Beginning of ShowPlan in Uncertainty

This commit is contained in:
Grant Sanderson 2018-02-12 22:49:15 -08:00
parent 6f829c98fb
commit 3b8bbbccab

View file

@ -39,55 +39,46 @@ class GaussianDistributionWrapper(Line):
"""
This is meant to encode a 2d normal distribution as
a mobject (so as to be able to have it be interpolated
during animations). It is a line whose start_point coordinates
encode the coordinates of mu, and whose end_point - start_point
encodes the coordinates of sigma.
during animations). It is a line whose center is the mean
mu of a distribution, and whose radial vector (center to end)
is the distribution's standard deviation
"""
CONFIG = {
"stroke_width" : 0,
"mu_x" : 0,
"sigma_x" : 1,
"mu_y" : 0,
"sigma_y" : 0,
"mu" : ORIGIN,
"sigma" : RIGHT,
}
def __init__(self, **kwargs):
Line.__init__(self, ORIGIN, RIGHT, **kwargs)
self.change_parameters(self.mu_x, self.mu_y, self.sigma_x, self.sigma_y)
self.change_parameters(self.mu, self.sigma)
def change_parameters(self, mu_x = None, mu_y = None, sigma_x = None, sigma_y = None):
curr_parameters = self.get_parameteters()
args = [mu_x, mu_y, sigma_x, sigma_y]
new_parameters = [
arg or curr
for curr, arg in zip(curr_parameters, args)
]
mu_x, mu_y, sigma_x, sigma_y = new_parameters
mu_point = mu_x*RIGHT + mu_y*UP
sigma_vect = sigma_x*RIGHT + sigma_y*UP
self.put_start_and_end_on(mu_point, mu_point + sigma_vect)
def change_parameters(self, mu = None, sigma = None):
curr_mu, curr_sigma = self.get_parameters()
mu = mu if mu is not None else curr_mu
sigma = sigma if sigma is not None else curr_sigma
self.put_start_and_end_on(mu - sigma, mu + sigma)
return self
def get_parameteters(self):
def get_parameters(self):
""" Return mu_x, mu_y, sigma_x, sigma_y"""
start, end = self.get_start_and_end()
return tuple(it.chain(start[:2], (end - start)[:2]))
center, end = self.get_center(), self.get_end()
return center, end-center
def get_random_points(self, size = 1):
mu_x, mu_y, sigma_x, sigma_y = self.get_parameteters()
x_vals = np.random.normal(mu_x, sigma_x, size)
y_vals = np.random.normal(mu_y, sigma_y, size)
mu, sigma = self.get_parameters()
return np.array([
x*RIGHT + y*UP
for x, y in zip(x_vals, y_vals)
np.array([
np.random.normal(mu_coord, sigma_coord)
for mu_coord, sigma_coord in zip(mu, sigma)
])
for x in range(size)
])
class ProbabalisticMobjectCloud(ContinualAnimation):
CONFIG = {
"fill_opacity" : 0.25,
"n_copies" : 100,
"gaussian_distribution_wrapper_config" : {
"sigma_x" : 1,
}
"gaussian_distribution_wrapper_config" : {}
}
def __init__(self, prototype, **kwargs):
digest_config(self, kwargs)
@ -142,6 +133,14 @@ class ProbabalisticVectorCloud(ProbabalisticMobjectCloud):
point
)
class RadarDish(SVGMobject):
CONFIG = {
"file_name" : "radar_dish",
"color" : LIGHT_GREY,
}
###################
class MentionUncertaintyPrinciple(TeacherStudentsScene):
@ -152,32 +151,33 @@ class MentionUncertaintyPrinciple(TeacherStudentsScene):
dot_cloud = ProbabalisticDotCloud()
vector_cloud = ProbabalisticVectorCloud(
gaussian_distribution_wrapper_config = {"sigma_x" : 0.2},
center_func = dot_cloud.gaussian_distribution_wrapper.get_start,
center_func = lambda : dot_cloud.gaussian_distribution_wrapper.get_parameters()[0],
)
for cloud in dot_cloud, vector_cloud:
gdw = cloud.gaussian_distribution_wrapper
gdw.move_to(title.get_center(), LEFT)
gdw.shift(2*DOWN)
cloud.gaussian_distribution_wrapper.next_to(
title, DOWN, 2*LARGE_BUFF
)
vector_cloud.gaussian_distribution_wrapper.shift(3*RIGHT)
def get_brace_text_group_update(gdw, vect, text):
def get_brace_text_group_update(gdw, vect, text, color):
brace = Brace(gdw, vect)
text = brace.get_tex("\\sigma_{\\text{%s}}"%text, buff = SMALL_BUFF)
text = brace.get_tex("2\\sigma_{\\text{%s}}"%text, buff = SMALL_BUFF)
group = VGroup(brace, text)
def update_group(group):
brace, text = group
brace.match_width(gdw, stretch = True)
brace.next_to(gdw, vect)
text.next_to(brace, vect, buff = SMALL_BUFF)
group.highlight(color)
return ContinualUpdateFromFunc(group, update_group)
dot_brace_anim = get_brace_text_group_update(
dot_cloud.gaussian_distribution_wrapper,
DOWN, "position",
DOWN, "position", dot_cloud.color
)
vector_brace_anim = get_brace_text_group_update(
vector_cloud.gaussian_distribution_wrapper,
UP, "momentum",
UP, "momentum", vector_cloud.color
)
self.add(title)
@ -195,7 +195,7 @@ class MentionUncertaintyPrinciple(TeacherStudentsScene):
# self.wait(2)
self.play(
dot_cloud.gaussian_distribution_wrapper.change_parameters,
{"sigma_x" : 0.1},
{"sigma" : 0.1*RIGHT},
run_time = 2,
)
self.wait()
@ -206,7 +206,7 @@ class MentionUncertaintyPrinciple(TeacherStudentsScene):
self.add(vector_brace_anim)
self.play(
vector_cloud.gaussian_distribution_wrapper.change_parameters,
{"sigma_x" : 1},
{"sigma" : RIGHT},
self.get_student_changes(*3*["confused"]),
run_time = 3,
)
@ -214,17 +214,17 @@ class MentionUncertaintyPrinciple(TeacherStudentsScene):
for x in range(2):
self.play(
dot_cloud.gaussian_distribution_wrapper.change_parameters,
{"sigma_x" : 2},
{"sigma" : 2*RIGHT},
vector_cloud.gaussian_distribution_wrapper.change_parameters,
{"sigma_x" : 0.1},
{"sigma" : 0.1*RIGHT},
run_time = 3,
)
self.change_student_modes("thinking", "erm", "sassy")
self.play(
dot_cloud.gaussian_distribution_wrapper.change_parameters,
{"sigma_x" : 0.1},
{"sigma" : 0.1*RIGHT},
vector_cloud.gaussian_distribution_wrapper.change_parameters,
{"sigma_x" : 1},
{"sigma" : 1*RIGHT},
run_time = 3,
)
self.wait()
@ -299,7 +299,8 @@ class FourierTradeoff(Scene):
t_min = time_mean - time_radius,
t_max = time_mean + time_radius,
n_samples = 2*time_radius*17,
complex_to_real_func = abs,
# complex_to_real_func = abs,
complex_to_real_func = lambda z : z.real,
color = FREQUENCY_COLOR,
)
@ -351,8 +352,99 @@ class FourierTradeoff(Scene):
self.wait()
self.wait()
class ShowPlan(PiCreatureScene):
def construct(self):
self.add_title()
words = self.get_words()
self.play_sound_anims(words[0])
self.play_doppler_anims(words[1], words[0])
self.play_quantum_anims(words[2], words[1])
def add_title(self):
title = TextMobject("The plan")
title.scale(1.5)
title.to_edge(UP)
h_line = Line(LEFT, RIGHT).scale(SPACE_WIDTH)
h_line.next_to(title, DOWN)
self.add(title, h_line)
def get_words(self):
colors = [YELLOW, GREEN, BLUE]
topics = ["sound waves", "Doppler radar", "quantum particles"]
words = VGroup()
for topic, color in zip(topics, colors):
word = TextMobject("Uncertainty for", topic)
word[1].highlight(color)
words.add(word)
words.arrange_submobjects(DOWN, aligned_edge = LEFT, buff = LARGE_BUFF)
words.to_edge(LEFT)
return words
def play_sound_anims(self, word):
morty = self.pi_creature
wave = FunctionGraph(
lambda x : 0.3*np.sin(15*x)*np.sin(0.5*x),
x_min = 0, x_max = 30,
num_anchor_points = 500,
)
wave.next_to(word, RIGHT)
rect = BackgroundRectangle(wave, fill_opacity = 1)
rect.stretch(2, 1)
rect.next_to(wave, LEFT, buff = 0)
wave_shift = AmbientMovement(
wave, direction = LEFT, rate = 5
)
wave_fader = UpdateFromAlphaFunc(
wave,
lambda w, a : w.set_stroke(width = 3*a)
)
checkmark = self.get_checkmark(word)
self.add(wave_shift)
self.add_foreground_mobjects(rect, word)
self.play(
Animation(word),
wave_fader,
morty.change, "raise_right_hand", word
)
self.wait(2)
wave_fader.rate_func = lambda a : 1-smooth(a)
self.add_foreground_mobjects(checkmark)
self.play(
Write(checkmark),
morty.change, "happy",
wave_fader,
)
self.remove_foreground_mobjects(rect, word)
self.add(word)
self.wait()
def play_doppler_anims(self, word, to_fade):
morty = self.pi_creature
radar_dish = RadarDish()
radar_dish.next_to(to_fade, RIGHT)
self.add(radar_dish)
self.play(
to_fade.fade, 0.5,
Write(word),
morty.change, "pondering",
run_time = 1
)
def play_quantum_anims(self, word, to_fade):
pass
##
def get_checkmark(self, word):
checkmark = TexMobject("\\checkmark")
checkmark.highlight(GREEN)
checkmark.scale(1.5)
checkmark.next_to(word, UP+RIGHT, buff = 0)
return checkmark