Starting multilayered scenes

This commit is contained in:
Grant Sanderson 2016-03-17 23:54:42 -07:00
parent b7e53a0e8b
commit 6bb3a2c181
6 changed files with 929 additions and 373 deletions

View file

@ -144,17 +144,20 @@ class BrachistochroneWordSliding(Scene):
class PathSlidingScene(Scene):
CONFIG = {
"gravity" : 3,
"delta_t" : 0.05
"delta_t" : 0.05,
"dither_and_add" : True,
"show_time" : True,
}
def slide(self, mobject, path, roll = False):
def slide(self, mobject, path, roll = False, ceiling = None):
points = path.points
time_slices = self.get_time_slices(points)
time_slices = self.get_time_slices(points, ceiling = ceiling)
curr_t = 0
last_index = 0
curr_index = 1
self.t_equals = TexMobject("t = ")
self.t_equals.shift(3.5*UP+4*RIGHT)
self.add(self.t_equals)
if self.show_time:
self.t_equals = TexMobject("t = ")
self.t_equals.shift(3.5*UP+4*RIGHT)
self.add(self.t_equals)
while curr_index < len(points):
self.slider = mobject.copy()
self.adjust_mobject_to_index(
@ -166,7 +169,8 @@ class PathSlidingScene(Scene):
)
self.roll(mobject, distance)
self.add(self.slider)
self.write_time(curr_t)
if self.show_time:
self.write_time(curr_t)
self.dither(self.frame_duration)
self.remove(self.slider)
curr_t += self.delta_t
@ -175,17 +179,22 @@ class PathSlidingScene(Scene):
curr_index += 1
if curr_index == len(points):
break
self.add(self.slider)
self.dither()
if self.dither_and_add:
self.add(self.slider)
self.dither()
else:
return self.slider
def get_time_slices(self, points):
def get_time_slices(self, points, ceiling = None):
dt_list = np.zeros(len(points))
ds_list = np.apply_along_axis(
np.linalg.norm,
1,
points[1:]-points[:-1]
)
delta_y_list = np.abs(points[0, 1] - points[1:,1])
if ceiling is None:
ceiling = points[0, 1]
delta_y_list = np.abs(ceiling - points[1:,1])
delta_y_list += 0.001*(delta_y_list == 0)
v_list = self.gravity*np.sqrt(delta_y_list)
dt_list[1:] = ds_list / v_list
@ -257,7 +266,7 @@ class TryManyPaths(PathSlidingScene):
self.slide(randy, curr_path)
self.clear()
self.add(point_a, point_b, A, B, curr_path)
text = TextMobject("Which path is fastest?")
text = self.get_text()
text.to_edge(UP)
self.play(ShimmerIn(text))
for path in paths:
@ -267,6 +276,9 @@ class TryManyPaths(PathSlidingScene):
run_time = 3
))
def get_text(self):
return TextMobject("Which path is fastest?")
def get_paths(self):
sharp_corner = Mobject(
Line(3*UP+LEFT, LEFT),
@ -298,7 +310,7 @@ class TryManyPaths(PathSlidingScene):
def align_paths(self, paths, target_path):
start = target_path.points[0]
end = target_path.point[-1]
end = target_path.points[-1]
for path in paths:
path.position_endpoints_on(start, end)
@ -450,6 +462,140 @@ class MinimalPotentialEnergy(Scene):
class WhatGovernsSpeed(PathSlidingScene):
CONFIG = {
"num_pieces" : 6,
"dither_and_add" : False,
"show_time" : False,
}
def construct(self):
randy = Randolph()
randy.scale(RANDY_SCALE_VAL)
randy.shift(-randy.get_bottom())
self.add_cycloid_end_points()
points = self.cycloid.points
ceiling = points[0, 1]
n = len(points)
broken_points = [
points[k*n/self.num_pieces:(k+1)*n/self.num_pieces]
for k in range(self.num_pieces)
]
words = TextMobject("""
What determines the speed\\\\
at each point?
""")
words.to_edge(UP)
self.add(self.cycloid)
sliders, vectors = [], []
for points in broken_points:
path = Mobject().add_points(points)
vect = points[-1] - points[-2]
magnitude = np.sqrt(ceiling - points[-1, 1])
vect = magnitude*vect/np.linalg.norm(vect)
slider = self.slide(randy, path, ceiling = ceiling)
vector = Vector(slider.get_center(), vect)
self.add(slider, vector)
sliders.append(slider)
vectors.append(vector)
self.dither()
self.play(ShimmerIn(words))
self.dither(3)
slider = sliders.pop(1)
vector = vectors.pop(1)
faders = sliders+vectors+[words]
self.play(*map(FadeOut, faders))
self.remove(*faders)
self.show_geometry(slider, vector)
def show_geometry(self, slider, vector):
point_a = self.point_a.get_center()
horiz_line = Line(point_a, point_a + 6*RIGHT)
ceil_point = point_a
ceil_point[0] = slider.get_center()[0]
vert_brace = Brace(
Mobject(Point(ceil_point), Point(slider.get_center())),
RIGHT,
buff = 0.5
)
vect_brace = Brace(slider)
vect_brace.stretch_to_fit_width(vector.get_length())
vect_brace.rotate(np.arctan(vector.get_slope()))
vect_brace.center().shift(vector.get_center())
nudge = 0.2*(DOWN+LEFT)
vect_brace.shift(nudge)
y_mob = TexMobject("y")
y_mob.next_to(vert_brace)
sqrt_y = TexMobject("k\\sqrt{y}")
sqrt_y.scale(0.5)
sqrt_y.shift(vect_brace.get_center())
sqrt_y.shift(3*nudge)
self.play(ShowCreation(horiz_line))
self.play(
GrowFromCenter(vert_brace),
ShimmerIn(y_mob)
)
self.play(
GrowFromCenter(vect_brace),
ShimmerIn(sqrt_y)
)
self.dither(3)
self.solve_energy()
def solve_energy(self):
loss_in_potential = TextMobject("Loss in potential: ")
loss_in_potential.shift(2*UP)
potential = TexMobject("m g y".split())
potential.next_to(loss_in_potential)
kinetic = TexMobject([
"\\dfrac{1}{2}","m","v","^2","="
])
kinetic.next_to(potential, LEFT)
nudge = 0.1*UP
kinetic.shift(nudge)
loss_in_potential.shift(nudge)
ms = Mobject(kinetic.split()[1], potential.split()[0])
two = TexMobject("2")
two.shift(ms.split()[1].get_center())
half = kinetic.split()[0]
sqrt = TexMobject("\\sqrt{\\phantom{2mg}}")
sqrt.shift(potential.get_center())
nudge = 0.2*LEFT
sqrt.shift(nudge)
squared = kinetic.split()[3]
equals = kinetic.split()[-1]
new_eq = equals.copy().next_to(kinetic.split()[2])
self.play(
Transform(
Point(loss_in_potential.get_left()),
loss_in_potential
),
*map(GrowFromCenter, potential.split())
)
self.dither(2)
self.play(
FadeOut(loss_in_potential),
GrowFromCenter(kinetic)
)
self.dither(2)
self.play(ApplyMethod(ms.shift, 5*UP))
self.dither()
self.play(Transform(
half, two,
path_func = counterclockwise_path()
))
self.dither()
self.play(
Transform(
squared, sqrt,
path_func = clockwise_path()
),
Transform(equals, new_eq)
)
self.dither(2)

View file

@ -0,0 +1,344 @@
import numpy as np
import itertools as it
from helpers import *
from mobject.tex_mobject import TexMobject, TextMobject, Brace
from mobject import Mobject, Mobject1D
from mobject.image_mobject import \
ImageMobject, MobjectFromPixelArray
from topics.three_dimensions import Stars
from animation import Animation
from animation.transform import *
from animation.simple_animations import *
from animation.playground import TurnInsideOut, Vibrate
from topics.geometry import *
from topics.characters import Randolph, Mathematician
from topics.functions import *
from topics.number_line import *
from mobject.region import Region, region_from_polygon_vertices
from scene import Scene
from scene.zoomed_scene import ZoomedScene
from brachistochrone.curves import Cycloid
class MultilayeredGlass(PhotonScene, ZoomedScene):
CONFIG = {
"num_discrete_layers" : 5,
"num_variables" : 3,
"top_color" : BLUE_E,
"bottom_color" : BLUE_A,
"zoomed_canvas_space_shape" : (5, 5),
"square_color" : GREEN_B,
}
def construct(self):
self.cycloid = Cycloid(end_theta = np.pi)
self.cycloid.highlight(YELLOW)
self.top = self.cycloid.get_top()[1]
self.bottom = self.cycloid.get_bottom()[1]-1
self.generate_layers()
self.generate_discrete_path()
photon_run = self.photon_run_along_path(
self.discrete_path,
run_time = 1,
rate_func = rush_into
)
self.continuous_to_smooth()
self.add(*self.layers)
self.show_layer_variables()
self.play(photon_run)
self.play(ShowCreation(self.discrete_path))
self.isolate_bend_points()
self.clear()
self.add(*self.layers)
self.show_main_equation()
self.ask_continuous_question()
def continuous_to_smooth(self):
self.add(*self.layers)
continuous = self.get_continuous_background()
self.add(continuous)
self.dither()
self.play(ShowCreation(
continuous,
rate_func = lambda t : smooth(1-t)
))
self.remove(continuous)
self.dither()
def get_continuous_background(self):
glass = FilledRectangle(
height = self.top-self.bottom,
width = 2*SPACE_WIDTH,
)
glass.sort_points(lambda p : -p[1])
glass.shift((self.top-glass.get_top()[1])*UP)
glass.gradient_highlight(self.top_color, self.bottom_color)
return glass
def generate_layer_info(self):
self.layer_thickness = float(self.top-self.bottom)/self.num_discrete_layers
self.layer_tops = np.arange(
self.top, self.bottom, -self.layer_thickness
)
top_rgb, bottom_rgb = [
np.array(Color(color).get_rgb())
for color in self.top_color, self.bottom_color
]
epsilon = 1./(self.num_discrete_layers-1)
self.layer_colors = [
Color(rgb = interpolate(top_rgb, bottom_rgb, alpha))
for alpha in np.arange(0, 1+epsilon, epsilon)
]
def generate_layers(self):
self.generate_layer_info()
def create_region(top, color):
return Region(
lambda x, y : (y < top) & (y > top-self.layer_thickness),
color = color
)
self.layers = [
create_region(top, color)
for top, color in zip(self.layer_tops, self.layer_colors)
]
def generate_discrete_path(self):
points = self.cycloid.points
tops = list(self.layer_tops)
tops.append(tops[-1]-self.layer_thickness)
indices = [
np.argmin(np.abs(points[:, 1]-top))
for top in tops
]
self.bend_points = points[indices[1:-1]]
self.path_angles = []
self.discrete_path = Mobject1D(
color = YELLOW,
density = 3*DEFAULT_POINT_DENSITY_1D
)
for start, end in zip(indices, indices[1:]):
start_point, end_point = points[start], points[end]
self.discrete_path.add_line(
start_point, end_point
)
self.path_angles.append(
angle_of_vector(start_point-end_point)-np.pi/2
)
self.discrete_path.add_line(
points[end], SPACE_WIDTH*RIGHT+(self.layer_tops[-1]-1)*UP
)
def show_layer_variables(self):
layer_top_pairs = zip(
self.layer_tops[:self.num_variables],
self.layer_tops[1:]
)
v_equations = []
start_ys = []
end_ys = []
center_paths = []
braces = []
for (top1, top2), x in zip(layer_top_pairs, it.count(1)):
eq_mob = TexMobject(
["v_%d"%x, "=", "\sqrt{\phantom{y_1}}"],
size = "\\Large"
)
midpoint = UP*(top1+top2)/2
eq_mob.shift(midpoint)
v_eq = eq_mob.split()
center_paths.append(Line(
midpoint+SPACE_WIDTH*LEFT,
midpoint+SPACE_WIDTH*RIGHT
))
brace_endpoints = Mobject(
Point(self.top*UP+x*RIGHT),
Point(top2*UP+x*RIGHT)
)
brace = Brace(brace_endpoints, RIGHT)
start_y = TexMobject("y_%d"%x, size = "\\Large")
end_y = start_y.copy()
start_y.next_to(brace, RIGHT)
end_y.shift(v_eq[-1].get_center())
end_y.shift(0.2*RIGHT)
v_equations.append(v_eq)
start_ys.append(start_y)
end_ys.append(end_y)
braces.append(brace)
for v_eq, path, time in zip(v_equations, center_paths, [2, 1, 0.5]):
photon_run = self.photon_run_along_path(
path,
rate_func = None
)
self.play(
ShimmerIn(v_eq[0]),
photon_run,
run_time = time
)
self.dither()
for start_y, brace in zip(start_ys, braces):
self.add(start_y)
self.play(GrowFromCenter(brace))
self.dither()
quads = zip(v_equations, start_ys, end_ys, braces)
self.equations = []
for v_eq, start_y, end_y, brace in quads:
self.remove(brace)
self.play(
ShowCreation(v_eq[1]),
ShowCreation(v_eq[2]),
Transform(start_y, end_y)
)
v_eq.append(start_y)
self.equations.append(Mobject(*v_eq))
def isolate_bend_points(self):
arc_radius = 0.1
self.activate_zooming()
little_square = self.get_zoomed_camera_mobject()
for index in range(3):
bend_point = self.bend_points[index]
line = Line(
bend_point+DOWN,
bend_point+UP,
color = WHITE,
density = self.zoom_factor*DEFAULT_POINT_DENSITY_1D
)
angle_arcs = []
for i, rotation in [(index, np.pi/2), (index+1, -np.pi/2)]:
arc = Arc(angle = self.path_angles[i])
arc.scale(arc_radius)
arc.rotate(rotation)
arc.shift(bend_point)
angle_arcs.append(arc)
thetas = []
for i in [index+1, index+2]:
theta = TexMobject("\\theta_%d"%i)
theta.scale(0.5/self.zoom_factor)
vert = UP if i == index+1 else DOWN
horiz = rotate_vector(vert, np.pi/2)
theta.next_to(
Point(bend_point),
horiz,
buff = 0.01
)
theta.shift(1.5*arc_radius*vert)
thetas.append(theta)
figure_marks = [line] + angle_arcs + thetas
self.play(ApplyMethod(
little_square.shift,
bend_point - little_square.get_center(),
run_time = 2
))
self.play(*map(ShowCreation, figure_marks))
self.dither()
equation_frame = little_square.copy()
equation_frame.scale(0.5)
equation_frame.shift(
little_square.get_corner(UP+RIGHT) - \
equation_frame.get_corner(UP+RIGHT)
)
equation_frame.scale_in_place(0.9)
self.show_snells(index+1, equation_frame)
self.remove(*figure_marks)
self.disactivate_zooming()
def show_snells(self, index, frame):
left_text, right_text = [
"\\dfrac{\\sin(\\theta_%d)}{\\phantom{\\sqrt{y_1}}}"%x
for x in index, index+1
]
left, equals, right = TexMobject(
[left_text, "=", right_text]
).split()
vs = []
sqrt_ys = []
for x, numerator in [(index, left), (index+1, right)]:
v, sqrt_y = [
TexMobject(
text, size = "\\Large"
).next_to(numerator, DOWN)
for text in "v_%d"%x, "\\sqrt{y_%d}"%x
]
vs.append(v)
sqrt_ys.append(sqrt_y)
start, end = [
Mobject(
left.copy(), mobs[0], equals.copy(), right.copy(), mobs[1]
).replace(frame)
for mobs in vs, sqrt_ys
]
self.add(start)
self.dither(2)
self.play(Transform(
start, end,
path_func = counterclockwise_path()
))
self.dither(2)
self.remove(start, end)
def show_main_equation(self):
self.equation = TexMobject("""
\\dfrac{\\sin(\\theta)}{\\sqrt{y}} =
\\text{constant}
""")
self.equation.shift(LEFT)
self.equation.shift(
(self.layer_tops[0]-self.equation.get_top())*UP
)
self.add(self.equation)
self.dither()
def ask_continuous_question(self):
continuous = self.get_continuous_background()
line = Line(
UP, DOWN,
density = self.zoom_factor*DEFAULT_POINT_DENSITY_1D
)
theta = TexMobject("\\theta")
theta.scale(0.5/self.zoom_factor)
self.play(
ShowCreation(continuous),
Animation(self.equation)
)
self.remove(*self.layers)
self.play(ShowCreation(self.cycloid))
self.activate_zooming()
little_square = self.get_zoomed_camera_mobject()
self.add(line)
indices = np.arange(
0, self.cycloid.get_num_points()-1, 10
)
for index in indices:
point = self.cycloid.points[index]
next_point = self.cycloid.points[index+1]
angle = angle_of_vector(point - next_point)
for mob in little_square, line:
mob.shift(point - mob.get_center())
arc = Arc(angle-np.pi/2, start_angle = np.pi/2)
arc.scale(0.1)
arc.shift(point)
self.add(arc)
if angle > np.pi/2 + np.pi/6:
vect_angle = interpolate(np.pi/2, angle, 0.5)
vect = rotate_vector(RIGHT, vect_angle)
theta.center()
theta.shift(point)
theta.shift(0.15*vect)
self.add(theta)
self.dither(self.frame_duration)
self.remove(arc)

View file

@ -21,7 +21,9 @@ from mobject.region import Region, region_from_polygon_vertices
from scene import Scene
from scene.zoomed_scene import ZoomedScene
from brachistochrone.curves import Cycloid
from brachistochrone.curves import \
Cycloid, PathSlidingScene, RANDY_SCALE_VAL, TryManyPaths
class Lens(Arc):
CONFIG = {
@ -353,325 +355,6 @@ class ShowMultiplePathsInWater(ShowMultiplePathsScene):
return result
class MultilayeredGlass(PhotonScene, ZoomedScene):
CONFIG = {
"num_discrete_layers" : 5,
"num_variables" : 3,
"top_color" : BLUE_E,
"bottom_color" : BLUE_A,
"zoomed_canvas_space_shape" : (5, 5),
"square_color" : GREEN_B,
}
def construct(self):
self.cycloid = Cycloid(end_theta = np.pi)
self.cycloid.highlight(YELLOW)
self.top = self.cycloid.get_top()[1]
self.bottom = self.cycloid.get_bottom()[1]-1
self.generate_layers()
self.generate_discrete_path()
photon_run = self.photon_run_along_path(
self.discrete_path,
run_time = 1,
rate_func = rush_into
)
self.continuous_to_smooth()
self.add(*self.layers)
self.show_layer_variables()
self.play(photon_run)
self.play(ShowCreation(self.discrete_path))
self.isolate_bend_points()
self.clear()
self.add(*self.layers)
self.show_main_equation()
self.ask_continuous_question()
def continuous_to_smooth(self):
self.add(*self.layers)
continuous = self.get_continuous_background()
self.add(continuous)
self.dither()
self.play(ShowCreation(
continuous,
rate_func = lambda t : smooth(1-t)
))
self.remove(continuous)
self.dither()
def get_continuous_background(self):
glass = FilledRectangle(
height = self.top-self.bottom,
width = 2*SPACE_WIDTH,
)
glass.sort_points(lambda p : -p[1])
glass.shift((self.top-glass.get_top()[1])*UP)
glass.gradient_highlight(self.top_color, self.bottom_color)
return glass
def generate_layer_info(self):
self.layer_thickness = float(self.top-self.bottom)/self.num_discrete_layers
self.layer_tops = np.arange(
self.top, self.bottom, -self.layer_thickness
)
top_rgb, bottom_rgb = [
np.array(Color(color).get_rgb())
for color in self.top_color, self.bottom_color
]
epsilon = 1./(self.num_discrete_layers-1)
self.layer_colors = [
Color(rgb = interpolate(top_rgb, bottom_rgb, alpha))
for alpha in np.arange(0, 1+epsilon, epsilon)
]
def generate_layers(self):
self.generate_layer_info()
def create_region(top, color):
return Region(
lambda x, y : (y < top) & (y > top-self.layer_thickness),
color = color
)
self.layers = [
create_region(top, color)
for top, color in zip(self.layer_tops, self.layer_colors)
]
def generate_discrete_path(self):
points = self.cycloid.points
tops = list(self.layer_tops)
tops.append(tops[-1]-self.layer_thickness)
indices = [
np.argmin(np.abs(points[:, 1]-top))
for top in tops
]
self.bend_points = points[indices[1:-1]]
self.path_angles = []
self.discrete_path = Mobject1D(
color = YELLOW,
density = 3*DEFAULT_POINT_DENSITY_1D
)
for start, end in zip(indices, indices[1:]):
start_point, end_point = points[start], points[end]
self.discrete_path.add_line(
start_point, end_point
)
self.path_angles.append(
angle_of_vector(start_point-end_point)-np.pi/2
)
self.discrete_path.add_line(
points[end], SPACE_WIDTH*RIGHT+(self.layer_tops[-1]-1)*UP
)
def show_layer_variables(self):
layer_top_pairs = zip(
self.layer_tops[:self.num_variables],
self.layer_tops[1:]
)
v_equations = []
start_ys = []
end_ys = []
center_paths = []
braces = []
for (top1, top2), x in zip(layer_top_pairs, it.count(1)):
eq_mob = TexMobject(
["v_%d"%x, "=", "\sqrt{\phantom{y_1}}"],
size = "\\Large"
)
midpoint = UP*(top1+top2)/2
eq_mob.shift(midpoint)
v_eq = eq_mob.split()
center_paths.append(Line(
midpoint+SPACE_WIDTH*LEFT,
midpoint+SPACE_WIDTH*RIGHT
))
brace_endpoints = Mobject(
Point(self.top*UP+x*RIGHT),
Point(top2*UP+x*RIGHT)
)
brace = Brace(brace_endpoints, RIGHT)
start_y = TexMobject("y_%d"%x, size = "\\Large")
end_y = start_y.copy()
start_y.next_to(brace, RIGHT)
end_y.shift(v_eq[-1].get_center())
end_y.shift(0.2*RIGHT)
v_equations.append(v_eq)
start_ys.append(start_y)
end_ys.append(end_y)
braces.append(brace)
for v_eq, path, time in zip(v_equations, center_paths, [2, 1, 0.5]):
photon_run = self.photon_run_along_path(
path,
rate_func = None
)
self.play(
ShimmerIn(v_eq[0]),
photon_run,
run_time = time
)
self.dither()
for start_y, brace in zip(start_ys, braces):
self.add(start_y)
self.play(GrowFromCenter(brace))
self.dither()
quads = zip(v_equations, start_ys, end_ys, braces)
self.equations = []
for v_eq, start_y, end_y, brace in quads:
self.remove(brace)
self.play(
ShowCreation(v_eq[1]),
ShowCreation(v_eq[2]),
Transform(start_y, end_y)
)
v_eq.append(start_y)
self.equations.append(Mobject(*v_eq))
def isolate_bend_points(self):
arc_radius = 0.1
self.activate_zooming()
little_square = self.get_zoomed_camera_mobject()
for index in range(3):
bend_point = self.bend_points[index]
line = Line(
bend_point+DOWN,
bend_point+UP,
color = WHITE,
density = self.zoom_factor*DEFAULT_POINT_DENSITY_1D
)
angle_arcs = []
for i, rotation in [(index, np.pi/2), (index+1, -np.pi/2)]:
arc = Arc(angle = self.path_angles[i])
arc.scale(arc_radius)
arc.rotate(rotation)
arc.shift(bend_point)
angle_arcs.append(arc)
thetas = []
for i in [index+1, index+2]:
theta = TexMobject("\\theta_%d"%i)
theta.scale(0.5/self.zoom_factor)
vert = UP if i == index+1 else DOWN
horiz = rotate_vector(vert, np.pi/2)
theta.next_to(
Point(bend_point),
horiz,
buff = 0.01
)
theta.shift(1.5*arc_radius*vert)
thetas.append(theta)
figure_marks = [line] + angle_arcs + thetas
self.play(ApplyMethod(
little_square.shift,
bend_point - little_square.get_center(),
run_time = 2
))
self.play(*map(ShowCreation, figure_marks))
self.dither()
equation_frame = little_square.copy()
equation_frame.scale(0.5)
equation_frame.shift(
little_square.get_corner(UP+RIGHT) - \
equation_frame.get_corner(UP+RIGHT)
)
equation_frame.scale_in_place(0.9)
self.show_snells(index+1, equation_frame)
self.remove(*figure_marks)
self.disactivate_zooming()
def show_snells(self, index, frame):
left_text, right_text = [
"\\dfrac{\\sin(\\theta_%d)}{\\phantom{\\sqrt{y_1}}}"%x
for x in index, index+1
]
left, equals, right = TexMobject(
[left_text, "=", right_text]
).split()
vs = []
sqrt_ys = []
for x, numerator in [(index, left), (index+1, right)]:
v, sqrt_y = [
TexMobject(
text, size = "\\Large"
).next_to(numerator, DOWN)
for text in "v_%d"%x, "\\sqrt{y_%d}"%x
]
vs.append(v)
sqrt_ys.append(sqrt_y)
start, end = [
Mobject(
left.copy(), mobs[0], equals.copy(), right.copy(), mobs[1]
).replace(frame)
for mobs in vs, sqrt_ys
]
self.add(start)
self.dither(2)
self.play(Transform(
start, end,
path_func = counterclockwise_path()
))
self.dither(2)
self.remove(start, end)
def show_main_equation(self):
self.equation = TexMobject("""
\\dfrac{\\sin(\\theta)}{\\sqrt{y}} =
\\text{constant}
""")
self.equation.shift(LEFT)
self.equation.shift(
(self.layer_tops[0]-self.equation.get_top())*UP
)
self.add(self.equation)
self.dither()
def ask_continuous_question(self):
continuous = self.get_continuous_background()
line = Line(
UP, DOWN,
density = self.zoom_factor*DEFAULT_POINT_DENSITY_1D
)
theta = TexMobject("\\theta")
theta.scale(0.5/self.zoom_factor)
self.play(
ShowCreation(continuous),
Animation(self.equation)
)
self.remove(*self.layers)
self.play(ShowCreation(self.cycloid))
self.activate_zooming()
little_square = self.get_zoomed_camera_mobject()
self.add(line)
indices = np.arange(
0, self.cycloid.get_num_points()-1, 10
)
for index in indices:
point = self.cycloid.points[index]
next_point = self.cycloid.points[index+1]
angle = angle_of_vector(point - next_point)
for mob in little_square, line:
mob.shift(point - mob.get_center())
arc = Arc(angle-np.pi/2, start_angle = np.pi/2)
arc.scale(0.1)
arc.shift(point)
self.add(arc)
if angle > np.pi/2 + np.pi/6:
vect_angle = interpolate(np.pi/2, angle, 0.5)
vect = rotate_vector(RIGHT, vect_angle)
theta.center()
theta.shift(point)
theta.shift(0.15*vect)
self.add(theta)
self.dither(self.frame_duration)
self.remove(arc)
class StraightLinesFastestInConstantMedium(PhotonScene):
def construct(self):
kwargs = {"size" : "\\Large"}
@ -928,8 +611,10 @@ class SpringSetup(ShowMultiplePathsInWater):
self.slide_ring(ring)
self.dither()
self.add_springs()
self.add_force_definitions()
self.slide_system(ring)
self.balance_forces(ring)
self.show_horizontal_component(ring)
self.show_angles(ring)
self.show_equation()
@ -973,14 +658,8 @@ class SpringSetup(ShowMultiplePathsInWater):
))
def add_springs(self):
top_force = TexMobject("F_1 = \\dfrac{1}{v_{\\text{air}}}")
bottom_force = TexMobject("F_2 = \\dfrac{1}{v_{\\text{water}}}")
top_spring, bottom_spring = self.start_springs.split()
top_force.next_to(top_spring)
bottom_force.next_to(bottom_spring, DOWN, buff = -0.5)
colors = iter([BLACK, BLUE_E])
for spring in top_spring, bottom_spring:
for spring in self.start_springs.split():
circle = Circle(color = colors.next())
circle.reverse_points()
circle.scale(spring.loop_radius)
@ -991,16 +670,28 @@ class SpringSetup(ShowMultiplePathsInWater):
self.add(spring)
self.dither()
def add_force_definitions(self):
top_force = TexMobject("F_1 = \\dfrac{1}{v_{\\text{air}}}")
bottom_force = TexMobject("F_2 = \\dfrac{1}{v_{\\text{water}}}")
top_spring, bottom_spring = self.start_springs.split()
top_force.next_to(top_spring)
bottom_force.next_to(bottom_spring, DOWN, buff = -0.5)
words = TextMobject("""
The force in a real spring is
proportional to that spring's length
""")
words.to_corner(UP+RIGHT)
for force in top_force, bottom_force:
self.play(GrowFromCenter(force))
self.dither()
self.remove(top_force, bottom_force)
self.play(ShimmerIn(words))
self.dither(3)
self.remove(top_force, bottom_force, words)
def slide_system(self, ring):
equilibrium_slide_kwargs = dict(self.slide_kwargs)
def jiggle_to_equilibrium(t):
return 0.6*(1+((1-t)**2)*(-np.cos(10*np.pi*t)))
return 0.7*(1+((1-t)**2)*(-np.cos(10*np.pi*t)))
equilibrium_slide_kwargs = {
"rate_func" : jiggle_to_equilibrium,
"run_time" : 3
@ -1013,8 +704,15 @@ class SpringSetup(ShowMultiplePathsInWater):
for kwargs in self.slide_kwargs, equilibrium_slide_kwargs:
self.play(Transform(start, end, **kwargs))
self.dither()
def show_horizontal_component(self, ring):
v_right = Vector(ring.get_top(), RIGHT)
v_left = Vector(ring.get_bottom(), LEFT)
self.play(*map(ShowCreation, [v_right, v_left]))
self.dither()
self.remove(v_right, v_left)
def balance_forces(self, ring):
def show_angles(self, ring):
ring_center = ring.get_center()
lines, arcs, thetas = [], [], []
counter = it.count(1)
@ -1033,7 +731,7 @@ class SpringSetup(ShowMultiplePathsInWater):
lines.append(line)
arcs.append(arc)
thetas.append(theta)
vert_line = Line(SPACE_HEIGHT*UP, SPACE_HEIGHT*DOWN)
vert_line = Line(2*UP, 2*DOWN)
vert_line.shift(ring_center)
top_spring, bottom_spring = self.start_springs.split()
@ -1043,50 +741,122 @@ class SpringSetup(ShowMultiplePathsInWater):
Transform(bottom_spring, lines[1])
)
self.play(ShowCreation(vert_line))
self.dither()
anims = []
for arc, theta in zip(arcs, thetas):
self.play(ShowCreation(arc))
self.play(GrowFromCenter(theta))
self.dither()
anims += [
ShowCreation(arc),
GrowFromCenter(theta)
]
self.play(*anims)
self.dither()
def show_equation(self):
equation = TexMobject([
"F_1", "\\sin(\\theta_1)", "=",
"F_2", "\\sin(\\theta_2)"
"\\left(\\dfrac{1}{\\phantom{v_air}}\\right)",
"\\sin(\\theta_1)",
"=",
"\\left(\\dfrac{1}{\\phantom{v_water}}\\right)",
"\\sin(\\theta_2)"
])
equation.shift(3*RIGHT+2*UP)
f1, sin1, equals, f2, sin2 = equation.split()
bar1 = TexMobject("\\dfrac{\\qquad}{\\qquad}")
bar2 = bar1.copy()
equation.to_corner(UP+RIGHT)
frac1, sin1, equals, frac2, sin2 = equation.split()
v_air, v_water = [
TexMobject("v_{\\text{%s}}"%s, size = "\\Large")
for s in "air", "water"
]
v_air.next_to(Point(frac1.get_center()), DOWN)
v_water.next_to(Point(frac2.get_center()), DOWN)
frac1.add(v_air)
frac2.add(v_water)
f1, f2 = [
TexMobject("F_%d"%d, size = "\\Large")
for d in 1, 2
]
f1.next_to(sin1, LEFT)
f2.next_to(equals, RIGHT)
sin2_start = sin2.copy().next_to(f2, RIGHT)
bar1 = TexMobject("\\dfrac{\\qquad}{\\qquad}")
bar2 = bar1.copy()
bar1.next_to(sin1, DOWN)
v_air.next_to(bar1, DOWN)
bar2.next_to(sin2, DOWN)
v_water.next_to(bar2, DOWN)
bar2.next_to(sin2, DOWN)
v_air_copy = v_air.copy().next_to(bar1, DOWN)
v_water_copy = v_water.copy().next_to(bar2, DOWN)
bars = Mobject(bar1, bar2)
new_eq = equals.copy().center().shift(bars.get_center())
snells = TextMobject("Snell's Law")
snells.highlight(YELLOW)
snells.shift(new_eq.get_center())
snells.to_edge(UP)
snells.shift(new_eq.get_center()[0]*RIGHT)
snells.shift(UP)
for mob in equation.split():
self.play(GrowFromCenter(mob, run_time = 0.5))
anims = []
for mob in f1, sin1, equals, f2, sin2_start:
anims.append(ShimmerIn(mob))
self.play(*anims)
self.dither()
for f, frac in (f1, frac1), (f2, frac2):
target = frac.copy().ingest_sub_mobjects()
also = []
if f is f2:
also.append(Transform(sin2_start, sin2))
sin2 = sin2_start
self.play(Transform(f, target), *also)
self.remove(f)
self.add(frac)
self.dither()
self.play(
Transform(f1, v_air),
Transform(f2, v_water),
FadeOut(frac1),
FadeOut(frac2),
Transform(v_air, v_air_copy),
Transform(v_water, v_water_copy),
ShowCreation(bars),
Transform(equals, new_eq)
)
self.dither()
frac1 = Mobject(sin1, bar1, v_air)
frac2 = Mobject(sin2, bar2, v_water)
for frac, vect in (frac1, LEFT), (frac2, RIGHT):
self.play(ApplyMethod(
frac.next_to, equals, vect
))
self.dither()
self.play(ShimmerIn(snells))
self.dither()
class WhatGovernsTheSpeedOfLight(PhotonScene, PathSlidingScene):
def construct(self):
randy = Randolph()
randy.scale(RANDY_SCALE_VAL)
randy.shift(-randy.get_bottom())
self.add_cycloid_end_points()
self.add(self.cycloid)
self.slide(randy, self.cycloid)
self.play(self.photon_run_along_path(self.cycloid))
self.dither()
class WhichPathWouldLightTake(PhotonScene, TryManyPaths):
def construct(self):
words = TextMobject(
["Which path ", "would \\emph{light} take", "?"]
)
words.split()[1].highlight(YELLOW)
words.to_corner(UP+RIGHT)
self.add_cycloid_end_points()
anims = [
self.photon_run_along_path(
path,
rate_func = smooth
)
for path in self.get_paths()
]
self.play(anims[0], ShimmerIn(words))
for anim in anims[1:]:
self.play(anim)

View file

@ -99,24 +99,29 @@ class TimeLine(Scene):
self.add(timeline)
self.dither()
run_times = iter([3, 1])
for point, event in zip(centers[1:], dated_events):
self.play(ApplyMethod(
timeline.shift, -point.get_center(),
run_time = 3
run_time = run_times.next()
))
picture = ImageMobject(event["picture"], invert = False)
picture.scale_to_fit_width(2)
picture.to_corner(UP+RIGHT)
event_mob = TextMobject(event["text"])
event_mob.shift(2*LEFT+2*UP)
arrow = Arrow(event_mob.get_bottom(), ORIGIN)
date_mob = TexMobject(str(event["date"]))
date_mob.scale(0.5)
date_mob.shift(0.6*UP)
line = Line(event_mob.get_bottom(), 0.2*UP)
self.play(
ShimmerIn(event_mob),
ShowCreation(arrow)
ShowCreation(line),
ShimmerIn(date_mob)
)
self.play(FadeIn(picture))
self.dither()
self.play(*map(FadeOut, [event_mob, arrow, picture]))
self.dither(3)
self.play(*map(FadeOut, [event_mob, date_mob, line, picture]))

View file

@ -0,0 +1,293 @@
import numpy as np
import itertools as it
from helpers import *
from mobject.tex_mobject import TexMobject, TextMobject, Brace
from mobject import Mobject, Mobject1D
from mobject.image_mobject import \
ImageMobject, MobjectFromPixelArray
from topics.three_dimensions import Stars
from animation import Animation
from animation.transform import *
from animation.simple_animations import *
from topics.geometry import *
from topics.characters import Randolph
from topics.functions import *
from mobject.region import Region
from scene import Scene
from scene.zoomed_scene import ZoomedScene
from camera import Camera
from brachistochrone.light import PhotonScene
from brachistochrone.curves import *
#Two to many
#race light in each
#n layers
#v_1, v_2, v_3
#proportional to sqrt y_1, y_2, y_3
#limiting process
#show sliding object and light
#which path is fastest
#instantaneously obey snell's law
class MultilayeredScene(Scene):
CONFIG = {
"n_layers" : 5,
"top_color" : BLUE_E,
"bottom_color" : BLUE_A,
"total_glass_height" : 5,
"top" : 3*UP,
"RectClass" : Rectangle #FilledRectangle
}
def get_layers(self, n_layers = None):
if n_layers is None:
n_layers = self.n_layers
width = 2*SPACE_WIDTH
height = float(self.total_glass_height)/n_layers
rgb_pair = [
np.array(Color(color).get_rgb())
for color in self.top_color, self.bottom_color
]
rgb_range = [
interpolate(*rgb_pair+[x])
for x in np.arange(0, 1, 1./n_layers)
]
tops = [
self.top + x*height*DOWN
for x in range(n_layers)
]
color = Color()
result = []
for top, rgb in zip(tops, rgb_range):
color.set_rgb(rgb)
rect = self.RectClass(
height = height,
width = width,
color = color
)
rect.shift(top-rect.get_top())
result.append(rect)
return result
def add_layers(self):
self.layers = self.get_layers()
self.add(*self.layers)
self.freeze_background()
def get_bottom(self):
return self.top + self.total_glass_height*DOWN
def get_continuous_glass(self):
result = self.RectClass(
width = 2*SPACE_WIDTH,
height = self.total_glass_height,
)
result.sort_points(lambda p : -p[1])
result.gradient_highlight(self.top_color, self.bottom_color)
result.shift(self.top-result.get_top())
return result
class TwoToMany(MultilayeredScene):
CONFIG = {
"RectClass" : FilledRectangle
}
def construct(self):
glass = self.get_glass()
layers = self.get_layers()
self.add(glass)
self.dither()
self.play(*[
FadeIn(
layer,
rate_func = squish_rate_func(smooth, x, 1)
)
for layer, x in zip(layers[1:], it.count(0, 0.2))
]+[
Transform(glass, layers[0])
])
self.dither()
def get_glass(self):
return self.RectClass(
height = SPACE_HEIGHT,
width = 2*SPACE_WIDTH,
color = BLUE_E
).shift(SPACE_HEIGHT*DOWN/2)
class RaceLightInLayers(MultilayeredScene, PhotonScene):
CONFIG = {
"RectClass" : FilledRectangle
}
def construct(self):
self.add_layers()
line = Line(SPACE_WIDTH*LEFT, SPACE_WIDTH*RIGHT)
lines = [
line.copy().shift(layer.get_center())
for layer in self.layers
]
def rate_maker(x):
return lambda t : min(x*x*t, 1)
min_rate, max_rate = 1., 2.
rates = np.arange(min_rate, max_rate, (max_rate-min_rate)/self.n_layers)
self.play(*[
self.photon_run_along_path(
line,
rate_func = rate_maker(rate),
run_time = 2
)
for line, rate in zip(lines, rates)
])
class NLayers(MultilayeredScene):
CONFIG = {
"RectClass" : FilledRectangle
}
def construct(self):
self.add_layers()
brace = Brace(
Mobject(
Point(self.top),
Point(self.get_bottom())
),
RIGHT
)
n_layers = TextMobject("$n$ layers")
n_layers.next_to(brace)
self.dither()
self.add(brace)
self.show_frame()
self.play(
GrowFromCenter(brace),
GrowFromCenter(n_layers)
)
self.dither()
class ShowLayerVariables(MultilayeredScene, PhotonScene):
CONFIG = {
"RectClass" : FilledRectangle
}
def construct(self):
self.add_layers()
v_equations = []
start_ys = []
end_ys = []
center_paths = []
braces = []
for layer, x in zip(self.layers[:3], it.count(1)):
eq_mob = TexMobject(
["v_%d"%x, "=", "\sqrt{\phantom{y_1}}"],
size = "\\Large"
)
eq_mob.shift(layer.get_center()+2*LEFT)
v_eq = eq_mob.split()
v_eq[0].highlight(layer.get_color())
path = Line(SPACE_WIDTH*LEFT, SPACE_WIDTH*RIGHT)
path.shift(layer.get_center())
brace_endpoints = Mobject(
Point(self.top),
Point(layer.get_bottom())
)
brace = Brace(brace_endpoints, RIGHT)
brace.shift(x*RIGHT)
start_y = TexMobject("y_%d"%x, size = "\\Large")
end_y = start_y.copy()
start_y.next_to(brace, RIGHT)
end_y.shift(v_eq[-1].get_center())
nudge = 0.2*RIGHT
end_y.shift(nudge)
v_equations.append(v_eq)
start_ys.append(start_y)
end_ys.append(end_y)
center_paths.append(path)
braces.append(brace)
for v_eq, path, time in zip(v_equations, center_paths, [2, 1, 0.5]):
photon_run = self.photon_run_along_path(
path,
rate_func = None
)
self.play(
FadeToColor(v_eq[0], WHITE),
photon_run,
run_time = time
)
self.dither()
starts = [0, 0.3, 0.6]
self.play(*it.chain(*[
[
GrowFromCenter(
mob,
rate_func=squish_rate_func(smooth, start, 1)
)
for mob, start in zip(mobs, starts)
]
for mobs in start_ys, braces
]))
self.dither()
triplets = zip(v_equations, start_ys, end_ys)
anims = []
for v_eq, start_y, end_y in triplets:
anims += [
ShowCreation(v_eq[1]),
ShowCreation(v_eq[2]),
Transform(start_y.copy(), end_y)
]
self.play(*anims)
self.dither()
class LimitingProcess(MultilayeredScene):
CONFIG = {
"RectClass" : FilledRectangle
}
def construct(self):
num_iterations = 3
layer_sets = [
self.get_layers((2**x)*self.n_layers)
for x in range(num_iterations)
]
aligned_layer_sets = [
Mobject(*[
Mobject(
*layer_sets[x][(2**x)*index:(2**x)*(index+1)]
).ingest_sub_mobjects()
for index in range(self.n_layers)
])
for x in range(num_iterations)
]
aligned_layer_sets.append(self.get_continuous_glass())
curr_set = aligned_layer_sets[0]
self.add(curr_set)
for layer_set in aligned_layer_sets[1:]:
self.dither()
self.play(Transform(curr_set, layer_set))
self.dither()

View file

@ -1,9 +1,7 @@
import numpy as np
import itertools as it
import operator as op
import os
from PIL import Image
from random import random
from copy import deepcopy
from colour import Color