Move new VectorField from optics projects into main repo

This commit is contained in:
Grant Sanderson 2024-09-21 12:16:09 -04:00
parent 0804109301
commit 217eb6b486

View file

@ -5,7 +5,8 @@ import itertools as it
import numpy as np
from manimlib.constants import FRAME_HEIGHT, FRAME_WIDTH
from manimlib.constants import WHITE
from manimlib.constants import BLUE, WHITE
from manimlib.constants import ORIGIN
from manimlib.animation.indication import VShowPassingFlash
from manimlib.mobject.geometry import Arrow
from manimlib.mobject.types.vectorized_mobject import VGroup
@ -15,6 +16,7 @@ from manimlib.utils.bezier import inverse_interpolate
from manimlib.utils.color import get_colormap_list
from manimlib.utils.color import rgb_to_color
from manimlib.utils.dict_ops import merge_dicts_recursively
from manimlib.utils.iterables import cartesian_product
from manimlib.utils.rate_functions import linear
from manimlib.utils.simple_functions import sigmoid
from manimlib.utils.space_ops import get_norm
@ -118,7 +120,184 @@ def get_sample_points_from_coordinate_system(
# Mobjects
class VectorField(VGroup):
class VectorField(VMobject):
def __init__(
self,
func,
stroke_color: ManimColor = BLUE,
stroke_opacity: float = 1.0,
center: Vect3 = ORIGIN,
sample_points: Optional[Vect3Array] = None,
x_density: float = 2.0,
y_density: float = 2.0,
z_density: float = 2.0,
width: float = 14.0,
height: float = 8.0,
depth: float = 0.0,
stroke_width: float = 2,
tip_width_ratio: float = 4,
tip_len_to_width: float = 0.01,
max_vect_len: float | None = None,
min_drawn_norm: float = 1e-2,
flat_stroke: bool = False,
norm_to_opacity_func=None,
norm_to_rgb_func=None,
**kwargs
):
self.func = func
self.stroke_width = stroke_width
self.tip_width_ratio = tip_width_ratio
self.tip_len_to_width = tip_len_to_width
self.min_drawn_norm = min_drawn_norm
self.norm_to_opacity_func = norm_to_opacity_func
self.norm_to_rgb_func = norm_to_rgb_func
if max_vect_len is not None:
self.max_vect_len = max_vect_len
else:
densities = np.array([x_density, y_density, z_density])
dims = np.array([width, height, depth])
self.max_vect_len = 1.0 / densities[dims > 0].mean()
if sample_points is None:
self.sample_points = self.get_sample_points(
center, width, height, depth,
x_density, y_density, z_density
)
else:
self.sample_points = sample_points
self.init_base_stroke_width_array(len(self.sample_points))
super().__init__(
stroke_color=stroke_color,
stroke_opacity=stroke_opacity,
flat_stroke=flat_stroke,
**kwargs
)
n_samples = len(self.sample_points)
self.set_points(np.zeros((8 * n_samples - 1, 3)))
self.set_stroke(width=stroke_width)
self.set_joint_type('no_joint')
self.update_vectors()
def get_sample_points(
self,
center: np.ndarray,
width: float,
height: float,
depth: float,
x_density: float,
y_density: float,
z_density: float
) -> np.ndarray:
to_corner = np.array([width / 2, height / 2, depth / 2])
spacings = 1.0 / np.array([x_density, y_density, z_density])
to_corner = spacings * (to_corner / spacings).astype(int)
lower_corner = center - to_corner
upper_corner = center + to_corner + spacings
return cartesian_product(*(
np.arange(low, high, space)
for low, high, space in zip(lower_corner, upper_corner, spacings)
))
def init_base_stroke_width_array(self, n_sample_points):
arr = np.ones(8 * n_sample_points - 1)
arr[4::8] = self.tip_width_ratio
arr[5::8] = self.tip_width_ratio * 0.5
arr[6::8] = 0
arr[7::8] = 0
self.base_stroke_width_array = arr
def set_sample_points(self, sample_points: Vect3Array):
self.sample_points = sample_points
return self
def set_stroke(self, color=None, width=None, opacity=None, behind=None, flat=None, recurse=True):
super().set_stroke(color, None, opacity, behind, flat, recurse)
if width is not None:
self.set_stroke_width(float(width))
return self
def set_stroke_width(self, width: float):
if self.get_num_points() > 0:
self.get_stroke_widths()[:] = width * self.base_stroke_width_array
self.stroke_width = width
return self
def update_vectors(self):
tip_width = self.tip_width_ratio * self.stroke_width
tip_len = self.tip_len_to_width * tip_width
samples = self.sample_points
# Get raw outputs and lengths
outputs = self.func(samples)
norms = np.linalg.norm(outputs, axis=1)[:, np.newaxis]
# How long should the arrows be drawn?
max_len = self.max_vect_len
if max_len < np.inf:
drawn_norms = max_len * np.tanh(norms / max_len)
else:
drawn_norms = norms
# What's the distance from the base of an arrow to
# the base of its head?
dist_to_head_base = np.clip(drawn_norms - tip_len, 0, np.inf)
# Set all points
unit_outputs = np.zeros_like(outputs)
np.true_divide(outputs, norms, out=unit_outputs, where=(norms > self.min_drawn_norm))
points = self.get_points()
points[0::8] = samples
points[2::8] = samples + dist_to_head_base * unit_outputs
points[4::8] = points[2::8]
points[6::8] = samples + drawn_norms * unit_outputs
for i in (1, 3, 5):
points[i::8] = 0.5 * (points[i - 1::8] + points[i + 1::8])
points[7::8] = points[6:-1:8]
# Adjust stroke widths
width_arr = self.stroke_width * self.base_stroke_width_array
width_scalars = np.clip(drawn_norms / tip_len, 0, 1)
width_scalars = np.repeat(width_scalars, 8)[:-1]
self.get_stroke_widths()[:] = width_scalars * width_arr
# Potentially adjust opacity and color
if self.norm_to_opacity_func is not None:
self.get_stroke_opacities()[:] = self.norm_to_opacity_func(
np.repeat(norms, 8)[:-1]
)
if self.norm_to_rgb_func is not None:
self.get_stroke_colors()
self.data['stroke_rgba'][:, :3] = self.norm_to_rgb_func(
np.repeat(norms, 8)[:-1]
)
self.note_changed_data()
return self
class TimeVaryingVectorField(VectorField):
def __init__(
self,
# Takes in an array of points and a float for time
time_func,
**kwargs
):
self.time = 0
super().__init__(func=lambda p: time_func(p, self.time), **kwargs)
self.add_updater(lambda m, dt: m.increment_time(dt))
always(self.update_vectors)
def increment_time(self, dt):
self.time += dt
class OldVectorField(VGroup):
def __init__(
self,
func: Callable[[float, float], Sequence[float]],