mirror of
https://github.com/3b1b/manim.git
synced 2025-09-19 04:41:56 +00:00
Use cubic formula in stroke frag for large stroke width case
This commit is contained in:
parent
6c262f63b1
commit
23b4e3e03b
1 changed files with 19 additions and 15 deletions
|
@ -10,23 +10,23 @@ in float is_linear;
|
|||
|
||||
out vec4 frag_color;
|
||||
|
||||
const float QUICK_DIST_WIDTH = 0.4;
|
||||
const float QUICK_DIST_WIDTH = 0.2;
|
||||
|
||||
float dist_to_curve(){
|
||||
// In the linear case, the curve will have
|
||||
// been set to equal the x axis
|
||||
if(bool(is_linear)) return abs(uv_coords.y);
|
||||
|
||||
// Returns distance from uv_coords to the curve v = u^2
|
||||
// Otherwise, find the distance from uv_coords to the curve y = x^2
|
||||
float x0 = uv_coords.x;
|
||||
float y0 = uv_coords.y;
|
||||
|
||||
// This is a quick approximation for computing
|
||||
// the distance to the curve.
|
||||
// Evaluate F(x, y) = y - x^2
|
||||
// divide by its gradient's magnitude
|
||||
float Fxy = y0 - x0 * x0;
|
||||
float grad_sq = 1 + 4 * x0 * x0;
|
||||
float approx_dist = abs(Fxy) / sqrt(grad_sq);
|
||||
float approx_dist = abs(Fxy) / sqrt(1.0 + 4 * x0 * x0);
|
||||
if(approx_dist < QUICK_DIST_WIDTH) return approx_dist;
|
||||
|
||||
// Otherwise, solve for the minimal distance.
|
||||
|
@ -38,25 +38,29 @@ float dist_to_curve(){
|
|||
//
|
||||
// x^3 + (0.5 - y0) * x - 0.5 * x0 = 0
|
||||
//
|
||||
// Use two rounds of Newton's method
|
||||
float x = x0 + 2 * x0 * Fxy / grad_sq; // Seed with a step along the gradient vector
|
||||
float p = (0.5 - y0);
|
||||
float q = -0.5 * x0;
|
||||
for(int i = 0; i < 2; i++){
|
||||
float fx = x * x * x + p * x + q;
|
||||
float dfx = 3 * x * x + p;
|
||||
x = x - fx / dfx;
|
||||
}
|
||||
return distance(uv_coords, vec2(x, x * x));
|
||||
// Adapted from https://www.shadertoy.com/view/ws3GD7
|
||||
x0 = abs(x0);
|
||||
float p = (0.5 - y0) / 3.0; // p / 3 in usual Cardano's formula notation
|
||||
float q = 0.25 * x0; // -q / 2 in usual Cardano's formula notation
|
||||
float disc = q*q + p*p*p;
|
||||
float r = sqrt(abs(disc));
|
||||
|
||||
float x = (disc > 0.0) ?
|
||||
// 1 root
|
||||
pow(q + r, 1.0 / 3.0) + pow(abs(q - r), 1.0 / 3.0) * sign(-p) :
|
||||
// 3 roots
|
||||
2.0 * cos(atan(r, q) / 3.0) * sqrt(-p);
|
||||
|
||||
return length(vec2(x0 - x, y0 - x * x));
|
||||
}
|
||||
|
||||
|
||||
void main() {
|
||||
if (uv_stroke_width == 0) discard;
|
||||
frag_color = color;
|
||||
|
||||
// sdf for the region around the curve we wish to color.
|
||||
float signed_dist = dist_to_curve() - 0.5 * uv_stroke_width;
|
||||
|
||||
frag_color = color;
|
||||
frag_color.a *= smoothstep(0.5, -0.5, signed_dist / uv_anti_alias_width);
|
||||
}
|
Loading…
Add table
Reference in a new issue