleSymmetries(CircleSymmetries):
|
||||
def construct(self):
|
||||
circle = self.circle = self.get_circle()
|
||||
arc_circle = self.get_arc_circle()
|
||||
angles = [3*np.pi/2, 2*np.pi/3, np.pi/6]
|
||||
arcs = [
|
||||
arc_circle.copy().scale(scalar)
|
||||
for scalar in [1, 1.2, 1.4]
|
||||
]
|
||||
|
||||
equation = TexMobject(
|
||||
"270^\\circ", "+", "120^\\circ", "=", "30^\\circ",
|
||||
)
|
||||
equation.to_edge(UP)
|
||||
|
||||
colors = [BLUE, YELLOW, GREEN]
|
||||
for color, arc, term in zip(colors, arcs, equation[::2]):
|
||||
arc.highlight(color)
|
||||
term.highlight(color)
|
||||
|
||||
self.play(FadeIn(circle))
|
||||
self.add_radial_line()
|
||||
alt_radius = circle.radius.copy()
|
||||
alt_radius.highlight(GREY)
|
||||
alt_circle = circle.copy()
|
||||
equals = TexMobject("=")
|
||||
equals.move_to(circle)
|
||||
|
||||
def rotate(circle, angle, arc, terms):
|
||||
self.play(
|
||||
Rotate(circle, angle, in_place = True),
|
||||
ShowCreation(
|
||||
arc,
|
||||
rate_func = lambda t : (angle/(2*np.pi))*smooth(t)
|
||||
),
|
||||
Write(VGroup(*terms)),
|
||||
run_time = 2,
|
||||
)
|
||||
|
||||
rotate(circle, angles[0], arcs[0], equation[:2])
|
||||
self.dither()
|
||||
circle.add(alt_radius)
|
||||
rotate(circle, angles[1], arcs[1], equation[2:4])
|
||||
self.play(FadeOut(alt_radius))
|
||||
circle.remove(alt_radius)
|
||||
self.dither()
|
||||
|
||||
circle.add(circle.static_radius)
|
||||
circle.add(*arcs[:2])
|
||||
|
||||
alt_static_radius = circle.static_radius.copy()
|
||||
alt_circle.add(alt_static_radius)
|
||||
alt_circle.next_to(equals, RIGHT, buff = LARGE_BUFF)
|
||||
alt_circle.save_state()
|
||||
alt_circle.move_to(circle)
|
||||
alt_circle.set_stroke(width = 0)
|
||||
self.play(
|
||||
circle.next_to, equals, LEFT, LARGE_BUFF,
|
||||
alt_circle.restore,
|
||||
Write(equals)
|
||||
)
|
||||
arcs[2].shift(alt_circle.get_center())
|
||||
alt_circle.remove(alt_static_radius)
|
||||
self.dither()
|
||||
rotate(alt_circle, angles[2], arcs[2], equation[4:])
|
||||
self.dither()
|
||||
self.play(
|
||||
Rotate(arcs[1], angles[0], about_point = circle.get_center())
|
||||
)
|
||||
self.dither(2)
|
||||
for term, arc in zip(equation[::2], arcs):
|
||||
self.play(*[
|
||||
ApplyMethod(mob.scale_in_place, 1.2, rate_func = there_and_back)
|
||||
for mob in term, arc
|
||||
])
|
||||
self.dither()
|
||||
|
||||
class AddCubeSymmetries(GroupOfCubeSymmetries):
|
||||
CONFIG = {
|
||||
"angle_axis_pairs" : [
|
||||
(np.pi/2, RIGHT),
|
||||
(np.pi/2, UP)
|
||||
],
|
||||
"cube_opacity" : 0.5,
|
||||
"cube_colors" : [BLUE],
|
||||
}
|
||||
def construct(self):
|
||||
angle_axis_pairs = list(self.angle_axis_pairs)
|
||||
angle_axis_pairs.append(
|
||||
self.get_composition_angle_and_axis()
|
||||
)
|
||||
self.pose_matrix = self.get_pose_matrix()
|
||||
cube = self.get_cube()
|
||||
|
||||
|
||||
equation = cube1, plus, cube2, equals, cube3 = VGroup(
|
||||
cube, TexMobject("+"),
|
||||
cube.copy(), TexMobject("="),
|
||||
cube.copy()
|
||||
)
|
||||
equation.arrange_submobjects(RIGHT, buff = MED_LARGE_BUFF)
|
||||
equation.center()
|
||||
|
||||
self.add(cube1)
|
||||
self.rotate_cube(cube1, *angle_axis_pairs[0])
|
||||
cube_copy = cube1.copy()
|
||||
cube_copy.set_fill(opacity = 0)
|
||||
self.play(
|
||||
cube_copy.move_to, cube2,
|
||||
cube_copy.set_fill, None, self.cube_opacity,
|
||||
Write(plus)
|
||||
)
|
||||
self.rotate_cube(cube_copy, *angle_axis_pairs[1])
|
||||
self.play(Write(equals))
|
||||
self.play(DrawBorderThenFill(cube3, run_time = 1))
|
||||
self.rotate_cube(cube3, *angle_axis_pairs[2])
|
||||
self.dither(2)
|
||||
|
||||
times = TexMobject("\\times")
|
||||
times.scale(1.5)
|
||||
times.move_to(plus)
|
||||
times.highlight(RED)
|
||||
self.dither()
|
||||
self.play(ReplacementTransform(plus, times))
|
||||
self.play(Indicate(times))
|
||||
self.dither()
|
||||
for cube, (angle, axis) in zip([cube1, cube_copy, cube3], angle_axis_pairs):
|
||||
self.rotate_cube(cube, angle, axis, add_arrows = False)
|
||||
self.dither()
|
||||
|
||||
# def get_pose_matrix(self):
|
||||
# return np.identity(3)
|
||||
|
||||
def rotate_cube(self, cube, angle, axis, add_arrows = True):
|
||||
axis = np.dot(axis, self.pose_matrix.T)
|
||||
anims = []
|
||||
if add_arrows:
|
||||
arrows = VGroup(*[
|
||||
Arc(
|
||||
start_angle = np.pi/12+a, angle = 5*np.pi/6,
|
||||
color = YELLOW
|
||||
).add_tip()
|
||||
for a in 0, np.pi
|
||||
])
|
||||
arrows.scale_to_fit_height(1.5*cube.get_height())
|
||||
z_to_axis = z_to_vector(axis)
|
||||
arrows.apply_function(
|
||||
lambda p : np.dot(p, z_to_axis.T),
|
||||
maintain_smoothness = False
|
||||
)
|
||||
arrows.move_to(cube)
|
||||
arrows.shift(-axis*cube.get_height()/2/np.linalg.norm(axis))
|
||||
anims += map(ShowCreation, arrows)
|
||||
anims.append(
|
||||
Rotate(cube, axis = axis, angle = angle, in_place = True)
|
||||
)
|
||||
self.play(*anims, run_time = 1.5)
|
||||
self.add(cube)
|
||||
|
||||
def get_composition_angle_and_axis(self):
|
||||
return get_composite_rotation_angle_and_axis(
|
||||
*zip(*self.angle_axis_pairs)
|
||||
)
|
||||
|
||||
class DihedralGroupStructure(SymmetriesOfSquare):
|
||||
CONFIG = {
|
||||
"dashed_line_config" : {
|
||||
"dashed_segment_length" : 0.1
|
||||
},
|
||||
"filed_sum_scale_factor" : 0.45,
|
||||
"num_rows" : 5,
|
||||
}
|
||||
def construct(self):
|
||||
angle_axis_pairs = [
|
||||
(np.pi/2, OUT),
|
||||
(np.pi, OUT),
|
||||
(-np.pi/2, OUT),
|
||||
# (np.pi, RIGHT),
|
||||
# (np.pi, UP+RIGHT),
|
||||
(np.pi, UP),
|
||||
(np.pi, UP+LEFT),
|
||||
]
|
||||
pair_pairs = list(it.combinations(angle_axis_pairs, 2))
|
||||
random.shuffle(pair_pairs)
|
||||
for pair_pair in pair_pairs[:4]:
|
||||
sum_expression = self.demonstrate_sum(pair_pair)
|
||||
self.file_away_sum(sum_expression)
|
||||
for pair_pair in pair_pairs[4:]:
|
||||
should_skip_animstions = self.skip_animations
|
||||
self.skip_animations = True
|
||||
sum_expression = self.demonstrate_sum(pair_pair)
|
||||
self.file_away_sum(sum_expression)
|
||||
self.skip_animations = should_skip_animstions
|
||||
self.play(FadeIn(sum_expression))
|
||||
self.dither(3)
|
||||
|
||||
|
||||
def demonstrate_sum(self, angle_axis_pairs):
|
||||
angle_axis_pairs = list(angle_axis_pairs) + [
|
||||
get_composite_rotation_angle_and_axis(
|
||||
*zip(*angle_axis_pairs)
|
||||
)
|
||||
]
|
||||
|
||||
prototype_square = Square(**self.square_config)
|
||||
prototype_square.flip(RIGHT)
|
||||
self.add_labels_and_dots(prototype_square)
|
||||
prototype_square.scale(0.7)
|
||||
expression = s1, plus, s2, equals, s3 = VGroup(
|
||||
prototype_square, TexMobject("+"),
|
||||
prototype_square.copy(), TexMobject("="),
|
||||
prototype_square.copy()
|
||||
)
|
||||
|
||||
final_expression = VGroup()
|
||||
for square, (angle, axis) in zip([s1, s2, s3], angle_axis_pairs):
|
||||
if np.argmax(np.abs(axis)) == 2: ##Axis is in z direction
|
||||
square.action_illustration = self.get_rotation_arcs(
|
||||
square, angle
|
||||
)
|
||||
else:
|
||||
square.action_illustration = self.get_axis_line(
|
||||
square, axis
|
||||
)
|
||||
square.add(square.action_illustration)
|
||||
final_expression.add(square.action_illustration)
|
||||
square.rotation_kwargs = {
|
||||
"square" : square,
|
||||
"angle" : angle,
|
||||
"axis" : axis,
|
||||
}
|
||||
expression.arrange_submobjects()
|
||||
expression.to_edge(RIGHT)
|
||||
for square in s1, s2, s3:
|
||||
square.remove(square.action_illustration)
|
||||
|
||||
self.play(FadeIn(s1))
|
||||
self.play(*map(ShowCreation, s1.action_illustration))
|
||||
self.rotate_square(**s1.rotation_kwargs)
|
||||
self.play(
|
||||
FadeIn(s2),
|
||||
Write(plus)
|
||||
)
|
||||
self.play(*map(ShowCreation, s2.action_illustration))
|
||||
self.rotate_square(**s2.rotation_kwargs)
|
||||
self.play(
|
||||
Write(equals),
|
||||
FadeIn(s3)
|
||||
)
|
||||
self.play(*map(ShowCreation, s3.action_illustration))
|
||||
self.rotate_square(**s3.rotation_kwargs)
|
||||
self.dither()
|
||||
final_expression.add(*expression)
|
||||
|
||||
return final_expression
|
||||
|
||||
def file_away_sum(self, sum_expression):
|
||||
if not hasattr(self, "num_sum_expressions"):
|
||||
self.num_sum_expressions = 0
|
||||
target = sum_expression.copy()
|
||||
target.scale(self.filed_sum_scale_factor)
|
||||
y_index = self.num_sum_expressions%self.num_rows
|
||||
y_prop = float(y_index)/(self.num_rows-1)
|
||||
y = interpolate(SPACE_HEIGHT-LARGE_BUFF, -SPACE_HEIGHT+LARGE_BUFF, y_prop)
|
||||
x_index = self.num_sum_expressions//self.num_rows
|
||||
x_spacing = 2*SPACE_WIDTH/3
|
||||
x = (x_index-1)*x_spacing
|
||||
|
||||
target.move_to(x*RIGHT + y*UP)
|
||||
|
||||
self.play(Transform(sum_expression, target))
|
||||
self.dither()
|
||||
|
||||
self.num_sum_expressions += 1
|
||||
self.last_sum_expression = sum_expression
|
||||
|
||||
|
||||
|
||||
|
|
10
helpers.py
10
helpers.py
|
@ -325,16 +325,14 @@ def path_along_arc(arc_angle, axis = OUT):
|
|||
"""
|
||||
if abs(arc_angle) < STRAIGHT_PATH_THRESHOLD:
|
||||
return straight_path
|
||||
unit_axis = axis/np.linalg.norm(axis)
|
||||
def path(start_points, end_points, alpha):
|
||||
vects = end_points - start_points
|
||||
centers = start_points + 0.5*vects
|
||||
if arc_angle != np.pi:
|
||||
for i, b in [(0, -1), (1, 1)]:
|
||||
centers[:,i] += 0.5*b*vects[:,1-i]/np.tan(arc_angle/2)
|
||||
return centers + np.dot(
|
||||
start_points-centers,
|
||||
np.transpose(rotation_matrix(alpha*arc_angle, axis))
|
||||
)
|
||||
centers += np.cross(unit_axis, vects/2.0)/np.tan(arc_angle/2)
|
||||
rot_matrix = rotation_matrix(alpha*arc_angle, unit_axis)
|
||||
return centers + np.dot(start_points-centers, rot_matrix.T)
|
||||
return path
|
||||
|
||||
def clockwise_path():
|
||||
|
|
|
@ -10,6 +10,7 @@ class ThreeDCamera(Camera):
|
|||
CONFIG = {
|
||||
"sun_vect" : 3*UP+LEFT,
|
||||
"shading_factor" : 0.5,
|
||||
"camera_distance" : 20,
|
||||
}
|
||||
def __init__(self, *args, **kwargs):
|
||||
Camera.__init__(self, *args, **kwargs)
|
||||
|
@ -62,6 +63,16 @@ class ThreeDCamera(Camera):
|
|||
)
|
||||
|
||||
|
||||
def points_to_pixel_coords(self, points):
|
||||
distance_ratios = (self.camera_distance + points[:,2])/self.camera_distance
|
||||
scale_factors = interpolate(0, 1, distance_ratios)
|
||||
adjusted_points = np.array(points)
|
||||
for i in 0, 1:
|
||||
adjusted_points[:,i] *= scale_factors
|
||||
|
||||
return Camera.points_to_pixel_coords(self, adjusted_points)
|
||||
|
||||
|
||||
class ThreeDScene(Scene):
|
||||
CONFIG = {
|
||||
"camera_class" : ThreeDCamera,
|
||||
|
|
Loading…
Add table
Reference in a new issue