Have non-flat stroke operate based on projecting tangents

This commit is contained in:
Grant Sanderson 2024-08-05 09:15:06 -05:00
parent b3bbc31ea9
commit 26249c34bb
2 changed files with 74 additions and 53 deletions

View file

@ -32,8 +32,7 @@ const float COS_THRESHOLD = 0.99;
// Used to determine how many lines to break the curve into
const float POLYLINE_FACTOR = 30;
const int MAX_STEPS = 32;
vec3 unit_normal = vec3(0.0, 0.0, 1.0);
const float MITER_LIMIT = 3.0;
#INSERT emit_gl_Position.glsl
#INSERT finalize_color.glsl
@ -63,48 +62,57 @@ vec3 tangent_on_quadratic(float t, vec3 c1, vec3 c2){
}
void create_joint(
vec4 joint_product,
vec3 unit_tan,
float buff,
vec3 static_c0,
out vec3 changing_c0,
vec3 static_c1,
out vec3 changing_c1
){
float cos_angle = joint_product.w;
if(abs(cos_angle) > COS_THRESHOLD || int(joint_type) == NO_JOINT){
// No joint
changing_c0 = static_c0;
changing_c1 = static_c1;
return;
}
float shift;
float sin_angle = length(joint_product.xyz) * sign(joint_product.z);
if(int(joint_type) == MITER_JOINT){
shift = buff * (-1.0 - cos_angle) / sin_angle;
}else{
// For a Bevel joint
shift = buff * (1.0 - cos_angle) / sin_angle;
}
changing_c0 = static_c0 - shift * unit_tan;
changing_c1 = static_c1 + shift * unit_tan;
vec4 get_joint_product(vec3 v1, vec3 v2){
return vec4(cross(v1, v2), dot(v1, v2));
}
vec3 left_step(vec3 point, vec3 tangent, vec4 joint_product){
/*
Perpendicular vectors to the left of the curve
vec3 project(vec3 vect, vec3 normal){
/* Project the vector onto the plane perpendicular to a given unit normal */
return vect - dot(vect, normal) * normal;
}
vec3 inverse_joint_product(vec3 vect, vec4 joint_product){
/*
If joint_product represents vec4(cross(v1, v2), dot(v1, v2)),
then given v1, this function recovers v2
*/
vec3 normal = get_joint_unit_normal(joint_product);
unit_normal = normal; // Set global unit normal
if(normal.z < 0) normal *= -1; // Choose the "outward" normal direction
if(bool(flat_stroke)){
return normalize(cross(normal, tangent));
}else{
return normalize(cross(camera_position - point, tangent));
float dp = joint_product.w;
if (abs(dp) > COS_THRESHOLD) return vect;
vec3 cp = joint_product.xyz;
vec3 perp = cross(cp, vect);
float a = dp / dot(vect, vect);
float b = length(cp) / length(cross(vect, perp));
return a * vect + b * perp;
}
vec3 step_to_corner(vec3 point, vec3 unit_tan, vec3 unit_normal, vec4 joint_product){
/*
Step the the left of a curve.
First a perpendicular direction is calculated, then it is adjusted
so as to make a joint.
*/
vec3 step = normalize(cross(unit_normal, unit_tan));
// Check if an adjustment is needed
float cos_angle = joint_product.w;
if(abs(cos_angle) > 1 - 1e-5 || int(joint_type) == NO_JOINT){
return step;
}
// Adjust based on the joint
float sin_angle = length(joint_product.xyz) * sign(joint_product.z);
float shift = (int(joint_type) == MITER_JOINT) ?
(cos_angle + 1.0) / sin_angle :
(cos_angle - 1.0) / sin_angle;
// return step + shift * unit_tan;
vec3 result = step + shift * unit_tan;
if (length(result) > MITER_LIMIT){
result = MITER_LIMIT * normalize(result);
}
return result;
}
@ -115,14 +123,28 @@ void emit_point_with_width(
float width,
vec4 joint_color
){
vec3 unit_tan = normalize(tangent);
vec4 unit_jp = normalized_joint_product(joint_product);
vec3 perp = 0.5 * width * left_step(point, unit_tan, unit_jp);
// Normalize relevant vectors
vec3 unit_tan;
vec4 unit_jp;
vec3 unit_normal;
if(bool(flat_stroke)){
unit_tan = normalize(tangent);
unit_jp = normalized_joint_product(joint_product);
unit_normal = get_joint_unit_normal(joint_product);
}else{
unit_normal = normalize(camera_position - point);
unit_tan = normalize(project(tangent, unit_normal));
vec3 adj_tan = inverse_joint_product(tangent, joint_product);
adj_tan = project(adj_tan, unit_normal);
unit_jp = normalized_joint_product(get_joint_product(unit_tan, adj_tan));
}
if(unit_normal.z < 0) unit_normal *= -1; // Choose the "outward" normal direction
vec3 left = point + perp;
vec3 right = point - perp;
create_joint(unit_jp, unit_tan, length(perp), left, left, right, right);
// Figure out the step from the point to the corners of the
// triangle strip around the polyline
vec3 step = step_to_corner(point, unit_tan, unit_normal, unit_jp);
// Set styling
color = finalize_color(joint_color, point, unit_normal);
if (width == 0) scaled_anti_alias_width = -1.0; // Signal to discard in frag
else scaled_anti_alias_width = 2.0 * anti_alias_width * pixel_size / width;
@ -130,12 +152,11 @@ void emit_point_with_width(
// Emit two corners
// The frag shader will receive a value from -1 to 1,
// reflecting where in the stroke that point is
scaled_signed_dist_to_curve = -1.0;
emit_gl_Position(left);
EmitVertex();
scaled_signed_dist_to_curve = +1.0;
emit_gl_Position(right);
EmitVertex();
for (int sign = -1; sign <= 1; sign += 2){
scaled_signed_dist_to_curve = sign;
emit_gl_Position(point + 0.5 * width * sign * step);
EmitVertex();
}
}
@ -172,7 +193,7 @@ void main() {
if (i >= n_steps - 1) break;
vec3 v1 = points[i] - points[i - 1];
vec3 v2 = points[i + 1] - points[i];
joint_products[i] = vec4(cross(v1, v2), dot(v1, v2));
joint_products[i] = get_joint_product(v1, v2);
}
// Emit vertex pairs aroudn subdivided points

View file

@ -16,7 +16,7 @@ out vec4 v_joint_product;
out float v_stroke_width;
out vec4 v_color;
const float STROKE_WIDTH_CONVERSION = 0.01;
const float STROKE_WIDTH_CONVERSION = 0.015;
void main(){
verts = point;